文档库 最新最全的文档下载
当前位置:文档库 › 燃煤电厂中汞的排放与控制的研究

燃煤电厂中汞的排放与控制的研究

燃煤电厂中汞的排放与控制的研究
燃煤电厂中汞的排放与控制的研究

燃煤电厂中汞的排放与控制的研究

摘要:本文对煤中微量元素汞的含量以及燃煤烟气中汞的排放情况进行了论述,综述了重金属汞在煤中的存在形态及在燃煤电站中的转化过程,并重点介绍了燃煤烟气中重金属汞的控制方法的最新研究进展,分析了燃煤电厂在汞的控制方面存在的主要问题,并结合我国国情提出了相关建议。

关键词:燃煤电厂;烟气;汞;排放;控制

Keywords: coal-fired power plant; flue gas; mercury; emission; control

0引言

汞对已知的任何生物没有作用,人们很久以前就认识到汞是一种有毒的物质,且属于毒性最强的元素之一。汞污染对生态环境的影响虽然比较缓慢,但进入生态环境的汞会产生长期的危害,特别是有机汞污染环境后,对人类造成严重威胁。

自然界中汞有三种价态,零阶汞Hg0,一价汞Hg+和二价汞Hg2+。零阶汞易挥发,且难溶于水,是大气环境中相对比较稳定的形态,在大气中的停留时间很长,平均可达1年左右,可以在大气中被长距离地输运而形成大范围的汞污染。造成汞环境污染的来源主要是天然释放和人为两方面。从局部污染来看:人为来源是相当重要的。以美国为例[1],美国每年汞的排放量占全世界向大气排放汞总量的3%,大约150t左右,其中占33%、份额最大的当属燃煤电站,约50t,垃圾焚烧炉年排放汞量约占20%,医疗垃圾焚烧约占10%。对于燃煤过程,汞主要是以气态形式排放。汞的电离势高,高电离势决定了汞易变为原子的特性,因而汞易迁移,难富集,利用一般的污染物控制装置无法有效捕捉而排入大气。由于全球煤炭消耗量巨大,汞经由燃煤过程的迁移、转化已成为它在生物圈内循环的一个重要途径。本文在参阅大量文献的基础上,从煤中汞的存在形态谈起,论述了燃煤电站中汞的形态转化过程,简要论述目前学术界对燃煤电站中汞的排放形式及其控制方法,并对该领域的研究提出了一些看法。

1 煤中汞的含量及燃煤烟气中汞的排放情况

1.1 煤中汞的含量

我国是一个燃煤大国,能源消耗主要以煤炭为主,因而由燃煤造成的汞污

染问题也相当严重。王启超等曾对中国各省煤中的汞含量进行了测量,汞的平均质量浓度为0.22mg/kg,汞在煤中处于富集状态[2]。各省煤炭的汞含量见表1。

表2是美国部分矿区煤的含汞量。与表1比较可见,中国煤中的汞含量普遍高于美国。

表1 我国各省煤炭含汞量[2]mg/kg

表2 美国部分煤种含汞量统计[3]

1.2 燃煤烟气中汞的排放情况

大气环境中的汞除一部分来自天然排放外,很大一部分来自人类活动。来自人类活动的汞占整个汞排放量的10%~30%[4],而燃煤电站的汞排放占主要地位。据美国环保机构测算,1994年-1995年间,美国由于人类活动排出的汞达150t,其中约有87%是由燃烧源排出的[2]。我国也曾有人对汞的排放量作过估算:据王起超等人( 1999年)估算,1995年全国汞的排放量为21318t;据冯新斌和洪业汤(1996年)估算,1994年全国燃煤排出的汞更多,为296t[5]。

2汞在煤中的存在形态及在燃煤电站中的转化过程

2.1 汞在煤中的存在形态

煤中汞的存在形式也是影响汞排放的一个重要因素,尽管有学者提出煤中存在与有机煤岩组分结合的有机汞化合物,但主要还是以与无机物结合形式存在[3]。对于煤中汞的存在形式,许多学者都进行了研究。Finkelman在煤中发现了含汞的硫化物和硒化物,Cahill和Shiley发现煤中的方铅矿含汞,Dvornikov还提出煤中的汞主要以辰砂、金属汞和有机汞化合物的形式存在[6]。煤在地质化学中被归为亲硫元素,因而,煤中的汞主要存在于黄铁矿(FeS2)和朱砂(HgS)中[3]。文献[6]的研究证实了煤中大多数汞以固溶物形式分布于黄铁矿中,特别是后期成因的黄铁矿。

刘晶等人[7]用连续化学浸提法测定了3种煤中的汞形态,发现其中可交换态汞占总汞量的0.9%~2.4%,硫化物结合态汞占总量的40.1%~78.3%,有机结合态汞占0.3%~1.5%,残渣态汞占17.8%~57.9%。同时还发现汞在密度较大的煤中质量浓度较大,而密度较大的煤中矿物质的质量浓度较大,这表明汞主要存在于矿物质中。文献[6]对贵州煤汞的赋态状态研究表明,煤中大部分汞赋存于能被硝酸浸取的物相中(主要为黄铁矿) ,而且汞在黄铁矿中的分布是不均匀的[8]。黔西南煤中汞在黄铁矿中的分布也符合这一规律。

总之,煤中的汞主要存在于无机矿物质中,特别是黄铁矿中,而且汞在其中的分布是不均匀的。

2.2 燃煤电站中汞的转化过程

在燃煤电站中,原煤首先进入制粉系统。煤在破碎的过程中产生热量,由于汞具有很强的挥发性,一部分汞会吸热从煤中挥发出来。文献[9]对太原第一热

电厂和侯马电厂的煤和灰渣进行分析,发现原煤中的汞有14%在制粉过程中挥发掉。煤粉进入炉膛后,经过燃烧,其中的汞主要分为两部分:一部分伴随着灰渣的形成,直接存留于灰渣和飞灰中。赵毅对2个电厂的实测结果表明,灰渣中汞的质量浓度为0.2298~0.3537mg/kg ,占原煤中总汞的13%[9]。而朱珍锦等[10]曾对燃用山西贫煤的锅炉在不同负荷下烧成的炉底渣进行取样,测得其中的汞为0 ~0.044 μg/g。煤中的另一部分汞在火焰温度下( > 1400 ℃)随着煤中黄铁矿(FeS2)和朱砂(HgS)等含汞物质的分解,以单质的形态释放到烟气中。煤中汞的具体形态和结构并不影响这一燃烧转化机理,也就是说,在火焰温度下,气态汞主要以单质形态(Hg0(g))存在[3]。进入炉膛的煤粉中的汞,绝大部分在火焰温度下转化为单质汞。

3汞的控制方法

脱除汞的有效性取决于汞的形态分布即烟气中汞以何种形式存在,而烟气中汞的形态分布与飞灰成分、温度、烟气成分(如氯化物、SO x、NO x)等的影响有很大关系。目前认为,烟气中的汞主要有 3 种形式:气态零阶汞(Hg0)、气态二价汞(Hg2+)和颗粒态汞(Hg),且燃煤汞排放控制技术研究主要集中在如何脱除烟气向大气排放的汞。在我国,浙江大学、华中科技大学和国家电站燃烧工程技术研究中心等已开始进行研究,目前只是处于实验室研究的起步阶段。借鉴国外对重金属特别是燃煤汞排放和控制的研究和开发的经验,我们有可能在燃煤汞污染控制技术上较快取得工业应用的成果。

目前,从发达国家对烟气中污染物排放控制的总体来看:要求越来越高,控制内容越来越细。为适应这些严格的法规,相继开发出一批燃煤汞排放控制新技术和新方法。综合国内外文献,针对燃煤烟气汞排放控制方法大致分为以下5种。

3.1 吸附剂吸附法

利用活性炭或者其它吸附剂来除去烟气中的汞。用活性吸附烟气中的汞可以通过以下2 种方式:一种在颗粒脱除装置前喷入粉末状活性炭,吸附了汞的活性炭颗粒经过除尘器时被除去;另一种是将烟气通过活性炭吸附床,但如果活性炭颗粒太细会引起较大的压降。垃圾焚烧炉为控制重金属汞的排放很早就采用了活性炭吸附和布袋除尘技术,选择合适的碳汞(C/Hg)比例,可以获得90%以上的

除汞效率。对于燃煤电站锅炉的烟气除汞,适当增加碳汞(C/Hg)比例除汞效率可以达到30%以上。另外,运用化学方法将活性炭表面渗入硫或者碘,以增强活性炭的活性,且由于硫或者碘与汞之间的反应能防止活性炭表面的汞再次蒸发逸出,可提高吸附效率。直接采用活性炭吸附的方法成本很高,燃煤电站难以承受。据美国EPA 和DOE 估算结果表明:燃煤电站如选择活性炭喷入方式,每脱除 1 镑汞需耗资$14200~70000;如采用活性炭吸附床,每脱除 1 镑汞需耗资$17400~38600。鉴于活性炭如此昂贵,很多研究人员开始开发新型、价格低廉的吸附剂。为此,国外学者研究利用钙基吸附剂(CaO、Ca(OH)2、CaCO3、CaSO4·2H2O)来脱除汞。在模拟燃煤烟气进行的实验中发现:Ca(OH)2对Hg2Cl2的吸附效率可达到85%,但对零阶汞(Hg0),只有在SO2存在的情况下,18%的Hg0可以被除去。碱性吸附剂如CaO同样也可以很好地吸附HgCl2,SO2存在时对Hg0的脱除率为35%。Gho-rishi在研究HCl对钙基吸附剂的影响时发现:由于氯原子和Hg0相互作用,带有结晶水的CaSO4(CaSO4·2H2O、CaSO4·1/2H2O)对Hg0的吸附作用大大增强了。目前,钙基吸附剂尚处于实验室研究阶段,还未用于工业实践。美国PSI(Physical Science Inc)用沸石材料作为工业锅炉控制汞排放的吸附剂。在燃煤烟气中加入已知含量的零阶汞(Hg0)进行实验,结果表明:沸石在高温和低温下都可以吸附Hg0和Hg2+。沸石材料这种新型吸附剂仍在研究之中,但它在替代活性炭方面存在巨大的潜力。美国辛辛那提大学利用TiO2 吸附剂来捕捉汞。在实验室模拟试验中,将TiO2喷入到高温燃烧器中,产生大量TiO2凝聚团,凝取团的大表面积可氧化并吸附汞蒸气,然后通过除尘装置被除去。但由于其松散的结构和反应效率低,对汞的捕捉效果不明显。再加以低强度的紫外光照射,Hg0在TiO2表面氧化为Hg2+并与TiO2结合为一体,显示出很好的除汞能力。

3.2 FGD除汞法

利用湿法脱硫装置(FGD)除汞。由于烟气中的Hg2+化合物,大部分为HgCl2 是可溶于水的,脱硫系统可通过溶解烟气中的二价汞将其捕捉,剩余的烟气中部分零阶汞和部分二价汞在经过除尘器(FF或ESP)时被除去。湿法脱硫装置(Wet FGD)可以将烟气中80%~95%的Hg2+除去。但对于不溶于水的Hg0捕捉效果不显著。据统计,WFGD 对烟气中总汞的脱出率在45%~55%范围内。脱硫装置还可

以控制SO2和颗粒的排放。通过改进WFGD的处理过程,如利用催化剂使烟气中的Hg0转化为Hg2+,当烟气中以Hg2+形式存在的汞占主要水平时,WFGD的除汞效率会大大提高。美国Argonne 国家实验室[11]采用新型氧化剂NOXSORB (氯酸HClO 3 和氯酸钠的混合物NaClO3) ,将它喷入到149°C的烟气中,100%的气态Hg0被氧化为Hg2+,最终经过WFGD被捕捉。这种氧化剂在脱除汞的同时也可以减少80%NO的排放量。美国Radian实验室使用含铁类物质和含钯类物质作氧化剂,149°C时烟气中的气态Hg0几乎全部转化为Hg2+。科学家们用WFGD的固体废物和废液作TCLP酸液浸出试验和挥发性检验,发现WFGD的废物和废液中所吸附的汞稳定且难以溢出。

3.3飞灰除汞法

通过飞灰吸附作用来除去烟气中的汞。燃煤产生的飞灰能吸收烟气中的汞,含碳量高的飞灰对汞的吸附是很有利的,但也有科学家认为大幅度增加飞灰的含碳量,并不能相应提高飞灰吸附汞的能力。再者高含碳量的飞灰电阻率低,这样会降低ESP的除尘效率。用飞灰样品在不同烟温下进行比较试验,发现较低温度对飞灰的吸附有利。不同煤种的飞灰也有差别,烟煤比次烟煤、褐煤的飞灰表现出更高的氧化率和吸附率。有研究者利用循环流化床(CFB)来进行汞吸附和控制颗粒排放。CFB增加了颗粒的停留时间(大量飞灰在CFB中停留4s) ,充分利用小颗粒对Hg的吸附能力,同时增强了小颗粒的凝聚作用,有助于减少小颗粒的排放。另外,也可将含碘活性炭(IAC)喷入到流化床中,可进一步提高Hg的捕捉效率。

3.4 其它方法

有研究者利用金(或其它贵金属)网吸附烟气中的汞,然后从这些贵金属中析出汞,再生后的汞可以用于工业[12]。另外,脉冲电晕等离子体这种新型技术也可以用于燃煤烟气中汞排放的控制[13]。

3.5 综合方法

由于以上介绍的方法,对烟气中 3 种形式的汞均具有一定的选择性脱除,如活性炭法主要针对气态零阶汞的脱除,FGD 除汞法主要针对气态二阶汞的脱除,飞灰除汞法主要针对颗粒态汞的脱除,而实际燃煤锅炉由于煤种、燃烧方式等不同,其排烟中的汞的形态分布比例差异较大。因而,目前还没有一种适合于

大部分燃煤锅炉的对3 种形态汞的综合脱除方法。为此,浙江大学热能工程研究所在基础研究的基础上,提出了一种以半干法为基础的新型燃煤汞排放控制方法,即利用喷入添加剂,对锅炉尾部烟气中气态汞的形态进行控制,使汞的形态分布处于合理比例; 利用喷水降温,提高吸附剂对气态零阶汞的吸附效率,同时利用液粒吸收气态二阶汞,达到将对2种气态汞同时转化为颗粒态汞,以利于除尘装置对3种汞形态的同时脱除。

4 存在问题及建议

4.1 存在问题

(1)对煤中汞的丰度、赋存状态等有待进一步认识,目前所得分析结果可信度

较低。

(2)煤中汞在燃烧过程中的形态转化、形态分布一定程度上仅仅依赖于理论推

断。

(3)对汞的控制技术还处于起步阶段,没有完善的技术可以利用。

4.2 相关建议

(1)结合我国的实际情况,对煤中汞的丰度、赋存状态等进行进一步的调查分

析;提高分析结果的可信度,为下一步汞控制技术的研究提供基础。

(2)在加强跟踪国外研究进展的同时,要结合我国的实际情况选择典型燃煤电

厂进行监测方法及利用现有技术除汞的验证性试点。

(3)启动汞排放法规、标准研究的准备工作。

参考文献

[1]US Environmental Protection Agency .Mercury Study Report to

Congress[R] .Office of Air Quality Planning and Standars and Office of Research and Development,U.S Environmental Protection Agency,Report No.EPA-452/R-97-003,December 2008 .

[2]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,(4):

318-3211.

[3]Kevin Cetal Mercury trans formation in coal combustion flue gas [J].Fuel

Processing Technology,2010,(65):289-310.

[4]Stein E,Cohem Y,WinerA1Environmental distribution and transformation of

mercury compounds [J]. Crit Rev Environ Sci Technol,2009,(26):1-431.

[5]唐修义,黄文辉1中国煤中微量元素[M].北京:商务印书馆,2006.

[6]张军营,任德贻,许德伟等,煤中汞及其对环境的影响[J].环境科学进展,1999,

7(3):100-1041.

[7]刘晶,陆小华,郭欣等,煤中痕量砷和汞的形态分析[J].华中理工大学学报,

2000,29 (7) :71 – 731.

[8]冯新斌,洪业汤,洪冰等,矿物岩石地球化学通报[J].2001 ,20.

[9]赵毅,王丽蓉.火电厂燃煤中汞的迁移转化规律研究[J].中国电力,1994,(4) :

52-53.

[10]朱珍锦,薛来,谈仪等.符合改变对煤粉锅炉燃烧产物中汞的分布特征影响研

究[J].中国电机工程学报,2001,21 (7) :87 – 901.

[11]Liven good CD,Mendel sohn M H. Progress for combined control of mercury

and nitricoxide [C]. EPR I- DOE-EPA Combined Uility Air Pollution Control Symposium,2008,Atlanta,Georgia.

[12]Aeschliman D,Norton G. Collection and thermal evolution behaviors of

different mercury species captured with gold [J].Environment science technology,2006,33:2278~2283.

[13]Ramsay C,George R. Mercury emission control technologies:and EPR I

synopsis [J]. Power Engineering,1995,11:51~57 .

燃煤电厂汞的排放控制要求与监测方法

V o.l1,N o.3 M ay,2011 环境工程技术学报 Journa l of Env iron m ental Eng i neer i ng T echno l ogy 第1卷,第3期 2011年5月 收稿日期:2011-02-17 基金项目:中国国电集团公司科研项目(Z200703) 作者简介:李辉(1985)),男,硕士,研究方向为燃煤电厂CO 2减排及汞监测技术,li hu i850627@1261co m 文章编号:1674-991X(2011)03-0226-06 燃煤电厂汞的排放控制要求与监测方法 李辉1,2,王强3,朱法华1,2 1.国电环境保护研究院,江苏南京210031 2.南京信息工程大学,江苏南京210044 3.南京国电环保设备有限公司,江苏南京210044 摘要:介绍了汞污染对环境、人体健康的影响与危害及燃煤电厂汞的产生和排放机理,对国内外燃煤电厂汞排放控制相关政策、排放标准进行了对比,重点介绍目前主要的烟气汞排放监测方法。其中较为成熟的烟气汞排放监测技术主要是美国国家环境保护局(U S EPA)制定的安大略法(OHM法),30A法(在线监测)和30B法(吸附采样分析法)。结合我国部分已开展燃煤电厂烟气汞监测项目的经验提出建议:参考发达国家经验,开发适合于我国燃煤电厂的汞检测标准方法及相应仪器设备,在掌握我国燃煤电厂汞排放情况的基础上制订减排目标及排放标准。 关键词:燃煤电厂;汞排放;政策与标准;监测方法 中图分类号:X51文献标识码:A DO I:1013969P.j issn.1674-991X.20111031037 The Control Requirem ents and M onitori ngM ethods forM ercury Em ission i n Coal-fired Po w er P l ants LIH u i1,2,WANG Q iang3,Z HU Fa-hua1,2 1.S tate P o w er Env i ron m enta l P ro tecti on R esearch Institute,N anji ng210031,Ch i na 2.N anji ng U n i ve rs i ty o f Infor m ati on Science and T echno l ogy,N an ji ng210044,China 3.N an ji ng G uodian Env iron m en tal P rotection Equi pment Co.L td,N anji ng210044,Ch i na Abst ract:The effect and har m o f m ercury to t h e env ironm ent and hum an hea lth,as w ell as the m echanis m o f m ercury generation and e m issi o n i n coa-l fired po w er plants,w ere i n tr oduced.The related po licy and standar ds i n China and i n deve l o ped countries w ere co m pared,and the m a i n m on itoring m ethods fo r m ercur y i n flue gas focused.The re lati v e l y m ature m onitori n g m ethods i n cluded Ontario H ydr o M ethod(OHM),30A M ethod and30B M ethod w hich w ere developed by US EPA.Co mb i n ed w ith the m on itori n g experiences i n Ch i n a,it w as suggested t h at t h e standar d m on itori n g m ethods and equ i p m ents shou l d be developed for m ercury e m issi o n i n coa-l fired po w er plants by referri n g to the experience of deve l o ped countries,and the reduction targets and e m i s sion standar ds be for m ulated based on the e m ission m on itoring data a ll over the coun try. K ey w ords:coa-l fired po w er plants;m ercury e m issi o n;po licy and standar ds;m on itoring m ethods 汞是一种重金属污染物,可通过呼吸、皮肤接触、饮食等方式进入人体,危害人体健康。汞对人体健康的危害与汞的化学形态、环境条件和侵入人体的途径、方式有关。金属汞蒸汽有高度的扩散性和较大的脂溶性,侵入呼吸道后可被肺泡完全吸收并经血液输送至全身,在器官内被氧化而对人体造成

燃煤电厂烟尘超低排放技术

燃煤电厂烟尘超低排放技术 前言 十二五期间,我国平均雾霾天数逐渐增多,空气污染加剧,霧霾严重影响人们身体健康和正常工作、生活秩序。而雾霾天气的形成与一次细颗物PM2.5的排放及环境空气中的二次细颗粒物的形成密切相关。我国的能源消费主要以煤炭为主,发电方式在很长的一段时间内是以燃煤发电为主。《火电厂大气污染排放标准》( GB 13223-2011) 要求在一般地区烟尘排放限值30 mg /m3,重点地区烟尘排放限值20 mg /m3。基于这样的原因,许多大型电厂都安排了电袋复合除尘器,基本上达到了排放要求。2014年9月12日,国家发改委、环境保护部、能源局联合印发《煤电节能减排升级与改造行动计划( 2014-2020)》的通知中,强调严控大气污染物排放,东部地区11个省市新建燃煤发电机组大气污染物排放浓度基本达到燃气轮机组排放限值,在基准含氧6%条件下,烟尘、SO2、NOx排放浓度分别不高于10、35、50 mg /m3,中部地区8 省则要求接近或达到燃气轮机组排放限值,鼓励西部地区接近或达到燃气轮机组排放限值。 1.成熟的除尘器技术 目前国内比较成熟且适用于各级容量机组的除尘技术主要是静电除尘器和袋式除尘器。 (1)静电除尘器使用周期长、维护费低且适用性较广泛,国内电除尘器出口烟尘浓度限制为20 mg /m3时,50%以上的煤种适用常规电除尘器; 但静电除尘器耗电量大,设备复杂、占地大并且对粉尘比电阻要求较高。对除尘效率低于99.8%,通常选用电除尘器。像神府东胜煤、晋北煤等电除尘器适应性较好的煤种,宜选用电除尘器。 (2)布袋式除尘器对粉尘气流量的变化适宜性强,具有除尘效率高,运行稳定,适用范围广,操作维护容易并且可处理高温、高比电阻的粉尘,但布袋除尘寿命主要取决于滤袋的使用寿命,不适宜于黏结性强及吸湿性强的粉尘,特别是烟气温度不能低于露点温度,否则会产生结露,致使滤袋堵塞。像准格尔煤、宣威煤、澳大利亚煤等电除尘器适应性差的煤种,不宜选用常规电除尘器,可选用布袋除尘器。 2.高效除尘技术方案 2.1湿式电除尘器 湿式电除尘器是直接将水雾喷向电极和电晕区,水雾在芒刺电极形成的强大的电晕场内荷电后分裂进一步雾化,在这里电场力、荷电水雾的碰撞拦截、吸附凝并,共同对粉尘粒子起捕集作用,最终粉尘粒子在电场力的驱动下到达集尘极而被捕集;与干式电除尘器通过振打将极板上的灰振落至灰斗不同的是:湿式电除尘器则是将水喷至集尘极上形成连续的水膜,采用水清灰,无振打装置,流动水膜将捕获的粉尘冲刷到灰斗中随水排出。湿式电除尘器对酸雾、有毒重金属以及PM10,尤其是PM2.5 的细微粉尘有良好的脱除效果。 2.2低低温静电除尘器技术

燃煤电站汞排放及其控制技术研究进展

燃煤电站汞排放及其控制技术研究进展 摘要本文讨论了汞在煤中的赋存状态并且概述了近年来国内外电厂煤燃烧过程中汞的形态分布以及迁移转化规律研究的最新成果。在此基础上,分析了影响燃煤烟气中汞存在形态的主要因素,并讨论了当前国内外研究进展及工业上控制汞排放的主要技术。 关键词燃煤电厂汞烟气形态转化排放控制 Study on the control technique and the law of transport for mercury resulting from combustion of coal in power plant Abstrct: This paper reported mercury occurrence in coal and mercury speciation and emissions from coal-fired power stations. Based on the above study, the factors which effect the mercury speciation in the flue gas have been discussed and the control technology of metcury emissions have also been summarized. Keywords: coal-fired power station; mercury; flue gas; state transfromation; control technology 汞是一种可在生物体内和食物链过程中不断累积的有毒物质,又是一种全球性循环元素[1]。尽管自然界本身也排放出汞,但主要的汞污染物还是由于人类活动而产生的。相关研究表明,化石燃料燃烧所排放出的汞约占人类活动排放出汞的70-85%[2]。由于汞在大气中的停留周期很长,毒性较大,因而汞的排放控制研究已成为国际上研究的热点,美国、澳大利亚等发达国家已制定了有关燃煤电站控制汞排放的标准。我国煤中汞的平均含量为0. 15 mg/ kg,由于燃煤占一次能源消耗的75%左右,消耗量巨大,煤燃烧排放汞的总量巨大[3],由此引起的汞排放污染也开始受到重视,虽然我国政府目前还未出台相关标准,但控制汞排放可谓迫在眉睫,制定相应标准也是大势所趋。燃煤过程中汞的形态分布直接影响到烟气中汞的毒性及其控制,同时也影响到汞在大气环境中的迁徙以及对汞危害性进行的评估。本文着重介绍燃煤电站中汞的形态转化及其控制技术的研究进展。 1 汞在煤中的存在形态 煤中汞的存在形式也是影响汞排放的一个重要因素,尽管有学者提出煤中存在与有机煤岩组分结合的有机汞化合物,但主要还是以与无机物结合形式存在[4]。对于煤中汞的存在形式,许多学者都进行了研究。Finkelman 在煤中发现了含汞的硫化物和硒化物, Cahill和Shiley发现煤中的方铅矿含汞,Dvornikov还提出煤中的汞主要以辰砂、金属汞和有机汞化合物的形式存在[5]。煤在地质化学中被归为亲硫元素,因而,煤中的汞主要存在于黄铁矿(FeS2)和朱砂(HgS)中[4]。文献[5]的研究证实了煤中大多数汞以固溶物形式分布于黄铁矿中,特别是后期成因的黄铁矿。 刘晶等人[6]用连续化学浸提法测定了3种煤中的汞形态,发现其中可交换态汞占总汞量的0.9 %~2.4 % ,硫化物结合态汞占总量的40.1 %~78.3 % ,有机结合态汞占0.3 %~1.5 %,残渣态汞占17. 8 %~57. 9 %。同时还发现汞在密度较大的煤中质量浓度较大,而密度较大的煤中矿物质的质量浓度较大,这表明汞主要

火电厂超低排放技术

火电厂超低排放技术注意点 一、目前烟气超低排放的形式 2015年12月2日召开的国务院常务会议决定,在2020年前,对燃煤机组全面实施超低排放和节能改造,使所有现役电厂每千瓦时平均煤耗低于310克、新建电厂平均煤耗低于300克,对落后产能和不符合相关强制性标准要求的坚决淘汰、关停,东、中部地区要提前至2017年和2018年达标。对超低排放和节能改造要加大政策激励,改造投入以企业为主。对于超低排放,目前国内比较普遍的概念是指,燃煤电厂的污染物排放标准基本达到GB13223—2011标准中燃气轮机组排放限值(即在基准氧含量6%条件下,烟尘、二氧化硫、氮氧化物排放浓度分别不高于10、35、50mg/m3),尤其东部近城市重要地区要求排放烟尘要低于5mg/m3,这就对超低排放提出了更严格的要求,也对我们运行人员的技术素质提出了更高的标准。 二、脱硫超低排放的新技术 1、脱硫除尘一体化技术。单塔一体化脱硫除尘深度净化技术可在一个吸收塔内同时实现脱硫效率99%以上,除尘效率90%以上,满足二氧化硫排放35mg/m3、烟尘5mg/m3的超净排放要求。脱硫除尘一体化装置是旋汇耦合装置、高效节能喷淋装置、管束式除尘装置三套系统优化结合的一体化设备,应用于湿法脱硫塔二氧化硫去除。 2、单塔双分区高效脱硫除尘技术。使用一个吸收塔,浆液采用双分区浆液池设计,将浆液池分隔成上下两层(上层低PH值区和下层高PH值区),上层主要负责氧化,下层主要负责吸收,同时通过安装提效环、喷淋层加层、多孔分布器等措施明显提高脱硫效果,并在原烟道处设置喷雾除尘系统可以有效提高除尘效果。 3、双托盘技术。双托盘脱硫系统在原有单层托盘的基础上新增一层合金托盘,双托盘比单托盘多了一层液膜,气液相交换更为充分,从而起到脱硫增效的作用。该技术在脱硫效率高于98%或煤种高含硫量时优势更为明显。 4、双塔双循环技术。双塔双循环技术其实是将辅助罐体升级为吸收塔,利用双循环技术,同时设置喷淋层和除雾器,使双循环的脱硫和除尘效果进一步增强。但是占地很大,不适合布置比较紧凑的电厂,且辅机增设较多,运营成本高。 三、超低排放除尘新技术 为达到火电厂大气污染物排放标准(GB13223—2011)标准中烟尘的排放标准,对除尘器多采用高频电源改造、加装低低温省煤器、增加除尘器电场等技术被广泛应用。在进行超低排放改造中,除尘系统主要采用以下几种方法: 1、湿式电除尘。湿式电除尘器收尘原理与干式电除尘器相同,其主要处理含水较高乃至饱和的湿气体。能有效去除烟气中的尘、酸雾、水滴、PM2.5等有害物质,除尘效率高,运行也较可靠。

燃煤电厂烟气汞排放控制研究现状及进展

燃煤电厂烟气汞排放控制研究现状及进展 1燃煤电厂汞的排放 煤作为一次能源的主要利用方式是燃烧,其燃烧产物会对环境造成严重的破坏。全世界发电用煤量巨大,燃煤电厂是导致空气污染的最大污染源之一。在煤燃烧造成的污染物中,除SO2、NO X和CO2外,还有各种形态的汞排放。汞是煤中的一种有毒的重金属痕量元素,具有剧毒性、高挥发性、生物体内沉积性和迟滞性长等特点。全球每年排放到大气中的汞总量约为5000吨,其中4000吨是人为的结果,而燃煤过程的汞排放量占30%以上。由于我国一次性能源以煤炭为主,原煤中汞的含量变化范围在0.1~5.5mg/kg,煤中汞的平均含量为0.22mg/kg,是世界范围内煤中平均汞含量的1.69倍。根据相关报道,预计2010年中国电煤总需求量为16亿t,以煤炭含汞量为0. 22mg/kg,电厂平均脱汞效率为30%计, 2010年燃煤电厂汞排放量约为246. 4 t。因此燃煤所造成的环境汞污染形势不容乐观,对其排放控制不容忽视。 2 烟气中汞的存在形式及其影响因素 2.1 汞的存在形式 烟气中汞的存在形式主要包括3种:单质汞(Hg0)、化合态汞(Hg+和Hg2+)和颗粒态汞。其中单质汞(Hg0)是烟气中汞的主要存在形式。烟气中汞的存在形态对汞的脱除有重要影响。不同形态汞的物理、化学性质差异较大,如化合态汞易溶于水,并且易被烟气中的颗粒物吸附,因此易被湿法脱硫设备或除尘设备脱除。颗粒态汞也易被除尘器脱除。相反单质汞挥发性高、水溶性低,除尘或脱硫设备很难捕获,几乎全部释放到大气中,且在大气中的平均停留时间长达半年至两年,极易在大气中通过长距离大气输送形成广泛的汞污染,是最难控制的形态,也是燃煤烟气脱汞的难点。 2.2 影响汞存在形态的主要因素 2.2.1 燃煤种类的影响 燃烧所用煤种不同,烟气中汞的形态分布也不同。烟煤燃烧时,烟气中Hg2+含量较高,Hg0含量偏低;而褐煤在燃烧时,烟气中Hg0的含量却较高。褐煤燃烧所产生烟气中Hg0含量最高,亚烟煤次之,烟煤最低,如图1。 2.2.2 燃烧方式以及添加剂的影响 与司炉和链条炉相比,煤粉炉中煤粉与空气接触更加充分,燃烧效率较高,形成的烟气中气态汞含量相对较高,而留在底渣中的汞相对较少。在燃烧过程中,向炉膛内加入一定量

燃煤电厂汞的释放研究

燃煤电厂汞的释放研究 摘要本文研究了电厂中汞释放规律,常规燃煤电厂装备静电除尘器和湿式烟气脱硫系统。在锅炉全负荷运行期间,采集了煤矿,煤矿灰,ESP(电除尘器)灰以及除尘后的颗粒进样和出样。固体中的汞浓度在进行适当的处理和酸解以后用冷蒸汽原子吸收光谱测定法进行测量,气态汞用高锰酸钾和硫酸的混合溶液收集后通过冷蒸汽原子吸收光谱测定法进行测量,该结果用来检测:①汞浓度在发电厂中的相对分布;②用MALT-2计算模型来均衡汞的存在形式;③烟囱排放中的汞浓度。烟道气中总的汞浓度分别是1.113,0.422 和0.712 ugm3N。在烟囱排放中超过99.5%的汞以气态形式存在,固体颗粒形式所占的比例是极少的。汞在ESP,FGD和烟气道中的相对分布分别是从8.3到55.2%,13.3到69.2%和12.2%到44.4%。结果表明燃烧条件而不是煤中的汞浓度和污染控制设备的效率是煤电厂中影响汞排放的重要因素。用MALT2程序计算的汞均衡分布情况表明用浓缩机制来解释汞的存在形式对电除尘器中汞的去除效率变化的影响是非常有必要的。 关键词燃煤电厂;释放研究;汞 引言 燃煤电厂的汞释放规律,对某电厂燃烧的三种形式的煤,含汞量分别为:0.0063,0.0367和0.065 mg/kg。基于研究结果,本文进行了以下内容的测量:①物料守恒;②汞浓度在发电厂中的相对分布;③汞存在形式的平衡计算;④烟囱排放中的汞浓度。 1 实验方法 1.1 取样 在锅炉全负荷运行期间,我们采集了进样和出样例如煤矿,粗灰(炉渣,煤渣,空气预热器灰,省煤器灰,引风机灰),ESP(电除尘器)灰,FGD(烟气脱硫)石膏,烟道气,处理水。 1.2 测量 固体中的汞浓度检测方法为对样品进行合适的预处理后用冷蒸汽原子吸收光谱测定法进行测定。总的气态汞在非等速条件下使用高锰酸钾和硫酸的混合溶液在撞击滤尘器中收集。收集样品中汞浓度用冷蒸汽原子吸收光谱测定法进行检测,检测之后的废液酸解[1]。 2 结果与讨论 2.1 电厂中汞的相对分布

MGGH在燃煤电厂超低排放中的作用

MGGH在燃煤电厂超低排放中的作用分析 尹涛叶明强曾毅夫 (凯天环保科技股份有限公司湖南长沙410100) 摘要:MGGH系统具有高效的环保性能,在日本得到了很好的发展。本文介绍了MGGH 的发展情况、工艺原理以及技术优势,并对其在燃煤电厂超低排放中的作用进行了分析。结果表明MGGH具有较大的经济优势,同时能够提高超低排放系统的稳定性能。关键词:燃煤电厂、超低排放、MGGH The effect analysis of MGGH in Ultra-low emission of Coal-fired power plant Yin tao Ye mingqiang Zeng yifu (Kaitian Environmental tech,Changsha,410100) Abstract:MGGH is of high-efficient environment protection property and has been used in Japan in recent years. The development and principle of process and technology advantages of MGGH were introduced. The effect of MGGH in Ultra-low emission of Coal-fired power plant is analyzed. The results show that the MGGH has a great economic advantages and improve stability of Ultra-low emission system. Key Words:Coal-fired power plant, Ultra-low emission, MGGH 1、前言 目前,在我国燃煤电厂湿法烟气脱硫工艺中,未经湿法烟气脱硫装置处理前的烟气温度一般为100~130℃,经吸收塔洗涤降温后的烟气温度会降低到47~50℃,烟气温度较低,水分基本处于饱和状态烟囱排烟温度的降低会造成烟气抬升高度下降,不利于烟气扩散[1-3]。目前比较普遍的解决办法是在脱硫装置烟气进出口设置机械回转式气气换热器(Gas-Gas-Heater,以下简称GGH),将烟囱排烟温度提高,实现干烟囱运行,并可有效提高烟气抬升高度。但从我国燃煤电厂已投运的GGH装置来看,多数存在污染物逃逸,从而导致SO2超标排放、换热片腐蚀、积灰结垢、烟气堵塞、阻力大、运行及维护费用高等系列问题,故障严重时甚至影响系统的正常运行[4-6]。 针对上述问题,美日等国家和地区在环保排放控制综合要求不断提高的推动下,开发应用了余热利用低低温烟气处理技术。其中,日本三菱公司于年研发了可以取代上述GGH的MGGH(全称为Mitsubishi Gas-Gas Heater)技术。即在电除尘器湿法烟气脱硫工艺(单一除尘、脱硫工艺)的基础上,开发了采用无泄漏管式热媒体加热器的湿式石灰石石膏法烟气脱硫工艺在该工艺系统中,原烟气加热水后,用加热后的水加热脱硫后的净烟气。当锅炉燃烧低硫煤时,该工艺具有无泄漏,没有温度及干湿烟

燃煤电厂锅炉烟气静电除尘装置设计说明

石河子大学化学化工学院 燃煤电厂锅炉烟气静电除尘装置设计——大气污染控制工程课程设计任务书 院(系):化学化工学院 专业:环境工程 学号: 姓名: 指导教师:

完成日期: 2016.01.02 目录 一、前言.................................................................... - 1 - 二、设计资料和依据...................................................... - 2 - 2.1设计依据标准.......................................................... - 2 -2.2设计条件.............................................................. - 2 -2.3烟气性质.............................................................. - 2 -2.4气象条件.............................................................. - 3 - 2.5设计内容.............................................................. - 3 - 三、系统设计部分....................................................... - 3 - 3.1空气量和烟气量的计算.................................................. - 4 -3.2电除尘器的选型............................................ 错误!未定义书签。 3.3电除尘器总体尺寸的确定................................................ - 5 - 3.4 电除尘器零部件的设计和计算……………………………………………………………….- 5 - 3. 5 供电系统的设 计………………………………………………………………………………… .-13- 3.6 壳 体 (14) 四、烟囱的设计............................................. 错误!未定义书签。 4.1烟囱高度的确定:.......................................... 错误!未定义书签。

火力发电厂超低排放技术探讨及展望

火力发电厂超低排放技术探讨及展望 摘要:随着经济快速发展,无论在大气污染、水污染、还是噪音污染方面,都不断研究解决办法,我国重视固定污染源的排污改革。中国虽煤炭资源十分丰富,但是在发电行业中所占比例很小,利用电能发电成为市场主流,但是排污问题一直需要不断提高。针对火力发电厂中存在的排放问题,结合国家污染物排放标准,分析火力发电厂中现有超低排放技术,对排放技术进行探讨与展望,开发多样性经济型排污技术。 关键词:火电厂排放技术循环经济 引言 为推动火力发电行业的发展,国家出台政策,加强对煤电节能减排的改造计划。近年来,我国很多发电企业环保意识增强,电力工业结构的调整成为重要发展方向,火电技术的发展存在着弊端,空气、粉尘、烟雾等排放物的污染严重,国家火电污染排放的新标准从2012年正式开始实施,对烟尘、二氧化硫、重金属等排放标准严格要求,目前国内环保形势紧张,针对火电行业的排放措施不断探究。

1.火电厂的发展现状 目前国家火电建设的发展项目自两千年开始,审批项目将近500个,全国发电量持续发展速度持续增长,作为重要能源加工企业,对人们的生活产生十分重要的作用,火电厂清洁生产和环境优化是可持续发展道路上必不可少的环节。目前国内发电厂主要是以燃气、燃煤、余热、垃圾等为发电来源,还有在技术上使用凝汽式汽轮机发电,不少企业也应用燃气轮机、蒸汽燃气轮机发电等。为提高燃煤的效率,很多大型火电厂燃烧煤粉,在生产过程中,存在着一些隐患导致环境的污染,生产中粉尘具有职业危害,多生产人员造成人身安全。因此,在生产过程中需要对排放技术不断研究探讨。 2.国家环保部对火电行业的大气污染排放新标准 2.1修订新标准的根本原因 国家最新修订了对火电厂污染物排放标准,对大气污染的控制力度加大,新的标准的使得火电行业门槛提高,特别在减少减低排放物上严格按照指标行事。我国在加快火电行业的产业结构及优化上不断采取新兴排放技术。为了推动电力产

燃煤电厂的环境污染

3燃煤电厂的环境污染 3.1总括燃煤电厂的情况 燃煤电厂是能源消耗大户,具有用量大、产污量多、排污集中且影响范围大的 特点,使得燃煤电厂已成为许多地区最主要的污染源。它所涉及的环境污染物,有 生产过程中的水、气、声、渣等常规污染物;燃煤贮存、灰渣运输等过程中的无组 织排放的污染物;以及主体工程、原料输送工程占地、水源使用等方面的生态影响 和社会影响等。可以讲,一个大型电厂是一个与社会、经济、环境紧密相关的系统工 程。因此,针对燃煤电厂工程特点和污染特征,透过对影响区域内的大气、水、声、 土壤等方面调查和监测,分析电厂通过采取环保措施后环境质量状况,各项污染物 的治理情况,对其在近期和长期对自然、生态和社会环境的影响的工作显得尤为重 要。 3.2污染问题和与其他电厂的对比的方面 3.2.1烟尘排放 燃煤电厂锅炉的粉尘控制也得到了足够的重视,特别是现代化大型火电厂的静电除尘装备比较完善,大部分电厂的除尘效率已达到98%-99%,全国获此装备基本实现了烟尘达标排放。尽管火电装机容量迅速增加,但烟尘排放总量呈现下降的趋势,基本上做到了增容不增污。但现有的装备的静电除尘设备难以除去燃煤排烟中超细、超轻并易分散的粉尘。 3.2.2二氧化硫排放 2002年电力行业二氧化硫排放量为666×10 8 t,占全国工业部 门二氧化硫排放量的34.6%。目前,我国火电厂烟气中二氧化硫的排放浓度和总量 普遍超出目前的国家排放标准,火电厂二氧化硫排放尚未得到有效控制。“九五” 期间,二氧化硫排放量随装机容量的增长呈上升趋势,已成为我国电力行业实现可持续发展的制约因素。为实现对二氧化硫排放总量的控制,我国今后几年至少要新装1500×104 KW的脱硫设备。由此可见,控制二氧化硫排放的形势十分严峻。氧化硫排放量的减少主要是通过关停小火电机组和换烧低硫煤来实现。二 3.2.3氮氧化物排放 2000年全国火电机组氮氧化物排放量约为469×104t,占全国工业部门氮氧化物排放量的46.1%。火电厂烟气中氮氧化物的排放浓度和总量普遍超出目前的国家排放标准,我国燃煤

什么是火电机组超低排放

什么是火电机组超低排放 所谓的超低排放,简而言之,就是通过多污染物高效协同控制技术,使燃煤机组的大气主要污染物排放标准达到天然气燃气机组的排放标准。 燃煤电厂是烟尘、二氧化硫(SO2)和氮氧化物(NOX)等大气污染物的主要排放源。根据环保部和国家质量监督检验检疫总局2011年7月联合发布的火电大气污染物排放国家标准,大气污染物特别排放限值如下表: 大气污染物特别排放限值。天地公司技术研发部提供 浙能集团在满足现行国家排放标准的基础上,进一步自我加压,实施更为严格的排放标准,要求燃煤机组的大气主要污染物排放标准达到天然气燃气机组的排放标准,即烟尘5mg/Nm3,二氧化硫35mg/Nm3,氮氧化物50mg/Nm3。 超低排放技术路线 燃煤机组达到燃气机组的排放标准对电厂的环保设备提出了更高的要求。天地环保公司采用多污染物高效协同控制技术,对浙能集团现有的脱硝设备、脱硫设备和除尘设备进行提效,并引入新的环保设备和环保技术对汞和三氧化硫进行进一步脱除,使电厂排放的烟尘、二氧化硫、氮氧化物、汞和三氧化硫达到清洁排放的要求。 针对二氧化硫,主要是对FGD脱硫装置进行改进,采用增加均流提效板、提高液气比、脱硫增效环和脱硫添加剂等方式,实现脱硫提效。 针对氮氧化物,通过实施锅炉低氮燃烧改造、SCR脱硝装置增设新型催化剂等技术措施实现脱硝提效。 针对烟尘、三氧化硫和汞,采用SCR脱硝装置、低低温除尘、FGD脱硫装置、湿式电除尘等协同脱除实现高效脱除和超低排放。

技术路线图如下: 超低排放技术路线图。天地公司设计研发部提供 锅炉排出的烟气经过SCR高效脱硝后,经过空预器出口的烟气通过新增的管式换热器(降温段)后降温至90℃左右,然后进入改造后的低低温静电除尘器,经过除尘后通过引风机、增压风机后 进入吸收塔进行湿法高效脱硫,吸收塔出口的烟气进入新增的湿式静电除尘器作进一步除尘,再进 入新增的管式换热器(升温段)升温至80℃以上后通过烟囱排放。 浙能集团超低排放项目实施的总体部署 国务院在9月10日发布了《大气污染防治行动计划》,要求长三角区域到2017年细颗粒物 浓度下降20%、并明“确除热电联产外,禁止审批新建燃煤发电项目”。 在这样的背景下,煤炭的清洁燃烧和清洁排放技术成了燃煤电厂未来发展的新空间、新蓝海,谁在这一技术上能突破,必然能给整个燃煤火力发电行业带来发展新机遇。 浙能集团走在了政策前面,于2013年在全国率先启动“燃煤机组烟气超低排放”项目建设, 并首先在已投产的嘉电三期7、8号两台百万燃煤机组,由天地环保公司负责改造实施。在建的六 横电厂2×100万千瓦、台二电厂2×100万千瓦燃煤机组烟气超低排放项目也随机组同步建造。 目前,浙能集团已经着手开展300MW等级及以上燃煤机组超低排放改造的相关前期准备工作,将从2014年下半年陆续开展此项改造工程,计划用3年时间全面完成改造工作。预计仅600MW机 组改造总投资将达近40亿元。 在面对节能减排压力与雾霾威胁的背景下,超低排放技术的广泛运用将进一步提高我国以煤 炭为主的能源结构的清洁化水平,而且也为煤电的生存与发展提供了一种新思路。

燃煤电厂的环境污染

3 燃煤电厂的环境污染 3.1 总括燃煤电厂的情况 燃煤电厂是能源消耗大户,具有用量大、产污量多、排污集中且影响范围大的 特点,使得燃煤电厂已成为许多地区最主要的污染源。它所涉及的环境污染物,有 生产过程中的水、气、声、渣等常规污染物;燃煤贮存、灰渣运输等过程中的无组 织排放的污染物;以及主体工程、原料输送工程占地、水源使用等方面的生态影响 和社会影响等。可以讲,一个大型电厂是一个与社会、经济、环境紧密相关的系统工 程。因此,针对燃煤电厂工程特点和污染特征,透过对影响区域内的大气、水、声、 土壤等方面调查和监测,分析电厂通过采取环保措施后环境质量状况,各项污染物 的治理情况,对其在近期和长期对自然、生态和社会环境的影响的工作显得尤为重 要。 3.2 污染问题和与其他电厂的对比的方面 3.2.1烟尘排放 燃煤电厂锅炉的粉尘控制也得到了足够的重视,特别是现代化大型火电厂的静电除尘装备比较完善,大部分电厂的除尘效率已达到 98%-99%,全国获此装备基本实现了烟尘达标排放。尽管火电装机容量迅速增加,但烟尘排放总量呈现下降的趋势,基本上做到了增容不增污。但现有的装备的静电除尘设备难以除去燃煤排烟中超细、超轻并易分散的粉尘。 3.2.2二氧化硫排放 2002 年电力行业二氧化硫排放量为 666×10 8 t,占全国工业部 门二氧化硫排放量的 34.6%。目前,我国火电厂烟气中二氧化硫的排放浓度和总量 普遍超出目前的国家排放标准,火电厂二氧化硫排放尚未得到有效控制。“九五” 期间,二氧化硫排放量随装机容量的增长呈上升趋势,已成为我国电力行业实现可持续发展 的制约因素。为实现对二氧化硫排放总量的控制,我国今后几年至少要新装 1500×104 KW 的脱硫设备。由此可见,控制二氧化硫排放的形势十分严峻。氧化硫排放量的减少主要是通过关停小火电机组和换烧低硫煤来实现。二 3.2.3氮氧化物排放 2000 年全国火电机组氮氧化物排放量约为 469×104t,占全国工业部门氮氧化物排放量的

浅析燃煤电厂烟气汞的排放及控制

浅析燃煤电厂烟气汞的排放及控制 发表时间:2016-09-02T16:57:11.053Z 来源:《基层建设》2015年7期作者:黄志远 [导读] 摘要:排放到环境中的汞会对人类健康和环境造成明显的伤害。 中国能源建设集团广东省电力设计研究院有限公司 510663 摘要:排放到环境中的汞会对人类健康和环境造成明显的伤害。汞进入人体后,可能会造成脑组织的损害,当环境中汞的浓度达到一定的范围时,会造成汞中毒。因此,要对燃煤机组的汞污染进行控制,各国也在针对燃煤机组汞污染的控制进行相关的研究。 关键词:燃煤电厂;烟气汞;排放;控制 一、燃煤电厂烟气汞的排放 赋存在燃煤中的汞经过燃煤电厂的锅炉机组后,开始在炉内高温下,几乎所有的汞会转变为零价汞进入高温的烟气,经过各污染控制设备和其他设施的过程中,由于温度、烟气成分及飞灰等的影响,汞会发生复杂的物理化学变化而转化为不同的形态,最终表现为三种形态:颗粒态汞、氧化态汞以及元素态汞。一般颗粒态汞易于被除尘器收集,氧化态汞易溶于水,易于被WFGD脱除;而元素态汞挥发性高、不溶于水,不溶于酸,很难被除尘器去除。因此,汞的排放形态直接影响汞的脱除效率。 二、燃煤电厂烟气汞形态转化的影响因素 1.在燃煤电厂中,不同形态的汞的含量及比例受到多种因素的综合作用,主要包括煤种、锅炉的燃烧方式及燃烧温度、烟气气氛以及烟气中的HCl和飞灰等。燃煤电厂烟气中的汞含量及形态与燃煤锅炉燃烧的煤种密切相关。研究表明,烟煤燃烧产生的烟气中的汞是以氧化态为主的,亚烟煤燃烧后,烟气中的二价汞含量与零价汞含量相当,褐煤燃烧后烟气中以零价汞为主。 2.锅炉燃烧温度影响汞的形态,在炉膛温度较高时,烟气中零价汞含量较大,大多数的二价汞形成的氧化物不稳定,会发生分解生成单质汞。当烟气温度降低于750K时,烟气中汞元素的主要形态是二价汞。 3.锅炉的燃烧方式不同,会影响煤的燃烧情况,从而影响汞的形态分布,例如,在相同的条件下,循环流化床产生的烟气中的二价汞的比例较大,这与循环流化床的低燃烧温度有关。从燃煤电厂的测试结果发现,使用循环流化床的锅炉排放的烟气飞灰中富集的汞含量较高,这可能是因为循环流化床的燃烧温度较低,形成的飞灰含有较高含量的未燃尽碳,吸附了更多的零价汞。 4.烟气气氛会影响零价汞的氧化作用,由于烟气成分的复杂性,烟气中可能含有促进烟气中的零价汞氧化的物质存在,氧化性的烟气气氛有利于二价汞的形成,相反,还原性的气氛造成了烟气中汞以零价汞为主的结果。 三、燃煤电厂烟气中汞污染控制技术 1.燃烧前脱汞 该方法主要措施是洗煤技术,就是通过一定的物理清洗技术将密度比煤大的含汞化合物分离出来。洗煤技术是在汞的源头上进行汞控制的方法,研究表明,洗煤过程至少能够脱除51%的汞,目前发达国家的原煤入洗率为40%~100%,远高于中国。浮选法也是一种燃烧前脱汞技术,浮选法是将有机浮选及加入粉煤浆液,使得无机的Hg作为浮选废渣而脱除的。 2.燃烧中脱汞 煤燃烧后二价汞的排放浓度与卤素含量有关,因此可以在煤燃烧过程中添加含卤化合物来提高烟气中的二价汞比例,由于二价汞易于去除,因此该法是以中国间接的汞污染控制方法。有人对使用低氯褐煤的烟气汞含量进行中试测试结果表明,向燃煤中添加0.5 mg/g的氯化钙时,排放的烟气中二价汞比例上升50%,零价汞的浓度明显下降。但烟气中卤化物浓度增大后锅炉设备腐蚀速度可能加快。 3.燃烧后脱汞 燃烧后脱汞就是指烟气脱汞,是燃煤电厂的煤经锅炉燃烧之后,对排放的烟气所采取的脱汞措施。基于烟气成分及烟气条件的复杂性,汞在烟气中会以颗粒态汞、氧化态汞以及元素态汞等形式存在,除尘设备能够有效地控制元素态汞,因此烟气中的汞主要以颗粒态汞、氧化态汞的形式存在,美国国家能源部等组织对美国各燃煤电站烟气汞的测试结果表明,不同电站对颗粒态汞和氧化态汞两种形态的汞排放量差别较大,颗粒态汞和氧化态汞在烟气中的含量比例范围分别为6%~60%和40%~94%,而比较难以处理的是颗粒态汞。燃煤电厂的烟气净化设备如除尘器和WFGD能够部分脱除汞,除此之外,还有吸附法、液相氧化吸收法能够进行脱汞,针对零价汞的难于去除特性,还提出了零价汞的催化氧化法等。 (1)吸附法脱汞 吸附法脱汞是向燃煤电厂的ESP或FF的上游喷入活性炭等具有强吸附特性的物质,将烟气中的汞吸附于这些物质表面从而达到有效除汞的目的。用于吸附汞的物质有很多,包括活性炭、飞灰、钙基吸附剂以及新型吸附剂等。 活性炭吸附剂是当前研究的重点之一,活性炭吸附烟气中的汞在垃圾焚烧炉中应用效果很好,国外活性炭也有燃煤电厂采用活性炭吸附脱除烟气中的汞。活性炭对汞的吸附能力受烟气成分、烟气温度和接触时间等影响。普通活性炭吸附容量不大,且接触时间较短,因此对零价汞的吸附作用较差。为提高吸附效率,开始研究改性活性炭进行烟气脱汞,即在活性炭表面注入硫、氯或碘,增加活性炭的吸附性。目前国外已经开发了载溴活性炭吸附剂并进行了现场测试,结果达到了实际应用水平。尽管利用活性炭脱汞效率较高,但投资成本较高,因此活性炭吸附剂用于燃煤电厂烟气脱汞受到了经济上的限制。 与活性炭相比,飞灰易于获得,同时价格低廉,受到人们广泛关注。研究表明,燃煤产生的飞灰可以吸附一部分的气态汞,飞灰的吸附性能与温度、飞灰本 身的特性以及烟气的成分有关,有研究者提出,飞灰中的金属氧化物促进零价汞的催化氧化。 和飞灰类似,钙基类的物质也较容易获得,且是有效的脱硫剂,能够去除烟气中的SO2。因此考虑钙基类物质对烟气汞的脱除研究,美国EPA对此做了相关研究,结果表明,钙基类吸附剂能够有效地吸附烟气中的二价汞,对零价汞的吸附效率较低。同时,有研究者进行钙基吸附剂的模拟实验,结果表明,烟气中的SO2对汞的去除有促进作用。 (2)液相氧化吸收法 由于零价汞与二价汞在水中溶解度的不同,可以在溶液中加入强氧化性的物质,使得不溶于水的零价汞首先被氧化剂氧化为二价汞而被液体吸收。美国的Argonne 国家实验室研究表明:在烟气中不含SO2时,可以采用碘、氯或高氯酸溶液进行零价汞的液相氧化吸收,但

燃煤火电厂超低排放解析

燃煤火电厂超低排放解析 【摘要】燃煤火电厂在生产过程中,燃料燃烧排放大量烟尘、SO2、NOx,对环境造成了严重破坏。随着社会环保意识的加强,对热电厂污染排放的要求也越来越高。本文就热电厂超低排放展开分析。 【关键词】超低排放;脱硝;脱硫;除尘 根据数据显示,2014年以来,全国平均雾霾天数为52年来之最,安徽、湖南、湖北、浙江、江苏等13地均创下“历史纪录”。大气污染在京津冀地区、长三角尤为严重。为遏制日渐严峻的大气污染物排放形势,2014年9月12日,国家发展改革委、环境保护部、国家能源局联合下发了“关于印发《煤电节能减排升级与改造行动计划(2014-2020年)》的通知”,提出了新建燃煤发电机组大气污染物排放浓度基本达到燃气轮机组排放限值的行动目标。即在基准氧含量6%条件下,烟尘、二氧化硫、氮氧化物排放浓度分别不高于10、35、50毫克/立方米,业界称其为超低排放,以下就燃煤火电厂中的超低排放进行分析。 1 燃煤火电厂大气污染物排放现状 燃煤火电厂的大气污染主要是二氧化硫、二氧化碳和一些硫化物、NOx及烟尘等。二氧化硫、硫化物、NOx排入空气中之后,会形成酸雨,进而破坏土壤和建筑;二氧化碳是引起温室效应的主要气体,排入空气中后,会进一步加强温室效应现象;而烟尘进入空气中后,主要是以悬浮物、尘埃形式存在的,会造成空气中细颗粒物浓度较高,影响大气环境质量,甚至形成雾霾等现象。 目前,燃煤火电厂大气污染物排放执行的最新标准是《火电厂大气污染物排放标准》(GB13223-2011),该标准2012年1月1日起执行。并于2013年2月27日发布了《关于执行大气污染物特别排放限值的公告》(公告2013年第14号),明确了重点地区范围,要求重点地区范围内的火电燃煤机组自2014年7月1日起执行烟尘特别限值标准。结合前述的超低排放指标,各排放标准对比见表1: 表1 各排放标准对比 序号污染物项目环保部现行标准(mg/Nm3)重点地区排放标准(mg/Nm3)超低排放标准(mg/Nm3) 1 烟尘30 20 5 2 二氧化硫100 50 35 3 氮氧化物

燃煤电厂汞标准

POWER PLANT MERCURY AND AIR TOXICS STANDARDS Overview of Proposed Rule and Impacts 发电厂汞和大气有毒物排放标准 提议法案及影响综述 ACTION On March 16, 2011, the Environmental Protection Agency (EPA) proposed the first national standard to reduce mercury and other toxic air pollution from coal and oil-fired power plants. This document provides an overview of the benefits of the proposed clean air standards and highlights key facts and impacts associated with them. 情景 2011年3月16日美国环保部提出了第一个燃煤燃油电厂汞及其他有毒大气污染物排放控制国家标准。本本件提出了该大气清洁法提案的益处和他们相关的突出关键事实及与影响。 BACKGROUND This proposed rule is developed under section 112 of the Clean Air Act (CAA), provisions that set standards to reduce air pollution from coal- and oil-fired power plants. Most notably, this proposal sets technology-based emissions limitation standards for mercury and other toxic air pollutants, reflecting levels achieved by the best-performing sources currently in operation. Existing sources have up to four years to comply with these standards; all existing sources must comply in three years, but individual sources can obtain an additional year if technology cannot otherwise be installed in time. The regulations issued today are under a Consent Decree of the D.C. Court of Appeals requiring EPA to issue a proposal by this date, and a final rule in November 2011. POWER PLANT EMISSIONS . There are about 1,350 coal and oil-fired units at 525 power plants that emit harmful pollutants including mercury, arsenic, other toxic metals, acid gases, and organic air toxics including dioxin. . In 1990, three industry sectors made up approximately two-thirds of total U.S. mercury emissions: medical waste incinerators, municipal waste combustors, and power plants. Two of those sectors are now subject to standards and have reduced their mercury emissions by more than 95 percent. In addition, mercury standards for other industries, such as cement production and steel manufacturing, have reduced mercury emissions from a wide range of sources. . Power plants are the dominant emitters of mercury (50 percent), acid gases (over 50 percent) and many toxic metals (over 25 percent) in the United States. Despite the availability of proven control technologies, and the more than 20 years since the 1990 CAA Amendments passed, there are still no existing federal standards that require power plants to limit their emissions of toxic air pollutants like mercury, arsenic and metals.

相关文档