文档库 最新最全的文档下载
当前位置:文档库 › 材料测试分析方法(究极版)

材料测试分析方法(究极版)

材料测试分析方法(究极版)
材料测试分析方法(究极版)

绪论

1分析测试技术?

获取物质的组成、含量、结构、形态、形貌以及变化过程的技术和方法。

2材料分析测试的思路

从宏观到微观形貌(借助显微放大技术)

从外部到内在结构(借助X射线衍射技术)

从片段到整体(借助红外,紫外,核磁,X射线光谱,光电子能谱等)

3分析测试技术的发展的三个阶段?

阶段一:分析化学学科的建立;主要以化学分析为主的阶段。

阶段二:分析仪器开始快速发展的阶段

阶段三:分析测试技术在快速、高灵敏、实时、连续、智能、信息化等方面迅速发展的阶段4现代材料分析的内容及四大类材料分析方法?

表面和内部组织形貌。包括材料的外观形貌(如纳米线、断口、裂纹等)、晶粒大小与形态、各种相的尺寸与形态、含量与分布、界面(表面、相界、晶界)、位向关系(新相与母相、孪生相)、晶体缺陷(点缺陷、位错、层错)、夹杂物、内应力。

晶体的相结构。各种相的结构,即晶体结构类型和晶体常数,和相组成。

化学成分和价键(电子)结构。包括宏观和微区化学成份(不同相的成份、基体与析出相的成份)、同种元素的不同价键类型和化学环境。

有机物的分子结构和官能团。

形貌分析、物相分析、成分与价键分析与分子结构分析四大类方法。

5化学成分分析所用的仪器?

化学成分的表征包括元素成分分析和微区成分分析。

所用仪器包括:

光谱(紫外光谱、红外光谱、荧光光谱、激光拉曼光谱等)

色谱(气相色谱、液相色谱、凝胶色谱等)。

热谱(差热分析、热重分析、示差扫描量热分析等)。

表面分析谱(X射线光电子能谱、俄歇电子能谱、电子探针、原子探针、离子探针、激光探针等)。

原子吸收光谱、质谱、核磁共振谱、穆斯堡尔谱等。

6.现代材料测试技术的共同之处在哪里?

除了个别的测试手段(扫描探针显微镜)外,各种测试技术都是利用入射的电磁波或物质波(如X射线、高能电子束、可见光、红外线)与材料试样相互作用后产生的各种各样的物理信号(射线、高能电子束、可见光、红外线),探测这些出射的信号并进行分析处理,就课获得材料的显微结构、外观形貌、相组成、成分等信息。

7.x射线、连续x射线谱和标识x射线

x射线:波长为0.01~1000A之间D的电磁波。

连续X射线:具有连续波长的x射线,构成连续x射线诺,它和可见光相似,亦称多色x射线

标识x射线:只有当管电压超过一定的数值时才会产生,且波长与x射线

管电流等工作条件无关,只决定于定于阳极材料,这种X射线称为标识X射线.

8.x射线衍射的几何条件是d, θ、I必须满足什么公式?写出数学表达式,并说明d,θ,λ的意义。

答:x射线衍射的几何条件是d,、l必须满足布拉格公式。

其数学表达式: dsinθ=λ(或2dsin θ=nλ)

其中d是晶体的晶面间距。

θ是布拉格角,即入射线与晶面间距的交角。

λ是入射x射线的波长。

9.试总结衍射花样的背底来源,并提出一些防止和减少背底的措施

答:(I)花材的选用影晌背底;

(2)滤波片的作用影响到背底;

(3)样品的制备对背底的影响

措施:(1)选靶靶材产生的特征x射线(常用Kα射线)尽可能小的激发样品的荧光辐射,以降低衍射花样背底,使图像清晰。

(2)滤波,k系特征辐射包括Ka和kβ射线,因两者波长不同,将使样品

的产生两套方位不同得衍射花样;选择浪滋片材料,使λkβ靶<λk滤<λkα,

Ka射线因因激发滤波片的荧光辐射而被吸收。

(3)样品,样品晶粒为50μm左右,长时间研究,制样时尽量轻压,可减少背底。

10.x射线产生必须具备的三个基本条件?

(l)产主并发射自由电子(如加热钨灯丝亥射热电子);

(2)在真空中迫使电子朝一定方向加速运动,以获得尽可能高的

速度;

(3)在高速电子流的运动路线上设置一障碍物(阳祝靶),使高速运动的电子突然受阻而停止下来。

11.X射线的性质;

x射线是一种电磁波,波长范围:0.01~100à

X射线的波长与晶体中的原子问距同数量级,所以晶体可以用作衍射光栅。用来研究晶体结构,常用波长为0.5~2.5à

不同波长的x射线具有不同的用途。硬x射线:波长较短的硬x封线能量较高,穿透性较强,适用于金属部件的无损探伤及金属物相分析。软x射线:波长较长的软x射线的能量较低,穿透性弱,可用干分析非金属的分析。用于金属探伤的x射线波长为0.05~0.1à当x射线与物质(原子、电子作用时,显示其粒子性,具有能量E=h 。产生光电效应和康普顿效应等

当x射线与x射线相互作用时,主要表现出波动性。

x射线的探测:荧光屏(ZnS),照相底片,探测器

12标识X射线的产生相理?

标识x射线谱的产生相理与阳极物质的原子内部结构紧密相关的。原子系统内的电子,按泡利不相容原理和能量最低原理分布于各个能级,在电子轰击阳极的过程中,当某个具有足够能量的电子将阳极靶原子的内层电子击出时,于是在低能级上出现空位,系统能量升高,处于不稳定激发态。较高能级上的电子向低能机上的空位跃,并以光子的形式射出标识x

射线谱。

13.莫塞菜(Moseley,N.G一J}定律

待征x射线谱的频率只取决于阳极靶物质的原子能级结构,它是物质的固有特性。

第一章

1. X射线的波-粒二象性

X射线的本质是电磁辐射,与可见光完全相同,仅是波长短而已,因此具有波粒二像性。波粒二相性波动方程:A=A0cos(φ-ωt)波粒二相性:E=hν=hc/λ

P= h/λ= hν/c

2.连续X射线谱的特点

1)V变化(升高),i固定。

①各种波长射线的相对强度(I)都相应地增高;

②各曲线上都有短波极限λ 0,且λ。逐渐变小;

③各曲线的最高强度值(λm)的波长逐渐变小。

2)i变化(升高),U固定。

① 各种波长射线的相对强度(I)都相应地增高;

② 各曲线上都有短波极限λ0和最高强度值λm,且λ0和λm保持不变;

3.X射线产生的基本条件与基本性质

高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高。

产生条件

(1)产生自由电子;

(2).使电子作定向的高速运动;

(3)在其运动的路径上设置一个障碍物使电子突然减速或停止。

4.特征(标识)X射线的特点,结构

是在连续谱的基础上叠加若干条具有一定波长的谱线,它和可见光中的单色相似,亦称单色X射线当电压达到临界电压时,标识谱线的波长不再变,强度随电压增加。如钼靶K系标识X射线有两个强度高峰为Kα和Kβ,波长分别为0.71A和0.63A

标识X射线谱的产生相理与阳极物质的原子内部结构紧密相关的。原子系统内的电子按泡利不相容原理和能量最低原理分布于各个能级。在电子轰击阳极的过程中,当某个具有足够能量的电子将阳极靶原子的内层电子击出时,于是在低能级上出现空位,系统能量升高,处于不稳定激发态。较高能级上的电子向低能级上的空位跃迁,并以光子的形式辐射出标识X 射线谱。

5.光电效应与俄歇效应

光电效应:入射的X射线(光子)的能量足够高时,同样可以将物质原子的内层电子击出成为自由电子,并在内层产生空位,使原子处于激发状态,外层电子自发回迁填补空位,降低原子能量,产生辐射(X射线),这种由X射线(入射光子)激发原子产生辐射的过程称为光电效应。

俄歇效:应原子中K层的一个电子被打出后,它就处于K激发状态,其能量为EK。的一个空位被L层的两个空位所代替,这种现如果一个L层电子来填充这个空位,K电离就变成L 电离,其能量由EK变成EL,此时将释放EK-EL的能量。释放出的能量,可能产生荧光X射线,也可能给予L层的电子,使其脱离原子产生二次电离。即K层象称俄歇效应.

6.相干散射与非相干散射

想干散射:由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。

非相干散射:X射线经束缚力不大的电子(如轻原子中的电子)或自由电子散射后,可以得到波长比入射X射线长的X射线,且波长随散射方向不同而改变。

7.什么叫特征X射线激发电压V激?

当管电压超过某临界值时,特征谱才会出现,该临界电压称激发电压。

第二章

1.X射线的衰减

x射线穿过物质之后,强度会衰减。这是因为x射线同物质相互作用时经历各种复杂的物理、化学过程,从而引起各种效应转化了入射线的部分能量。假如入射线的强度为R,通过厚度dx的吸收体后,由于在吸收体内受到“毁灭性”的相互作用,强度必然减少,减少dR 显然正比于吸收体的厚度dx,也正比于束流的强度R,若定义μ为x射线通过单位厚度时被吸收的比率,则有 -dR=μRdx

考虑边界条件并进行积分,则得: R0=Re-μx

透射率T=R/ R0,则得:T=e-μx或InT=-μx

式中“μ称为线衰减系数。x为试样厚度,我们知道,衰减至少应被视为物质对入射线的散射和吸收的结果,系数μ应该是这两部分作用之和。但由于因散射而引起的衰减远小于因吸收而引起的衰减,故通常直接称μ为线吸收系数,而忽略散射的部分。对于给定物质,吸收系数μ一般随λ增大,但有一些突变点,该点波长分别成为该元素的K,L,M等吸收限。

2.衍射产生的充分必要条件是:

满足布拉格方程:2dsin θ=nλ

结构因子不为0:l F hkl l 2

≠0

3.连续x射线谱的总强度和特征x射线谱的总强度?

而x射线谱强度与阳极的原子序数Z、管电压U和管电流I有下列关系:

I连=kiIZU2

式中ki为常数。因此.当实脸工作需要强的连续谱时,应选用原子序数较高的材料为X

管靶面。

标识x射线的强度随管压,管流的加大而增加,其变化规律可用下式表示 I标=c i (U-Uk)n

式中c为比例常数,i为电流强度,U为管压,Uk为阳极物质k系标识x射线的激发电压,对于k系,n常取1.5,一般在U/Uk=3~5时,能获I标/I连的最大值。

4.吸收限?

μm产生突变的不连续处称为吸收限。相应的波长为吸收限波长入。

吸收限对应的波长为λa,对应的能量就是轨道能量。对于K系:吸收限为λK=hc/Ek

原子序数愈低,对应的Ek愈小,则λK愈大

5.阳极靶的选择?

x-ray衍射分析中,希望不产生k系荧光辐射,且试样对x-ray的吸收要小。

针对试样的原子序数,可以调整靶材料。

A.λkα(靶)>λk(样),根据样品成分选择靶材的原则是:Z靶≤Z样+1

B.λkα(靶)《λk(样),则Z靶》Z样

C.λkβ(靶)<λk(样)<λkα(说),Z靶=Z样+1

D.多元素的样品,原则上以主组元中Z最小的元素选择靶材。

入射波长的影响:由干:sinΘ≤1,而满足衍射时d≥λ/2,因此λ越长产生的衍射条越少。

6. 衍射线在空间的方位取决于什么?而衍射线的强度又取决于什么?

答:衍射线在空间的方位主要取决于晶体的面网间距,或者晶胞的大小。

衍射线的强度主要取决于晶体中原子的种类和它们在晶胞中的相对位置。

7.实验中选择X射线管以及滤波片的原则是十么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片

答:实睑中选择X射线管的原则是为避免或减少产生荧光辐射,应当避免使用比样品中主元素的原子序数大2-6(尤其是2)的材料作靶材的X射线管。

选择滤波片的原则是X射线分析中,在X射线管与样品之间一个滤波片,以滤掉kp线。滤波片的材料依靶的材料而定,一般采用比靶材的原子序数小1或2的材料,以分析以铁为主的样品,应该选用Co或Fe靶的 X射线管,同时选用Fe和Mn为滤波片。

8.试述x射线衍射物相分析步骤?及其鉴定时应注意问题?

(1)计算或查找出衍射图谱上每根峰的d值与I值;

(2)利用I值最大的三根强线的对应d值查找索引,找出基本符合的物相名称及卡片号;

(3)将实侧的d,I值与卡片上的数据一一对照,若基本符合,就可定为该物相。

鉴定时应注意的问题:

(1) d的数据比I/I0数据重要。

(2)低角度线的数据比高角度线的数据重要。

(3)强线比弱线重要,特别要重视d值大的强线.

(4)应重视特征线.

(5)应尽可能地先利用其他分析、.鉴定手段,初步确定出样品可能是什么物相,将他局限于一定的范围内。

第三章

2.薄膜样品的基本要求是什么?样品制备的工艺过程如何? 双喷减薄与离子减薄各适用于制备什么样品?

答:样品的基本要求:1)薄膜样品的组织结构必须和大块样品相同,在制备过程中,组织结构不变化;2)样品相对于电子束必须有足够的透明度;3)薄膜样品应有一定强度和刚度,在制备、夹持和操作过程中不会引起变形和损坏;4)在样品制备过程中不允许表面产生氧化和腐蚀。

样品制备的工艺过程:1) 切薄片样品;2) 预减薄;3) 终减薄。

离子减薄:1)不导电的陶瓷样品;2)要求质量高的金属样品;3)不宜双喷电解的金属与合金样品。

双喷电解减薄:1)不易于腐蚀的裂纹端试样;2)非粉末冶金试样;3)组织中各相电解性能相差不大的材料;4)不易于脆断、不能清洗的试样

3.为什么透射电镜的样品要求非常薄,而扫描电镜无此要求?

在透射电镜中,电子束是透过样品成像,而电子束的穿透能力不大,这就要求要将试样制成很薄的薄膜样品。而扫描电镜是收集的电子束与样品作用后从表面溢出的各种信息。

4电子显微分析特点?

解:1、不破坏样品,直接用陶瓷等多晶材料。

2、是一种微区分析方法,了解成分-结构的微区变化。

3、灵敏度高,成像分辨率高,为0.2-0.3nm,能进行nm尺度的晶体结构及化学组成分析。

4、各种电子显微分析仪器日益向多功能、综合性发展,可以进行形貌、物相、晶体结构和化学组成等的综合分析。

5.样品减薄技术与复型技术相比的特点?

特点:

1)可以最有效地发挥电镜的高分辨率本领;

2)能够观察金属及其合金的内部结构和晶体缺陷,并能对同一微区进行衍衬成像及电子衍射研究,把形貌信息与结构信息联系起来;

3)能够进行动态观察,研究在变温情况下相变的生核长大过程,以及位错等晶体缺陷在引力下的运动与交互作用。

6 透射电镜中有哪些主要光阑? 分别安装在什么位置? 其作用如何?

答:主要有三种光阑:

①聚光镜光阑。在双聚光镜系统中,该光阑装在第二聚光镜下方。作用:限制照明孔径角。

②物镜光阑。安装在物镜后焦面。作用: 提高像衬度;减小孔径角,从而减小像差;进行暗场成像。

③选区光阑:放在物镜的像平面位置。作用: 对样品进行微区衍射分析。

7 什么是双光束衍射?电子衍衬分析时,为什么要求在近似双光束条件下进行?

答案:双光束衍射:倾转样品,使晶体中只有一个晶面满足Bragg条件,从而产生衍射,其它晶面均远离Bragg位置,衍射花样中几乎只存在大的透射斑点和一个强衍射斑点。

原因:在近似双光束条件下,产生强衍射,有利于对样品的分析

8 振幅衬度和相位衬度?

振幅衬度。

质量-厚度衬度:是由于材料的质量厚度差异造成的透射束强度的差异而产生的衬度(主要用于非晶材料)。

衍射衬度:由于试样各部分满足布拉格条件的程度不同以及结构振幅不同而产生的(主要用于晶体材料)。

相位衬度。试样内部各点对入射电子作用不同,导致它们在试样出口表面上相位不一,经放大让它们重新组合,使相位差转换成强度差而形成的。

9 TEM的主要发展方向?

(1)高电压。增加电子穿透试样的能力,可观察较厚、较具代表性的试样,增加分辨率等。

(2)高分辨率。最佳解像能力为点与点间0.18 nm、线与线间0.14nm

(3) 多功能分析装置。

(4)场发射电子光源。

11透射电镜对样品的要求?

试样最大尺寸,直径不超过3mm;

样品厚度足够薄,使电子束可以通过,一般厚度为20-200nm;

样品不含水、易挥发性物质及酸碱等腐蚀性物质;

样品具有足够的强度和稳定性;在电子轰击下不致损坏或变化。

清洁无污染。

12 TEM中的支持膜材料必须具备的条件?

①无结构,对电子束的吸收不大;

②颗粒度小,以提高样品分辨率;

③有一定的力学强度和刚度,能承受电子束的照射而不变形、破裂。

13双喷减薄与离子减薄各适用于制备什么样品?

离子减薄:1)不导电的陶瓷样品;2)要求质量高的金属样品;3)不宜双喷电解的金属与合金样品。

双喷电解减薄:1)不易于腐蚀的裂纹端试样;2)非粉末冶金试样;3)组织中各相电解性能相差不大的材料;4)不易于脆断、不能清洗的试样

第四章

1.扫描电镜对试样有哪些要求?

(1)试样大小要适合仪器专用样品座的尺寸,小的样品座为Ф30-35mm,大的样品座为Ф30-50mm,高度5-10 mm。

(2)含有水分的试样要先烘干。

(3)有磁性的试样要先消磁。

2.如何制备扫描电镜块状和粉末试样?块状和粉末试样表面镀导电膜的目的?

(1)块状试样:导电材料——用导电胶将试样粘在样品座上;不导电材料——用导电胶将试样粘在样品座上,镀导电膜。

(2)粉末试样:将粉末试样用导电胶(或火棉胶、或双面胶)粘结在样品座上,镀导电膜;将粉末试样制成悬浮液,滴在样品座上,溶液挥发后,镀导电膜。

试样表面镀导电膜的目的是以避免在电子束照射下产生电荷积累,影响图象质量。

3.扫描电镜的特点?

(1)可以观察直径为10—30mm 的大块试样,制样方法简单。

(2)场深大,适用于粗糙表面和断口的分析观察,图像富有立体感真实感。

(3)放大倍数变化范围大,15~300000 倍。

(4)分辨率3~6nm。透射电镜的分辨率虽然高,但对样品厚度的要求十分苛刻,且观察的区域小。

(5)可以通过电子学方法有效地控制和改善图像的质量。

(6)可进行多种功能的分析。观察阴极荧光图像和进行阴极荧光光谱分析。

(7)可使用加热、冷却和拉伸等样品台进行动态试验,观察各种环境条件下的项变及形态变化等。

4.你认为“电子显微分析只能观察显微形貌”这种说法对吗?论述电子显微分析可对无机非金属材料进行哪些方面的分析?

电子显微分析只能观察显微形貌”这种说法是不对的。电子显微分析还可对无机非金属材料进行以下方面的分析:

(1).形貌观察:颗粒(晶粒)形貌、表面形貌。

(2).晶界、位错及其它缺陷的观察。

(3).物相分析:选区、微区物相分析,与形貌观察相结合,得到物相大小、形态和分布信息。

(4).晶体结构和取向分析。

5.电子显微镜分析在材料研究中的应用?

形态分析

元素的存在状态分析

玻璃的非晶态结构分析

材料断面的研究

晶界(微观研究)

微区结构分析

高分子材料的研究

6.表面分析可以得到哪些信息?

(1).物质表面层的化学成分。

(2).物质表面层元素所处的状态。

(3).表面层物质的状态。

(4).物质表面层的物理性质。

7.影响SEM图像分辨率的主要因素?分辨本领的决定因素?

①扫描电子束斑直径;

②入射电子束在样品中的扩展效应;

③操作方式及其所用的调制信号;

④信号噪音比;

⑤杂散磁场;

⑥机械振动将引起束斑漂流等,使分辨率下降。

8.分辨本领的决定因素:

①入射电子束束斑直径是分辨本领的极限。

②入射束在样品中的扩展效应导致相互作用体积产生,以及信号产生的深度和广度。

③操作方式及成像信号

体积的形状和大小决定了各种物理信号的深度和广度,入射束的有效束斑直径随信号不同而变化。不同的信号调制的扫描像有不同的分辨本领。

④样品Z

Z愈大,电子束进入样品表面的横向扩展愈大,分辨率愈低。

9.影响二次电子产额的主要因素?

(1)二次电子能谱特性;

(2)入射电子的能量;

(3)材料的原子序数;

(4)样品倾斜角 。

10.二次电子像衬度的特点?

(1)分辨率高

(2)景深大,立体感强

(3)主要反应形貌衬度。

11.波谱仪的特点?

优点:

1 波长分辨率很高。谱仪分辨率是指分开、识别相邻两个谱峰的能力.如它可将波长十分接近的VK (0.228434nm)、CrK 1(0.228962nm)和CrK 2(0.229351nm)3根谱线清晰地分开。5-10eV 。

2峰背比大. 背底扣除容易,数据处理简单。

缺点:

1、采集效率低、分析速度慢。

2、难以在低束流和低激发强度下使用。由于经过晶体衍射后,强度损失很大,所以,波谱仪难以在低束流和低激发强度下使用,这是波谱仪的两个缺点。

Si(Li)能谱仪的优点?

1)分析速度快能谱仪可以同时接受和检测所有不同能量的X射线光子信号,故可在几分钟内分析和确定样品中含有的所有元素,带铍窗口的探测器可探测的元素范围为11Na~92U,20

世纪80年代推向市场的新型窗口材料可使能谱仪能够分析Be以上的轻元素,探测元素的范围为4Be~92U。

(2)灵敏度高X射线收集立体角大。由于能谱仪中Si(Li)探头可以放在离发射源很近的地方(10㎝左右),无需经过晶体衍射,信号强度几乎没有损失,所以灵敏度高(可达104cps/nA,入射电子束单位强度所产生的X射线计数率)。此外,能谱仪可在低入射电子束流(10-11A)条件下工作,这有利于提高分析的空间分辨率。

(3)谱线重复性好。由于能谱仪没有运动部件,稳定性好,且没有聚焦要求,所以谱线峰值位置的重复性好且不存在失焦问题,适合于比较粗糙表面的分析工作。

12电子探针分析的基本工作方式?

定性分析

1 点分析

用于测定样品上某个指定点的化学成分。

下图是用能谱仪得到的某钢定点分析结果。能谱仪中的多道分析器可使样品中所有元素的特征X射线信号同时检测和显示。不像波谱仪那样要做全部谱扫描,甚至还要更换分光晶体。

2 线分析

用于测定某种元素沿给定直线分布的情况。方法是将X射线谱仪(波谱仪或能谱仪)固定在所要测量的某元素特征X射线信号(波长或能量)的位置上,把电子束沿着指定的方向做直线轨迹扫描,便可得到该元素沿直线特征X射线强度的变化,从而反映了该元素沿直线的浓度分布情况。改变谱仪的位置,便可得到另一元素的X射线强度分布。下图为50CrNiMo钢中夹杂Al2O3的线分析像。可见,在Al2O3夹杂存在的地方,Al的X射线峰较强。

3 面分析

用于测定某种元素的面分布情况。方法是将X射线谱仪固定在所要测量的某元素特征X射线信号的位置上,电子束在样品表面做光栅扫描,此时在荧光屏上便可看到该元素的面分布图像。显像管的亮度由试样给出的X射线强度调制。图像中的亮区表示这种元素的含量较高。

下图为34CrNi3Mo钢中MnS夹杂物的能谱面分析图像。

定量分析

定量分析时,先测得试样中Y元素的特征X射线强度IY,再在同一条件下测出已知纯元素Y的标准试样特征X射线强度IO。然后两者分别扣除背底和计数器死时间对所测值的影响,得到相应的强度值IY和IO,两者相除得到X射线强度之比KY= IY / IO。直接将测得的强度比KY当作试样中元素Y的重量浓度,其结果还有很大误差,通常还需进行三种效应的修正。即原子序数效应的修正,吸收效应修正,荧光效应修正。经过修正,误差可控制在±2%以内。

13.例题:光子束入射固体样品表面会激发哪些信号? 它们有哪些特点和用途?

答:主要有六种:

1)背散射电子:能量高;来自样品表面几百nm深度范围;其产额随原子序数增大而增多.用作形貌分析、成分分析以及结构分析。

2)二次电子:能量较低;来自表层5-10nm深度范围;对样品表面化状态十分敏感。不能进行成分分析.主要用于分析样品表面形貌。

3)吸收电子:其衬度恰好和SE或BE信号调制图像衬度相反;与背散射电子的衬度互补。吸收电子能产生原子序数衬度,即可用来进行定性的微区成分分析.

4)透射电子:透射电子信号由微区的厚度、成分和晶体结构决定.可进行微区成分分析。

5)特征X射线: 用特征值进行成分分析,来自样品较深的区域。

6)俄歇电子:各元素的俄歇电子能量值很低;来自样品表面1-2nm范围。它适合做表面分析。

第七章

1.何谓热分析?热分析的特点?:热分析是在程序控制温度下,测量物质的物理性质与温

度之间关系的一类技术。特点:过程分析;动态。

2.热分析法的核心?:研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以

及所涉及的能量和质量变化。

3.差热分析方法参比物要求?:

热中性体,基准物。比热和导热系数比试样接近。

测量温度范围内不发生热效应的物质。

细度:100 ~300 目(150 ~50μm)

常用:1450℃以上煅烧2-3小时的氧化铝粉。

4.热分析中测量能量、质量变化、测定尺寸变化的方法?

(1)测量能量变化的方法:差热分析 DTA 差示扫描量热法 DSC

(2)测量质量变化的方法:热重法 TG 微商热重法 DTG

(3)测定尺寸变化的方法:热膨胀法微商热膨胀法差示热膨胀法

5.热分析中测定结构变化的方法?

①高温x-射线衍射法

利用x-射线衍射原理,测定试样加热过程中随温度升高而伴随的晶体结构变化。

直接分析高温状态下物质的晶体结构、物相随温度变化的方法。

②热-力法

在加热过程中对试样进行力学测定的方法。

静态热-力法TMA:程序控温条件下,施加一定负荷,测量温度变化过程中样品尺寸变化。

动态热-力法DMA:程序控温条件下,测量材料的力学性质随温度、时间、频率、应力等的变化

6.DTA的基本结构组成?

加热炉、温度控制系统、差热系统、信号放大系统、记录系统组成

7.如何正确判读DTA曲线?

①明确试样加热(冷却)过程中产生的热效应与曲线形态的对应关系;

②明确曲线形态与试样本征热特性的对应关系;

③排除外界因素对曲线形态的影响

8.DTA曲线的几何要素?

①零线:理想状态ΔT=0的线;

②基线:实际条件下试样无热效应时的曲线部份;

③吸热峰:TS<TR,ΔT<0时的曲线部份;

④放热峰:TS>TR ,ΔT>0时的曲线部份;

⑤起始温度(Ti):热效应发生时曲线开始偏离基线的温度;

⑥终止温度(Tf):曲线开始回到基线的温度;

⑦峰顶温度(Tp):吸、放热峰的峰形顶部的温度,该点瞬间d(ΔT)/dt=0;

⑧峰高:是指内插基线与峰顶之间的距离;

⑨峰面积:是指峰形与内插基线所围面积;

⑩外推起始点:是指峰的起始边斜率最大处所作切线与外推基线的交点,其对应的温度称为外推起始温度(Teo);根据ICTA共同试样的测定结果,以外推起始温度(Teo)最

为接近热力学平衡温度

9.DTA曲线的影响因素?

内因:试样本身的性质(热特性)

外因:①仪器结构:加热炉形状、尺寸;坩埚材料、形状;热电偶位置、性能。②实验条件:加热速度;样品粒度、用量;压力、气氛

10.DTA曲线的样品影响因素?

a. 试样用量大,易使相邻两峰重叠,降低了分辨力。一般尽可能减少用量,最多大至

毫克。试样量越大,差热峰越宽,越圆滑。其原因是因为加热过程中,从试样表面到中心存在温度梯度,试样越多,梯度越大,峰也就越宽。

b.样品的颗粒度,在100目~300目左右.

粒度小:表面积↗,反应速度快,影响气体扩散,改善导热条件, 但太细可能会破坏样品的结晶度。对易分解产生气体的样品,颗粒应大一些。参比物的颗粒、装填情况及紧密程度应与试样一致,以减少基线的漂移。

粒度大:受热不均,峰温偏高,T范围大。

C 装填密度: 影响扩散速度和传热,因而影响曲线形态。

装填过于疏松,反应速度减慢,使邻近峰合并,一般采用紧密装填。

试样粒度、用量、装填情况与参比物尽可能相同。

11.影响热重测定的因素?

(1). 升温速度(2).气氛(3).样品的粒度和用量(4).试样皿(坩锅)

12.差热曲线中,如何确定吸热(放热)峰的起点和终点?起点和终点各代表什么意义?用外推法确定吸热(放热)峰的起点和终点:曲线开始偏离基线点的切线和曲线最大斜率切线的交点既为差热峰的起点;同样方法可以确定差热峰的终点。

起点:反应过程的开始温度

终点:反应过程的结束温度

13.热分析法在陶瓷材料领域中的主要应用?

①了解原料在加热时的变化特征,鉴定其物相组成;

②研究矿化剂的效能;

③研究固相反应机理;

④确定熔融、结晶的温度;

⑤研究与制定烧成制度与烧成曲线;

⑥根据热分析曲线,研究新工艺、新配方、克服产品缺陷。

14.何谓热重法和热膨胀分析法?

热重法(Thermogravimetry, TG)是在程序控温下,测量物质的质量与温度或时间的关系的方法,通常是测量试样的质量变化与温度的关系。热重分析的结果用热重曲线(Curve)或微分热重曲线表示。

热膨胀分析法(Thermodilatometry)在程序控制温度下,测量物质在可忽视负荷下的尺寸随温度变化的一种技术。

材料研究与测试方法复习题答案版

材料研究与测试方法复习题答案版

复习题 一、名词解释 1、系统消光: 把由于F HKL=0而使衍射线有规律消失的现象称为系统消光。 2、X射线衍射方向: 是两种相干波的光程差是波长整数倍的方向。 3、Moseley定律:对于一定线性系的某条谱线而言其波长与原子序数平方近似成反比关系。 4、相对强度:同一衍射图中各个衍射线的绝对强度的比值。 5、积分强度:扣除背影强度后衍射峰下的累积强度。 6、明场像暗场像:用物镜光栏挡去衍射束,让透射束成像,有衍射的为暗像,无衍射的为明像,这样形成的为明场像;用物镜光栏挡去透射束和及其余衍射束,让一束强衍射束成像,则无衍射的为暗像,有衍射的为明像,这样形成的为暗场像。 7、透射电镜点分辨率、线分辨率:点分辨率表示电镜所能分辨的两个点之间的最小距离;线分辨率表示电镜所能分辨的两条线之间的最小距离。 8、厚度衬度:由于试样各部分的密度(或原子序数)和厚度不同形成的透射强度的差异; 9、衍射衬度:由于晶体薄膜内各部分满足衍射条件的程度不同形成的衍射强度的差异;10相位衬度:入射电子收到试样原子散射,得到透射波和散射波,两者振幅接近,强度差很小,两者之间引入相位差,使得透射波和合成波振幅产生较大差异,从而产生衬度。 11像差:从物面上一点散射出的电子束,不一定全部聚焦在一点,或者物面上的各点并不按比例成像于同一平面,结果图像模糊不清,或者原物的几何形状不完全相似,这种现象称为像差 球差:由于电磁透镜磁场的近轴区和远轴区对电子束的汇聚能力不同造成的 像散:由于透镜磁场不是理想的旋转对称磁场而引起的像差 色差:由于成像电子的波长(或能量)不同而引起的一种像差 12、透镜景深:在不影响透镜成像分辨本领的前提下,物平面可沿透镜轴移动的距离 13、透镜焦深:在不影响透镜成像分辨本领的前提下,像平面可沿透镜轴移动的距离 14、电子衍射:电子衍射是指当一定能量的电子束落到晶体上时,被晶体中原子散射,各散射电子波之间产生互相干涉现象。它满足劳厄方程或布拉格方程,并满足电子衍射的基本公式Lλ=Rd L是相机长度,λ为入射电子束波长,R是透射斑点与衍射斑点间的距离。 15、二次电子:二次电子是指在入射电子作用下被轰击出来并离开样品表面的原子的核外电子。

材料现代分析方法试题2(参考答案)

材料现代分析方法试题4(参考答案) 一、基本概念题(共10题,每题5分) 1.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片 答:实验中选择X射线管的原则是为避免或减少产生荧光辐射,应当避免使用比样品中主元素的原子序数大2~6(尤其是2)的材料作靶材的X射线管。 选择滤波片的原则是X射线分析中,在X射线管与样品之间一个滤波片, 以滤掉K β线。滤波片的材料依靶的材料而定,一般采用比靶材的原子序数小1或2的材料。 以分析以铁为主的样品,应该选用Co或Fe靶的X射线管,同时选用Fe和Mn 为滤波片。 2.试述获取衍射花样的三种基本方法及其用途? 答:获取衍射花样的三种基本方法是劳埃法、旋转晶体法和粉末法。劳埃法主要用于分析晶体的对称性和进行晶体定向;旋转晶体法主要用于研究晶体结构;粉末法主要用于物相分析。 3.原子散射因数的物理意义是什么?某元素的原子散射因数与其原子序数有何关系? 答:原子散射因数f 是以一个电子散射波的振幅为度量单位的一个原子散射波的振幅。也称原子散射波振幅。它表示一个原子在某一方向上散射波的振幅是一个电子在相同条件下散射波振幅的f倍。它反映了原子将X射线向某一个方向散射时的散射效率。 原子散射因数与其原子序数有何关系,Z越大,f 越大。因此,重原子对X射线散射的能力比轻原子要强。 4.用单色X射线照射圆柱多晶体试样,其衍射线在空间将形成什么图案?为摄取德拜图相,应当采用什么样的底片去记录? 答:用单色X射线照射圆柱多晶体试样,其衍射线在空间将形成一组锥心角不等的圆锥组成的图案;为摄取德拜图相,应当采用带状的照相底片去记录。

材料物理专业《材料分析测试方法A》作业

材料物理专业《材料分析测试方法A 》作业 第一章 电磁辐射与材料结构 一、教材习题 1-1 计算下列电磁辐射的有关参数: (1)波数为3030cm -1的芳烃红外吸收峰的波长(μm ); (2)5m 波长射频辐射的频率(MHz ); (3)588.995nm 钠线相应的光子能量(eV )。 1-3 某原子的一个光谱项为45F J ,试用能级示意图表示其光谱支项与塞曼能级。 1-5 下列原子核中,哪些核没有自旋角动量? 12C 6、19F 9、31P 15、16O 8、1H 1、14N 7。 1-8 分别在简单立方晶胞和面心立方晶胞中标明(001)、(002)和(003)面,并据此回答: 干涉指数表示的晶面上是否一定有原子分布?为什么? 1-9 已知某点阵∣a ∣=3?,∣b ∣=2?,γ = 60?,c ∥a ×b ,试用图解法求r *110与r *210。 1-10 下列哪些晶面属于]111[晶带? )331(),011(),101(),211(),231(),132(),111(。 二、补充习题 1、试求加速电压为1、10、100kV 时,电子的波长各是多少?考虑相对论修正后又各是多 少? 第二章 电磁辐射与材料的相互作用 一、教材习题 2-2 下列各光子能量(eV )各在何种电磁波谱域内?各与何种跃迁所需能量相适应? 1.2×106~1.2×102、6.2~1.7、0.5~0.02、2×10-2~4×10-7。 2-3 下列哪种跃迁不能产生? 31S 0—31P 1、31S 0—31D 2、33P 2—33D 3、43S 1—43P 1。 2-5 分子能级跃迁有哪些类型?紫外、可见光谱与红外光谱相比,各有何特点? 2-6 以Mg K α(λ=9.89?)辐射为激发源,由谱仪(功函数4eV )测得某元素(固体样品) X 射线光电子动能为981.5eV ,求此元素的电子结合能。 2-7 用能级示意图比较X 射线光电子、特征X 射线与俄歇电子的概念。 二、补充习题 1、俄歇电子能谱图与光电子能谱图的表示方法有何不同?为什么? 2、简述X 射线与固体相互作用产生的主要信息及据此建立的主要分析方法。 第三章 粒子(束)与材料的相互作用 一、教材习题 3-1 电子与固体作用产生多种粒子信号(教材图3-3),哪些对应入射电子?哪些是由电子 激发产生的?

材料测试分析方法(究极版)

绪论 3分析测试技术的发展的三个阶段? 阶段一:分析化学学科的建立;主要以化学分析为主的阶段。 阶段二:分析仪器开始快速发展的阶段 阶段三:分析测试技术在快速、高灵敏、实时、连续、智能、信息化等方面迅速发展的阶段4现代材料分析的内容及四大类材料分析方法? 表面和内部组织形貌。包括材料的外观形貌(如纳米线、断口、裂纹等)、晶粒大小与形态、各种相的尺寸与形态、含量与分布、界面(表面、相界、晶界)、位向关系(新相与母相、孪生相)、晶体缺陷(点缺陷、位错、层错)、夹杂物、内应力。 晶体的相结构。各种相的结构,即晶体结构类型和晶体常数,和相组成。 化学成分和价键(电子)结构。包括宏观和微区化学成份(不同相的成份、基体与析出相的成份)、同种元素的不同价键类型和化学环境。 有机物的分子结构和官能团。 形貌分析、物相分析、成分与价键分析与分子结构分析四大类方法 四大分析:1图像分析:光学显微分析(透射光反射光),电子(扫描,透射),隧道扫描,原子力2物象:x射线衍射,电子衍射,中子衍射3化学4分子结构:红外,拉曼,荧光,核磁 获取物质的组成含量结构形态形貌及变化过程的技术 材料结构与性能的表征包括材料性能,微观性能,成分的测试与表征 6.现代材料测试技术的共同之处在哪里? 除了个别的测试手段(扫描探针显微镜)外,各种测试技术都是利用入射的电磁波或物质波(如X射线、高能电子束、可见光、红外线)与材料试样相互作用后产生的各种各样的物理信号(射线、高能电子束、可见光、红外线),探测这些出射的信号并进行分析处理,就课获得材料的显微结构、外观形貌、相组成、成分等信息。 9.试总结衍射花样的背底来源,并提出一些防止和减少背底的措施 衍射花样要素:衍射线的峰位、线形、强度 答:(I)花材的选用影晌背底; (2)滤波片的作用影响到背底;(3)样品的制备对背底的影响 措施:(1)选靶靶材产生的特征x射线(常用Kα射线)尽可能小的激发样品的荧光辐射,以降低衍射花样背底,使图像清晰。(2)滤波,k系特征辐射包括Ka和kβ射线,因两者波长不同,将使样品的产生两套方位不同得衍射花样;选择浪滋片材料,使λkβ靶<λk滤<λkα,Ka射线因因激发滤波片的荧光辐射而被吸收。(3)样品,样品晶粒为50μm左右,长时间研究,制样时尽量轻压,可减少背底。 11.X射线的性质; x射线是一种电磁波,波长范围:0.01~1000à X射线的波长与晶体中的原子问距同数量级,所以晶体可以用作衍射光栅。用来研究晶体结构,常用波长为0.5~2.5à 不同波长的x射线具有不同的用途。硬x射线:波长较短的硬x封线能量较高,穿透性较强,适用于金属部件的无损探伤及金属物相分析。软x射线:波长较长的软x射线的能量较低,穿透性弱,可用干分析非金属的分析。用于金属探伤的x射线波长为0.05~0.1à当x射线与物质(原子、电子作用时,显示其粒子性,具有能量E=h 。产生光电效应和康普顿效应等 当x射线与x射线相互作用时,主要表现出波动性。 x射线的探测:荧光屏(ZnS),照相底片,探测器

材料现代分析方法试题及答案1

一、单项选择题(每题 2 分,共10 分) 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 1.透射电镜中如何获得明场像、暗场像和中心暗场像? 答:如果让透射束进入物镜光阑,而将衍射束挡掉,在成像模式下,就得到明场象。如果把物镜光阑孔套住一个衍射斑,而把透射束挡掉,就得到暗场像,将入射束倾斜,让某一衍射束与透射电镜的中心轴平行,且通过物镜光阑就得到中心暗场像。 2.简述能谱仪和波谱仪的工作原理。 答:能量色散谱仪主要由Si(Li)半导体探测器、在电子束照射下,样品发射所含元素的荧光标识X 射线,这些X 射线被Si(Li)半导体探测器吸收,进入探测器中被吸收的每一个X 射线光子都使硅电离成许多电子—空穴对,构成一个电流脉冲,经放大器转换成电压脉冲,脉冲高度与被吸收的光子能量成正比。最后得到以能量为横坐标、强度为纵坐标的X 射线能量色散谱。 在波谱仪中,在电子束照射下,样品发出所含元素的特征x 射线。若在样品上方水平放置一块具有适当晶面间距 d 的晶体,入射X 射线的波长、入射角和晶面间距三者符合布拉格方程时,这个特征波长的X 射线就会发生强烈衍射。波谱仪利用晶体衍射把不同波长的X 射线分开,即不同波长的X 射线将在各自满足布拉格方程的2θ方向上被检测器接收,最后得到以波长为横坐标、强度为纵坐标的X射线能量色散谱。 3.电子束与试样物质作用产生那些信号?说明其用途。 (1)二次电子。当入射电子和样品中原子的价电子发生非弹性散射作用时会损失其部分能量(约30~50 电子伏特),这部分能量激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,变成真空中的自由电子,即二次电子。二次电子对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。 (2)背散射电子。背散射电子是指被固体样品原子反射回来的一部分入射电子。既包括与样品中原子核作用而形成的弹性背散射电子,又包括与样品中核外电子作用而形成的非弹性散射电子。利用背反射电子作为成像信号不仅能分析形貌特征,也可以用来显示原子序数衬度,进行定性成分分析。 (3)X 射线。当入射电子和原子中内层电子发生非弹性散射作用时也会损失其部分能量(约

(完整word版)教案-材料现代分析测试方法

西南科技大学 材料科学与工程学院 教师教案 教师姓名:张宝述 课程名称:材料现代分析测试方法 课程代码:11319074 授课对象:本科专业:材料物理 授课总学时:64 其中理论:64 实验:16(单独开课) 教材:左演声等. 材料现代分析方法. 北京工业大 学出版社,2000 材料学院教学科研办公室制

2、简述X射线与固体相互作用产生的主要信息及据此建立的主要分析方法。 章节名称第三章粒子(束)与材料的相互作用 教学 时数 2 教学目的及要求1.理解概念:(电子的)最大穿入深度、连续X射线、特征X射线、溅射;掌握概念:散射角(2 )、电子吸收、二次电子、俄歇电子、背散射电子、吸收电流(电子)、透射电子、二次离子。 2.了解物质对电子散射的基元、种类及其特征。 3.掌握电子与物质相互作用产生的主要信号及据此建立的主要分析方法。 4.掌握二次电子的产额与入射角的关系。 5.掌握入射电子产生的各种信息的深度和广度范围。 6.了解离子束与材料的相互作用及据此建立的主要分析方法。 重点难点重点:电子的散射,电子与固体作用产生的信号。难点:电子与固体的相互作用,离子散射,溅射。 教学内容提要 第一节电子束与材料的相互作用 一、散射 二、电子与固体作用产生的信号 三、电子激发产生的其它现象第二节离子束与材料的相互作用 一、散射 二、二次离子 作业一、教材习题 3-1电子与固体作用产生多种粒子信号(教材图3-3),哪些对应入射电子?哪些是由电子激发产生的? 图3-3入射电子束与固体作用产生的发射现象 3-2电子“吸收”与光子吸收有何不同? 3-3入射X射线比同样能量的入射电子在固体中穿入深度大得多,而俄歇电子与X光电子的逸出深度相当,这是为什么? 3-8配合表面分析方法用离子溅射实行纵深剖析是确定样品表面层成分和化学状态的重要方法。试分析纵深剖析应注意哪些问题。 二、补充习题 1、简述电子与固体作用产生的信号及据此建立的主要分析方法。 章节第四章材料现代分析测试方法概述教学 4

ch05材料分析测试方法作业答案

第五章 X 射线衍射分析原理 一、教材习题 5-2 “一束X 射线照射一个原子列(一维晶体),只有镜面反射方向上才有可能 产生衍射”,此种说法是否正确? 答:不正确。(根据劳埃一维方程,一个原子列形成的衍射线构成一系列共顶同轴的衍射圆锥,不仅镜面反射方向上才有可能产生衍射。) 5-3 辨析概念:X 射线散射、衍射与反射。 答:X 射线散射:X 射线与物质作用(主要是电子)时,传播方向发生改变的现象。 X 射线衍射:晶体中某方向散射X 射线干涉一致加强的结果,即衍射。 X 射线反射:晶体中各原子面产生的反射方向上的相干散射。与可见光的反射不同,是“选择反射”。 在材料的衍射分析工作中,“反射”与“衍射”通常作为同义词使用。 5-4 某斜方晶体晶胞含有两个同类原子,坐标位置分别为:( 43,43,1)和(4 1 ,41,2 1 ),该晶体属何种布拉菲点阵?写出该晶体(100)、(110)、(211)、(221)等晶面反射线的F 2值。 答:根据题意,可画出二个同类原子的位置,如下图所示: 如果将原子(1/4,1/4,1/2)移动到原点(0,0,0),则另一原子(3/4,3/4,1)的坐标变为(1/2,1/2,1/2),因此该晶体属布拉菲点阵中的斜方体心点阵。 对于体心点阵: ])1(1[)()2/2/2/(2)0(2L K H L K H i i f fe fe F ++++-+=+=ππ

???=++=++=奇数时 ,当偶数时; 当L K H 0,2L K H f F ?? ?=++=++=奇数时 ,当偶数时; 当L K H L K H f 0,4F 22 或直接用两个原子的坐标计算: ()()()()()()()3 31112()2()4444211111122()222442 111 2() 4421 (2)2 11111111i h k l i h k l i h k l i h k l i h k l h k l i h k l h k l h k l F f e e f e e f e f e f ππππππ++++??++++ ? ??++++++++++??=+ ? ????=+?????? ??=+-?? ?? =+-?? ??=+-±?? 所以 F 2=f 2[1+(-1)(h +k +l )]2 因此,(100)和(221),h +k +l =奇数,|F |2=0;(110)、(211),h +k +l =偶数,|F |2=4f 2。 5-7 金刚石晶体属面心立方点阵,每个晶胞含8个原子,坐标为:(0,0,0)、 ( 21,21,0)、(21,0,21)、(0,21,21)、(41,41,41)、(43,43,41 )、(43,41,43)、(41,43,4 3),原子散射因子为f a ,求其系统消光规律(F 2 最简表达式),并据此说明结构消光的概念。 答:金刚石晶体属面心立方点阵,每个晶胞含8个原子,坐标为:(0,0,0)、(1/2,1/2,0)、(1/2,0,1/2)、(0,1/2,1/2)、(1/4,1/4,1/4)、(3/4,3/4,1/4)、(3/4,1/4,3/4)、(1/4,3/4,3/4),可以看成一个面心立方点阵和沿体对角线平移(1/4,1/4,1/4)的另一个面心立方点阵叠加而成的。

材料分析测试方法

材料分析测试方法 一、课程重要性 二、课程主要内容 三、本课程教学目的基本要求 四、本课程与其他课程的关系 材料分析测试方法 二、课程的主要内容 材料分析的基本原理(或称技术基础)是指测量信号与材料成分、结构等的特征关系。 采用各种不同的测量信号(相应地具有与材料的不同特征关系)形成了各种不同的材料分析方法。 1、X-射线衍射分析:物相成分、结晶度、晶粒度信息 2、电子显微镜:材料微观形貌观察 3、热分析:分析材料随温度而发生的状态变化 4、振动光谱:分子基团、结构的判定 5、X-射线光电子能谱:一种表面分析技术,表面元素分析 6、色谱分析:分析混合物中所含成分的物理方法 三、课程教学目的和基本要求 本课程是为材料专业本科生开设的重要的专业课。 其目的在于使学生系统地了解现代主要分析测试方法的基本原理、仪器设备、样品制备及应用,掌握常见测试技术所获信息的解释和分析方法,最终使学生能够独立地进行材料的分析和研究工作。 四、本课程与其他课程的关系 本门课程是以高等数学、大学物理、无机及分析化学、有机化学、物理化学、晶体学等课程为基础的,因此,学好这些前期课程是学好材料现代分析测试方法的前提。 同时,材料现代分析测试方法又为后续专业课程如材料合成与制备方法、陶瓷、功能材料、高分子材料等打下基础。 X 射线衍射分析 X射线物理基础 晶体学基础:几何晶体学、倒点阵 X射线衍射原理:X射线衍射线的方向和强度 晶体的研究方法:单晶、多晶的研究、衍射仪法 X射线衍射分析的应用 物相分析 晶胞参数的确定 晶粒尺寸的计算等 X 射线衍射分析 需解决的问题 科研、生产、商业以及日常生活中,人们经常遇到这种问题:某种未知物的成分是什么?含有哪些杂质或有害物质?用什么方法来鉴定? X射线衍射分析(简称XRD)的原理?仪器组成?样品要求? XRD除物相分析外,还能检测分析物质的哪些性能? 如何从XRD所给出的数据中提取更多的信息?(包括成分、结构、形成条件、结晶度、晶粒度等)

材料现代分析方法练习题及答案

8. 什么是弱束暗场像?与中心暗场像有何不同?试用Ewald图解说明。 答:弱束暗场像是通过入射束倾斜,使偏离布拉格条件较远的一个衍射束通过物镜光阑,透射束和其他衍射束都被挡掉,利用透过物镜光阑的强度较弱的衍射束成像。 与中心暗场像不同的是,中心暗场像是在双光束的条件下用的成像条件成像,即除直射束外只有一个强的衍射束,而弱束暗场像是在双光阑条件下的g/3g的成像条件成像,采用很大的偏离参量s。中心暗场像的成像衍射束严格满足布拉格条件,衍射强度较强,而弱束暗场像利用偏离布拉格条件较远的衍射束成像,衍射束强度很弱。采用弱束暗场像,完整区域的衍射束强度极弱,而在缺陷附近的极小区域内发生较强的反射,形成高分辨率的缺陷图像。图:PPT透射电子显微技术1页 10. 透射电子显微成像中,层错、反相畴界、畴界、孪晶界、晶界等衍衬像有何异同?用什么办法及根据什么特征才能将它们区分开来? 答:由于层错区域衍射波振幅一般与无层错区域衍射波振幅不同,则层错区和与相邻区域形成了不同的衬度,相应地出现均匀的亮线和暗线,由于层错两侧的区域晶体结构和位相相同,故所有亮线和暗线的衬度分别相同。层错衍衬像表现为平行于层错面迹线的明暗相间的等间距条纹。 孪晶界和晶界两侧的晶体由于位向不同,或者还由于点阵类型不同,一边的晶体处于双光束条件时,另一边的衍射条件不可能是完全相同的,也可能是处于无强衍射的情况,就相当于出现等厚条纹,所以他们的衍衬像都是间距不等的明暗相间的条纹,不同的是孪晶界是一条直线,而晶界不是直线。 反相畴界的衍衬像是曲折的带状条纹将晶粒分隔成许多形状不规则的小区域。 层错条纹平行线直线间距相等 反相畴界非平行线非直线间距不等 孪晶界条纹平行线直线间距不等 晶界条纹平行线非直线间距不等 11.什么是透射电子显微像中的质厚衬度、衍射衬度和相位衬度。形成衍射衬度像和相位衬度像时,物镜在聚焦方面有何不同?为什么? 答:质厚衬度:入射电子透过非晶样品时,由于样品不同微区间存在原子序数或厚度的差异,导致透过不同区域落在像平面上的电子数不同,对应各个区域的图像的明暗不同,形成的衬度。 衍射衬度:由于样品中的不同晶体或同一晶体中不同部位的位向差异导致产生衍射程度不同而形成各区域图像亮度的差异,形成的衬度。 相位衬度:电子束透过样品,试样中原子核和核外电子产生的库伦场导致电子波的相位发生变化,样品中不同微区对相位变化作用不同,把相应的相位的变化情况转变为相衬度,称为相位衬度。 物镜聚焦方面的不同:透射电子束和至少一个衍射束同时通过物镜光阑成像时,透射束和衍射束相互干涉形成反应晶体点阵周期的条纹成像或点阵像或结构物象,这种相位衬度图像的形成是透射束和衍射束相干的结果,而衍射衬度成像只用透射束或者衍射束成像。

材料分析测试方法

《材料分析测试方法》作者:黄新民。该书主要介绍材料的X 射线衍射分析、透射电子显微分析、扫描电子显微镜分析和电子探针微区分析,同时简要介绍了光谱分析、扫描探针显微镜和X射线光电子能谱。 内容简介该书主要介绍材料的X射线衍射分析、透射电子显微分析、扫描电子显微镜分析和电子探针微区分析,同时简要介绍了光谱分析、扫描探针显微镜和X射线光电子能谱。 X射线衍射分析内容包括X射线物理学基础、X射线衍射原理、多晶材料X射线衍射分析方法和部分X射线衍射的实际应用。透射电子显微分析内容包括电子光学基础和电镜结构、电子衍射和电子显微图像衬度原理。扫描电子显微镜分析和电子探针微区分析内容包括仪器的工作原理和分析方法。光谱分析内容包括光谱学基础、原子光谱和分子光谱的简介。扫描探针显微镜内容包括扫描隧道显微镜和原子力显微镜的工作原理、工作模式及应用,介绍了X射线光电子能谱的原理与应用。 本书可以作为材料科学与工程学科的本科生教材,也可以作为研究生和从事材料科学研究与分析测试的工程技术人员的参考书。 该书主要介绍材料的X射线衍射分析、透射电子显微分析、扫描电子显微镜分析和电子探针微区分析,同时简要介绍了光谱分析、扫描探针显微镜和X射线光电子能谱。X射线衍射分析内容包括X射线物理学基础、X射线衍射原理、多晶材料X射线衍射分析方法和部

分X射线衍射的实际应用。透射电子显微分析内容包括电子光学基础和电镜结构、电子衍射和电子显微图像衬度原理。扫描电子显微镜分析和电子探针微区分析内容包括仪器的工作原理和分析方法。光谱分析内容包括光谱学基础、原子光谱和分子光谱的简介。扫描探针显微镜内容包括扫描隧道显微镜和原子力显微镜的工作原理、工作模式及应用,介绍了X射线光电子能谱的原理与应用。本书可以作为材料科学与工程学科的本科生教材,也可以作为研究生和从事材料科学研究与分析测试的工程技术人员的参考书。

材料现代分析方法试题及答案1

《现代材料分析方法》期末试卷1 一、单项选择题(每题 2 分,共10 分) 1.成分和价键分析手段包括【b 】 (a)WDS、能谱仪(EDS)和XRD (b)WDS、EDS 和XPS (c)TEM、WDS 和XPS (d)XRD、FTIR 和Raman 2.分子结构分析手段包括【 a 】 (a)拉曼光谱(Raman)、核磁共振(NMR)和傅立叶变换红外光谱(FTIR)(b)NMR、FTIR 和WDS (c)SEM、TEM 和STEM(扫描透射电镜)(d)XRD、FTIR 和Raman 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 5.下列谱图所代表的化合物中含有的基团包括:【 c 】 (a)–C-H、–OH 和–NH2 (b) –C-H、和–NH2, (c) –C-H、和-C=C- (d) –C-H、和CO 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)

4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的? 范德华力和毛细力。 以上两种力可以作用在探针上,致使悬臂偏转,当针尖在样品上方扫描时,探测器可实时地检测悬臂的状态,并将其对应的表面形貌像显示纪录下来。 3.在核磁共振谱图中出现多重峰的原因是什么? 多重峰的出现是由于分子中相邻氢核自旋互相偶合造成的。在外磁场中,氢核有两种取向,与外磁场同向的起增强外场的作用,与外磁场反向的起减弱外场的作用。根据自选偶合的组合不同,核磁共振谱图中出现多重峰的数目也有不同,满足“n+1”规律 4.什么是化学位移,在哪些分析手段中利用了化学位移? 同种原子处于不同化学环境而引起的电子结合能的变化,在谱线上造成的位移称为化学位移。在XPS、俄歇电子能谱、核磁共振等分析手段中均利用化学位移。 5。拉曼光谱的峰位是由什么因素决定的, 试述拉曼散射的过程。 拉曼光谱的峰位是由分子基态和激发态的能级差决定的。在拉曼散射中,若光子把一部分能量给样品分子,使一部分处于基态的分子跃迁到激发态,则散射光能量减少,在垂直方向测量到的散射光中,可以检测到频率为(ν0 - Δν)的谱线,称为斯托克斯线。相反,若光子从样品激发态分子中获得能量,样品分子从激发态回到基态,则在大于入射光频率处可测得频率为(ν0 + Δν)的散射光线,称为反斯托克斯线 四、问答题(10 分) 说明阿贝成像原理及其在透射电镜中的具体应用方式。 答:阿贝成像原理(5 分):平行入射波受到有周期性特征物体的散射作用在物镜的后焦面上形成衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的特征的像。在透射电镜中的具体应用方式(5 分)。利用阿贝成像原理,样品对电子束起散射作用,在物镜的后焦面上可以获得晶体的衍射谱,在物镜的像面上形成反映样品特征的形貌像。当中间镜的物面取在物镜后焦面时, 则将衍射谱放大,则在荧光屏上得到一幅电子衍射花样;当中间镜物面取在物镜的像面上时,则将图像进一步放大,这就是电子显微镜中的成像操作。 五、计算题(10 分) 用Cu KαX 射线(λ=0.15405nm)的作为入射光时,某种氧化铝的样品的XRD 图谱如下,谱线上标注的是2θ的角度值,根据谱图和PDF 卡片判断该氧化铝的类型,并写出XRD 物相分析的一般步骤。 答:确定氧化铝的类型(5 分) 根据布拉格方程2dsinθ=nλ,d=λ/(2sinθ) 对三强峰进行计算:0.2090nm,0.1604nm,0.2588nm,与卡片10-0173 α-Al2O3 符合,进一步比对其他衍射峰的结果可以确定是α-Al2O3。 XRD 物相分析的一般步骤。(5 分) 测定衍射线的峰位及相对强度I/I1: 再根据2dsinθ=nλ求出对应的面间距 d 值。 (1) 以试样衍射谱中三强线面间距d 值为依据查Hanawalt 索引。

材料分析测试方法

材料分析测试方法 一、课程重要性二、课程主要内容三、本课程教学目的基本要求 四、本课程与其他课程的关系材料分析测试方法二、课程的 主要内容材料分析的基本原理(或称技术基础)是指测量信号与材料成分、结构等的特征关系。采用各种不同的测量信号(相应地具有与材料的不同特征关系)形成了各种不同的材料分析方法。1、X-射线衍射分析:物相成分、结晶度、晶粒度信息 2、电子显微镜:材料微观形貌观察 3、热分析:分析材料随 温度而发生的状态变化4、振动光谱:分子基团、结构的判定 5、X-射线光电子能谱:一种表面分析技术,表面元素分析 6、 色谱分析:分析混合物中所含成分的物理方法三、课程教学目的和基本要求本课程是为材料专业本科生开设的重要的专业课。其目的在于使学生系统地了解现代主要分析测试方法的基本原理、仪器设备、样品制备及应用,掌握常见测试技术所获信息的解释和分析方法,最终使学生能够独立地进行材料的分析和研究工作。四、本课程与其他课程的关系本门课程是以高等数学、大学物理、无机及分析化学、有机化学、物理化学、晶体学等课程为基础的,因此,学好这些前期课程是学好材料现代分析测试方法的前提。同时,材料现代分析测试方法又为后续专业课程如材料合成与制备方法、陶瓷、功能材料、高分子材料等打下基础。X 射线衍射分析X 射线物理基础晶体学基础:几何晶体学、倒点阵X 射线衍射原理:X 射线衍射线

的方向和强度晶体的研究方法:单晶、多晶的研究、衍射仪法X 射线衍射分析的应用物相分析晶胞参数的确定晶粒尺寸的 计算等X 射线衍射分析需解决的问题科研、生产、商业以及 日常生活中,人们经常遇到这种问题:某种未知物的成分是什 么?含有哪些杂质或有害物质?用什么方法来鉴定? §1X 射线物理基础一、X 射线的发现二、X 射线的性质三、X 射线的获得四、X 射线谱五、X 射线与物质的相互作用六、X 射线的吸收及其作用七、X 射线的防护一、X 射线的发现1895 年,德国物理学家伦琴(R?ntgen,W.C.)发现X 射线1912 年,德国物理学家劳厄(https://www.wendangku.net/doc/6c13713997.html,ue,M)等人发现X 射线在晶体中的衍射现象,确证X 射线是一种电磁波1912 年,英国物理学家布·喇格父子(Bragg,W.H;Bragg,V.L.) 开创X 射线晶体结构分析的历二、X 射线的性质X 射线的本质是一种电磁波,具有波粒二象性。X 射线的波动性表现在它以一定的波长和频率在空间传播,其波长范围在0.01~100 ? 之间,在真空中的传播速度3×108m/s。1、波动性当解释X-ray 的衍射、干涉等现象时,必须将其看成波。在晶体作衍射光栅观察到的X 射线的衍射现象,证明了X 射线的波动性X 射线作为电磁波,具有电场矢量和磁场矢量。它以一定的波长和频率在空间传播。λ =C/v X-ray 作为一种电磁波,其传播过程中携带一定的能量,用强度表示X-ray 所带能量的多少。当解释X-ray 与物质相互作用所产生的物理现象(如光电效应、二次电子等)时,须将X-ray 看成一种微粒子流(光子流)。X-ray 作为一种粒

(完整版)材料现代分析方法第一章习题答案解析

第一章 1.X射线学有几个分支?每个分支的研究对象是什么? 答:X射线学分为三大分支:X射线透射学、X射线衍射学、X射线光谱学。 X射线透射学的研究对象有人体,工件等,用它的强透射性为人体诊断伤病、用于探测工件内部的缺陷等。 X射线衍射学是根据衍射花样,在波长已知的情况下测定晶体结构,研究与结构和结构变化的相关的各种问题。 X射线光谱学是根据衍射花样,在分光晶体结构已知的情况下,测定各种物质发出的X射线的波长和强度,从而研究物质的原子结构和成分。 2. 试计算当管电压为50 kV时,X射线管中电子击靶时的速度与动能,以及所发射的连续谱的短波限和光子的最大能量是多少? 解:已知条件:U=50kV 电子静止质量:m0=9.1×10-31kg 光速:c=2.998×108m/s 电子电量:e=1.602×10-19C 普朗克常数:h=6.626×10-34J.s 电子从阴极飞出到达靶的过程中所获得的总动能为: E=eU=1.602×10-19C×50kV=8.01×10-18kJ 由于E=1/2m0v02 所以电子击靶时的速度为: v0=(2E/m0)1/2=4.2×106m/s 所发射连续谱的短波限λ0的大小仅取决于加速电压: λ0(?)=12400/U(伏) =0.248? 辐射出来的光子的最大动能为: E0=hv=h c/λ0=1.99×10-15J 3. 说明为什么对于同一材料其λK<λKβ<λKα? 答:导致光电效应的X光子能量=将物质K电子移到原子引力范围以外所需作的功hV k = W k 以kα为例: hV kα = E L– E k

h e = W k – W L = hV k – hV L ∴h V k > h V k α∴λk<λk α以k β 为例:h V k β = E M – E k = W k – W M =h V k – h V M ∴ h V k > h V k β∴ λk<λk βE L – E k < E M – E k ∴hV k α < h V k β∴λk β < λk α 4. 如果用Cu 靶X 光管照相,错用了Fe 滤片,会产生什么现象? 答:Cu 的K α1,K α2, K β线都穿过来了,没有起到过滤的作用。 5. 特征X 射线与荧光X 射线的产生机理有何不同?某物质的K 系荧光X 射线波长是否等于它的K 系特征X 射线波长? 答:特征X 射线与荧光X 射线都是由激发态原子中的高能级电子向低能级跃迁时,多余能 量以X 射线的形式放出而形成的。不同的是:高能电子轰击使原子处于激发态,高能级电子回迁释放的是特征X 射线;以 X 射线轰击,使原子处于激发态,高能级电子回迁释放 的是荧光X 射线。某物质的K 系特征X 射线与其K 系荧光X 射线具有相同波长。6. 连续谱是怎样产生的?其短波限 与某物质的吸收限 有何不同(V 和 V K 以kv 为单位)? 答:当X 射线管两极间加高压时,大量电子在高压电场的作用下,以极高的速度向阳极轰 击,由于阳极的阻碍作用,电子将产生极大的负加速度。根据经典物理学的理论,一个带 负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电 磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同,因而得到的电磁波将具有连续的各种波长,形成连续X 射线谱。 在极限情况下,极少数的电子在一次碰撞中将全部能量一次性转化为一个光量子,这 个光量子便具有最高能量和最短的波长,即短波限。连续谱短波限只与管压有关,当固定

现代材料分析方法试题及答案

1《现代材料分析方法》期末试卷 一、单项选择题(每题 2 分,共 10 分) 1.成分和价键分析手段包括【 b 】 (a)WDS、能谱仪(EDS)和 XRD (b)WDS、EDS 和 XPS (c)TEM、WDS 和 XPS (d)XRD、FTIR 和 Raman 2.分子结构分析手段包括【 a 】 (a)拉曼光谱(Raman)、核磁共振(NMR)和傅立叶变换红外光谱(FTIR)(b) NMR、FTIR 和 WDS (c)SEM、TEM 和 STEM(扫描透射电镜)(d) XRD、FTIR 和 Raman 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM) (b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和 X 射线光电子谱仪(XPS) (d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【 b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 5.下列谱图所代表的化合物中含有的基团包括:【 c 】 (a)–C-H、–OH 和–NH2 (b) –C-H、和–NH2, (c) –C-H、和-C=C- (d) –C-H、和 CO 二、判断题(正确的打√,错误的打×,每题 2 分,共 10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题 5 分,共 25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的? 范德华力和毛细力。

材料分析测试技术习题

近代材料分析测试方法习题 1 Ariy斑如何形成? 2 简述产生像差的三种原因。 3 何为焦长及景深,有何用途? 4 对比光学显微镜与电磁显微镜分辨率。 6 画出电镜结构原理图,简述每个部件的 作用。 7 何谓点分辨率、晶格分辨率、放大倍 数,其测定方法? 8 简述塑料一级复型、碳一级复型、塑料 -碳-喷铬二级复型制作步骤,对比各 有何特点。 9 简述质后衬度成像原理。 10 计算2种复型样品相对衬度(见书)。 11 简述透射电镜的主要用途。 12 写出劳埃方程,简述其用途。 13 写出布拉格方程,简述其用途。 14 已知简单立方晶体晶格常数为3A°,分别 在正空间和倒易空间中画出(101)、 (210)、(111)晶面及倒易易点,并计算出晶面的面间距和倒易失量的大小。 15 画出面心立方及体心立方[011]晶带轴的 标准电子衍射花样,标出最近的三个斑点指数及夹角。 16 画出爱瓦尔德球简述其用途。 17 体心立方和简单立方晶体的消光条件。 18 何谓标准电子衍射花样。面心立方和简单 立方晶体的消光条件。 19 为何不精确满足布拉格方程时,也会在底 片上出现衍射斑点。 20 为何入射电子束严格平行〔uvw〕时, 底片上也有衍射斑点出现。 21 绘出面心立方〔012〕晶带轴的标准电 子衍射花样,并写明步骤。(10分)22 已知相机常数K、晶体结构及单晶衍射花 样,简述单晶衍射花样标定步骤。(10 分) 23 何谓磁偏角。 24 选区衍射操作与选区衍射成像操作有何不 同。 25 孪晶衍射花样有何特点。 26 高阶劳爱斑点如何得到。 27 如何确定有序固溶体。 28 何谓菊池线花样。 29 何谓二次衍射斑点。 30 简述薄晶体样品制作步骤。 31 多晶衍射花样标定步骤。32 薄晶体成像原理与复型成像原理有何异同 点。 33 画出薄晶体衍衬成明场像、暗场像的光路 图,并加以说明。 34 螺型位错和刃型位错衍衬成像特征。为 何? 35 厚度消光、弯曲消光条纹产生原因。 36 孪晶、层错典型特征。 37 扫描电镜的主要用途。 38 扫描电镜中能成形貌像、成分像的信号各 有哪些? 39 如图所示,晶粒1为铝、晶粒2为铁,画 出A、B探头的收集背散射电子的信 号,及形貌、成分信号。 40 对比二次电子、背散电子成像衬度。 41 特征x射线可成哪种像,有何特征。 42 简述能谱仪与波谱仪工作原理。 43 试述原子散射因子f和结构因子│FHKL│ 2的物理意义,结构因子与哪些因素有 关? 44 画出X射线衍射分析光路图,说明测角仪 的工作原理。(8分) 45 简述用X射线衍射方法定性分析未知材料 的步骤。 46 写出粉末衍射卡组字母索引和数字索引 的编排方法和查询方法。 47 对钙钛矿(CaTiO3)为主的复相材料进 行定性分析,试设计分析方案(特别应 指出选何种辐射源及滤光片)。 48 用X射线衍射仪进行物相分析,请绘图说 明X射线管焦点、入射束、衍射束、接收狭缝、样品表面法线、反射晶面法线、 衍射圆之间的关系。

材料现代分析方法

《材料现代分析方法》课程教学大纲 一、课程基本信息 课程编号:13103105 课程类别:专业核心课程 适应专业:材料物理 总学时:54学时 总学分: 3 课程简介: 本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。 授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,2005年。 参考书目: [1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,2003年。 [2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出版社,2003年。 [3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,2001年。 [4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,2001年。 [5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。 [6]《材料结构表征及应用》,吴刚编,化学工业出版社,2001年。 [7]《材料结构分析基础》,余鲲编,科学出版社,2001年。 二、课程教育目标 通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。 三、教学内容与要求 第一章X射线的物理基础 教学重点:X射线的产生及其与物质作用原理 教学难点:X射线的吸收和衰减、激发限 教学时数:2学时 教学内容:X射线的性质,X射线的产生,X射线谱,X射线与物质的相互作用,X射线的衰减规律,吸收限的应用

相关文档
相关文档 最新文档