文档库 最新最全的文档下载
当前位置:文档库 › 2017高三数学一轮复习圆锥曲线综合题(拔高题-有答案)

2017高三数学一轮复习圆锥曲线综合题(拔高题-有答案)

2017高三数学一轮复习圆锥曲线综合题(拔高题-有答案)
2017高三数学一轮复习圆锥曲线综合题(拔高题-有答案)

2017年高三数学一轮复习圆锥曲线综合题(拔高题)

一.选择题(共15小题)

1.(2014?成都一模)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()

A.B.2C.D.3

2.(2014?鄂尔多斯模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若.B.C.D.

3.(2014?和平区模拟)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,

22

4.(2014?焦作一模)已知椭圆(a>b>0)与双曲线(m>0,n>0)有相同的焦点(﹣c,0)

222

A.B.C.D.

5.(2014?焦作一模)已知点P是椭圆+=1(x≠0,y≠0)上的动点,F1,F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且?=0,则||的取值范围是()

.(0,2)C.[2,3)D

6.(2014?北京模拟)已知椭圆的焦点为F1、F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于P,则使得的M点的概率为()

A.B.C.D.

7.(2014?怀化三模)从(其中m,n∈{﹣1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程.B.C.D.

8.(2014?重庆模拟)已知点F1,F2分别是双曲线的左、右焦点,过F1且垂直于x .B.C.D.

9.(2014?黄冈模拟)已知点F是双曲线=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F A.(1,+∞)B.(1,2)C.(1,1+)D.(2,1+)10.(2014?凉州区二模)已知双曲线(a>0,b>0)的左右焦点是F1,F2,设P是双曲线右支上一点,

上的投影的大小恰好为且它们的夹角为,则双曲线的离心率e为()A.B.C.D.

11.(2015?浙江一模)如图,F1、F2是双曲线的左、右焦点,过F1的直线l与C的左、右2个分支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为()

.C.D.

12.(2014?河西区二模)双曲线的左、右焦点分别为F1、F2离心率为e.过F2的直

2

.1+2B.3+2C.4﹣2D.5﹣2

13.(2014?呼和浩特一模)若双曲线=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则

.B.C.D.

14.(2014?太原一模)点P在双曲线:(a>0,b>0)上,F1,F2是这条双曲线的两个焦点,∠F1PF2=90°,

15.(2014?南昌模拟)已知双曲线的左右焦点分别为F1,F2,e为双曲线的离心率,A.a B.b C.e a D.e b

二.填空题(共5小题)

16.(2014?江西一模)过双曲线=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为_________.

17.(2014?渭南二模)已知F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为_________.18.(2013?辽宁)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连

接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=_________.

19.(2013?江西)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF

为等边三角形,则p=_________.

20.(2014?宜春模拟)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=_________.

三.解答题(共10小题)

21.(2014?黄冈模拟)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、

B两点,当l的斜率为1时,坐标原点O到l的距离为,

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l 的方程;若不存在,说明理由.

22.(2014?南充模拟)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F两点.

(Ⅰ)若,求k的值;

(Ⅱ)求四边形AEBF面积的最大值.

23.(2014?福建)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.

(1)求双曲线E的离心率;

(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB 的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.

24.(2014?福建模拟)已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且

四边形F1AF2B是边长为2的正方形.

(1)求椭圆的方程;

(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明:为定

值.

(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.

25.(2014?宜春模拟)如图,已知圆G:x2+y2﹣2x﹣y=0,经过椭圆=1(a>b>0)的右焦点F及上顶点

B,过圆外一点M(m,0)(m>a)倾斜角为的直线l交椭圆于C,D两点,

(1)求椭圆的方程;

(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

26.(2014?内江模拟)已知椭圆C:的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.

(1)求椭圆C的方程;

(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.

①若线段AB中点的横坐标为,求斜率k的值;

②已知点,求证:为定值.

27.(2014?红桥区二模)已知A(﹣2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为.

(Ⅰ)求椭圆C的方程及离心率;

(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF 的位置关系,并加以证明.

28.(2014?南海区模拟)一动圆与圆外切,与圆内切.

(I)求动圆圆心M的轨迹L的方程.

(Ⅱ)设过圆心O1的直线l:x=my+1与轨迹L相交于A、B两点,请问△ABO2(O2为圆O2的圆心)的内切圆N 的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由.

29.(2014?通辽模拟)如图所示,F是抛物线y2=2px(p>0)的焦点,点A(4,2)为抛物线内一定点,点P为抛物线上一动点,|PA|+|PF|的最小值为8.

(1)求抛物线方程;

(2)若O为坐标原点,问是否存在点M,使过点M的动直线与抛物线交于B,C两点,且以BC为直径的圆恰过坐标原点,若存在,求出动点M的坐标;若不存在,请说明理由.

30.(2014?萧山区模拟)如图,O为坐标原点,点F为抛物线C1:x2=2py(p>0)的焦点,且抛物线C1上点P处的切线与圆C2:x2+y2=1相切于点Q.

(Ⅰ)当直线PQ的方程为x﹣y﹣=0时,求抛物线C1的方程;

(Ⅱ)当正数p变化时,记S1,S2分别为△FPQ,△FOQ的面积,求的最小值.

参考答案与试题解析

一.选择题(共15小题)

1.(2014?成都一模)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3,则||=()

A.B.2C.D.3

计算题;压轴题.

过点B作BM⊥l于M,设右准线l与x轴的交点为N,根据椭圆的性质可知FN=1,由椭圆的第二定义可求得|BF|,进而根据若,求得|AF|.

解:过点B作BM⊥l于M,

并设右准线l与x轴的交点为N,易知FN=1.

由题意,故.

又由椭圆的第二定义,得

∴.

故选A

本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.

2.(2014?鄂尔多斯模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若.B.C.D.

计算题;压轴题.

根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B

的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.

解:设抛物线C:y2=8x的准线为l:x=﹣2

直线y=k(x+2)(k>0)恒过定点P(﹣2,0)

如图过A、B分别作AM⊥l于M,BN⊥l于N,

由|FA|=2|FB|,则|AM|=2|BN|,

点B为AP的中点、连接OB,

则,

∴|OB|=|BF|,点B的横坐标为1,

故点B的坐标为,

故选D

3.(2014?和平区模拟)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,

22

切点坐标;利用直线方程的点斜式求出直线方程;利用直线与圆相切的条件求出a,求出抛物线的顶点坐标.解:两点坐标为(﹣4,11﹣4a);(2,2a﹣1)

两点连线的斜率k=

对于y=x2+ax﹣5

y′=2x+a

∴2x+a=a﹣2解得x=﹣1

在抛物线上的切点为(﹣1,﹣a﹣4)

切线方程为(a﹣2)x﹣y﹣6=0

直线与圆相切,圆心(0,0)到直线的距离=圆半径

解得a=4或0(0舍去)

抛物线方程为y=x2+4x﹣5顶点坐标为(﹣2,﹣9)

故选A.

本题考查两点连线的斜率公式、考查导数在切点处的值为切线的斜率、考查直线与圆相切的充要条件是圆

4.(2014?焦作一模)已知椭圆(a>b>0)与双曲线(m>0,n>0)有相同的焦点(﹣c,0)

222

A.B.C.D.

与c的等差中项可得2n=2m+c,联立方程即可求得a和c的关系,进而求得离心率e.

解:由题意:

∴,

∴,∴a2=4c2,

∴.

故选D.

本题主要考查了椭圆的性质,属基础题.

5.(2014?焦作一模)已知点P是椭圆+=1(x≠0,y≠0)上的动点,F1,F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且?=0,则||的取值范围是()

.(0,2)C.[2,3)D

圆锥曲线的定义、性质与方程.

结合椭圆=1的图象,当点P在椭圆与y轴交点处时,点M与原点O重合,此时|OM|取最小值0.

当点P在椭圆与x轴交点处时,点M与焦点F1重合,此时|OM|取最大值.由此能够得到|OM|的取值范围.

解:由椭圆=1 的方程可得,c=.

由题意可得,当点P在椭圆与y轴交点处时,点M与原点O重合,此时|OM|取得最小值为0.

当点P在椭圆与x轴交点处时,点M与焦点F1重合,此时|OM|取得最大值c=2.

∵xy≠0,∴|OM|的取值范围是(0,).

故选:B.

本题考查椭圆的定义、标准方程,以及简单性质的应用,结合图象解题,事半功倍.

6.(2014?北京模拟)已知椭圆的焦点为F1、F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于P,则使得的M点的概率为()

.B.C.D.

计算题;压轴题.

当∠F1PF2=90°时,P点坐标为,由,得∠F1PF2≥90°.故的

M点的概率.

解:∵|A1A2|=2a=4,,

设P(x0,y0),

∴当∠F1PF2=90°时,,

解得,把代入椭圆得.

由,得∠F1PF2≥90°.

∴结合题设条件可知使得的M点的概率=.

故选C.

作出草图,数形结合,事半功倍.

7.(2014?怀化三模)从(其中m,n∈{﹣1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程A.B.C.D.

其概率

解:设(m,n)表示m,n的取值组合,则取值的所有情况有(﹣1,﹣1),(2,﹣1),(2,2),(2,3),(3,﹣1),(3,2),(3,3)共7个,(注意(﹣1,2),(﹣1,3)不合题意)

其中能使方程是焦点在x轴上的双曲线的有:(2,2),(2,3),(3,2),(3,3)共4个

∴此方程是焦点在x轴上的双曲线方程的概率为

故选B

本题考查了古典概型概率的求法,椭圆、双曲线、抛物线的标准方程,列举法计数的技巧,准确计数是解8.(2014?重庆模拟)已知点F1,F2分别是双曲线的左、右焦点,过F1且垂直于x .B.C.D.

计算题;压轴题.

先求出A,B两点的纵坐标,由△ABF2是锐角三角形知,tan∠AF2F1=<1,e2﹣2e﹣1<0,解不等式求出e 的范围.

解:在双曲线中,

令x=﹣c 得,y=±,∴A,B两点的纵坐标分别为±.

由△ABF2是锐角三角形知,∠AF2F1<,tan∠AF2F1=<tan=1,

∴<1,c2﹣2ac﹣a2<0,e2﹣2e﹣1<0,∴1﹣<e<1+.

又e>1,∴1<e<1+,

故选D.

本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断∠AF2F1<,tan=<1,是解题的关键.

9.(2014?黄冈模拟)已知点F是双曲线=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F

.(1,1+)D.(2,1+)

等式,化简整理即可得到该双曲线的离心率e的取值范围.

解:根据双曲线的对称性,得

△ABE中,|AE|=|BE|,

∴△ABE是锐角三角形,即∠AEB为锐角

由此可得Rt△AFE中,∠AEF<45°,得|AF|<|EF|

∵|AF|==,|EF|=a+c

∴<a+c,即2a2+ac﹣c2>0

两边都除以a2,得e2﹣e﹣2<0,解之得﹣1<e<2

∵双曲线的离心率e>1

∴该双曲线的离心率e的取值范围是(1,2)

故选:B

10.(2014?凉州区二模)已知双曲线(a>0,b>0)的左右焦点是F1,F2,设P是双曲线右支上一点,上的投影的大小恰好为且它们的夹角为,则双曲线的离心率e为()

.B.C.D.

计算题;压轴题.

先根据上的投影的大小恰好为判断两向量互相垂直得到直角三角形,进而根据直角三角形中内角为,结合双曲线的定义建立等式求得a和c的关系式,最后根据离心率公式求得离心率e.解:∵上的投影的大小恰好为

∴PF1⊥PF2

且它们的夹角为,∴,

∴在直角三角形PF1F2中,F1F2=2c,

∴PF2=c,PF1=

又根据双曲线的定义得:PF1﹣PF2=2a,

∴c﹣c=2a

e=

故选C.

本题主要考查了双曲线的简单性质.考查了学生综合分析问题和运算的能力.解答关键是通过解三角形求

11.(2015?浙江一模)如图,F1、F2是双曲线的左、右焦点,过F1的直线l与C的左、右2个分支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为()

.C.D.

压轴题;圆锥曲线的定义、性质与方程.

利用双曲线的定义可得可得|AF1|﹣|AF2|=2a,|BF2|﹣|BF1|=2a,利用等边三角形的定义可得:|AB|=|AF2|=|BF2|,.在△AF1F2中使用余弦定理可得

:=﹣,再利用离心率的计算公式即可得出.

解:∵△ABF2为等边三角形,∴|AB|=|AF2|=|BF2|,.

由双曲线的定义可得|AF1|﹣|AF2|=2a,∴|BF1|=2a.

又|BF2|﹣|BF1|=2a,∴|BF2|=4a.

∴|AF2|=4a,|AF1|=6a.

在△AF1F2中,由余弦定理可得:=﹣,

∴,化为c2=7a2,

∴=.

故选B.

12.(2014?河西区二模)双曲线的左、右焦点分别为F1、F2离心率为e.过F2的直

2

.1+2B.3+2C.4﹣2D.5﹣2

计算题;压轴题.

设|AF1|=|AB|=m,计算出|AF2|=(1﹣)m,再利用勾股定理,即可建立a,c的关系,从而求出e2的值.

解:设|AF1|=|AB|=m,则|BF1|=m,|AF2|=m﹣2a,|BF2|=m﹣2a,

∵|AB|=|AF2|+|BF2|=m,

∴m﹣2a+m﹣2a=m,

∴4a=m,∴|AF2|=(1﹣)m,

∵△AF1F2为Rt三角形,∴|F1F2|2=|AF1|2+|AF2|2∴4c2=(﹣)m2,

∵4a=m

∴4c2=(﹣)×8a2,

∴e2=5﹣2

故选D.

13.(2014?呼和浩特一模)若双曲线=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为()

.B.C.D.

计算题;压轴题.

因为双曲线即关于两条坐标轴对称,又关于原点对称,所以任意一个焦点到两条渐近线的距离都相等,所以不妨利用点到直线的距离公式求(c,0)到y=x的距离,再令该距离等于焦距的,就可得到含b,c 的齐次式,再把b用a,c表示,利用e=即可求出离心率.

解:双曲线的焦点坐标为(c,0)(﹣c,0),渐近线方程为y=±x

根据双曲线的对称性,任意一个焦点到两条渐近线的距离都相等,

求(c,0)到y=x的距离,d===b,

又∵焦点到一条渐近线的距离等于焦距的,

∴b=×2c,两边平方,得4b2=c2,即4(c2﹣a2)=c2,

∴3c2=4a2,,即e2=,e=

故选B

14.(2014?太原一模)点P在双曲线:(a>0,b>0)上,F1,F2是这条双曲线的两个焦点,∠F1PF2=90°,

压轴题.

通过|PF2|,|PF1|,|F1F2|成等差数列,分别设为m﹣d,m,m+d,则由双曲线定义和勾股定理求出m=4d=8a,c=,由此求得离心率的值.

解:因为△F1PF2的三条边长成等差数列,不妨设|PF2|,|PF1|,|F1F2|成等差数列,

分别设为m﹣d,m,m+d,

则由双曲线定义和勾股定理可知:m﹣(m﹣d)=2a,m+d=2c,(m﹣d)2+m2=(m+d)2,

解得m=4d=8a,c=,故离心率e===5,

故选D.

本题主要考查等差数列的定义和性质,以及双曲线的简单性质的应用,属于中档题.

15.(2014?南昌模拟)已知双曲线的左右焦点分别为F1,F2,e为双曲线的离心率,

线定理得出OB,从而解决问题.

解:由题意知:F1(﹣c,0)、F2(c,0),内切圆与x轴的切点是点A,

∵|PF1|﹣|PF2|=2a,及圆的切线长定理知,

|AF1|﹣|AF2|=2a,设内切圆的圆心横坐标为x,

则|(x+c)﹣(c﹣x)|=2a

∴x=a.

在三角形PCF2中,由题意得,它是一个等腰三角形,PC=PF2,

∴在三角形F1CF2中,有:

OB=CF1=(PF1﹣PC)=(PF1﹣PF2)=×2a=a.

故选A.

本题考查双曲线的定义、切线长定理.解答的关键是充分利用三角形内心的性质.

二.填空题(共5小题)

16.(2014?江西一模)过双曲线=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为.

的斜率与直线OD的斜率乘积为﹣1,进而得到a和b的关系,进而求得离心率.

解:设垂足为D,

根据双曲线方程可知其中一个渐近线为y=x,焦点为F(,0)

D点坐标(,)

∴k DF==﹣

∵OD⊥DF

∴k DF?k OD=﹣1

∴,即a=b

∴e===

故答案为

本题主要考查了双曲线的简单性质.要熟练掌握双曲线关于渐近线、焦点、标准方程等基本知识.17.(2014?渭南二模)已知F1,F2是双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为.

率.

解:∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,

∵|AB|2+|BF2|2=|AF2|2,∴∠ABF2=90°,

又由双曲线的定义得:|BF1|﹣|BF2|=2a,|AF2|﹣|AF1|=2a,

∴|AF1|+3﹣4=5﹣|AF1|,∴|AF1|=3.

∴|BF1|﹣|BF2|=3+3﹣4=2a,

∴a=1.

在Rt△BF1F2中,|F1F2|2=|BF1|2+|BF2|2=62+42=52,

∵|F1F2|2=4c2,∴4c2=52,∴c=.

∴双曲线的离心率e==.

故答案为:.

本题考查双曲线的简单性质,考查转化思想与运算能力,求得a与c的值是关键,属于中档题.18.(2013?辽宁)已知椭圆的左焦点为F,C与过原点的直线相交于A,B两点,连接AF、BF,若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=.

定理算出|BF|=8,从而得到|AF|2+|BF|2=|AB|2,得∠AFB=90°,所以c=|OF|=|AB|=5.根据椭圆的定义得到

2a=|BF|+|BF'|=14,得a=7,最后结合椭圆的离心率公式即可算出椭圆C的离心率.

解:设椭圆的右焦点为F',连接AF'、BF'

∵AB与FF'互相平分,∴四边形AFBF'为平行四边形,可得|AF|=|BF'|=6

∵△ABF中,|AB|=10,|AF|=6,cos∠ABF=,

∴由余弦定理|AF|2=|AB|2+|BF|2﹣2|AB|×|BF|cos∠ABF,

可得62=102+|BF|2﹣2×10×|BF|×,解之得|BF|=8

由此可得,2a=|BF|+|BF'|=14,得a=7

∵△ABF中,|AF|2+|BF|2=100=|AB|2

∴∠AFB=90°,可得|OF|=|AB|=5,即c=5

因此,椭圆C的离心率e==

故答案为:

本题给出椭圆经过中心的弦AB与左焦点构成三边分别为6、8、10的直角三角形,求椭圆的离心率.着重

19.(2013?江西)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF 为等边三角形,则p=6.

形求出p即可.

解:抛物线的焦点坐标为(0,),准线方程为:y=﹣,

准线方程与双曲线联立可得:,

解得x=±,

因为△ABF为等边三角形,所以,即p2=3x2,

故答案为:6.

本题考查抛物线的简单性质,双曲线方程的应用,考查分析问题解决问题的能力以及计算能力.20.(2014?宜春模拟)已知抛物线C:y2=2px(p>0)的准线l,过M(1,0)且斜率为的直线与l相交于A,与C的一个交点为B,若,则p=2.

计算题;压轴题.

设直线AB的方程与抛物线方程联立消去y得3x2+(﹣6﹣2p)x+3=0,进而根据,可知M为A、B

的中点,

可得p的关系式,解方程即可求得p.

解:设直线AB:,代入y2=2px得3x2+(﹣6﹣2p)x+3=0,

又∵,即M为A、B的中点,

∴x B+(﹣)=2,即x B=2+,

得p2+4P﹣12=0,

解得p=2,p=﹣6(舍去)

故答案为:2

本题考查了抛物线的几何性质.属基础题.

三.解答题(共10小题)

21.(2014?黄冈模拟)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、

B两点,当l的斜率为1时,坐标原点O到l的距离为,

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l 的方程;若不存在,说明理由.

综合题;压轴题.

(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a 和b.

(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P,使成立,则其充要条件为:点

P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.

解:(I)设F(c,0),直线l:x﹣y﹣c=0,

由坐标原点O到l的距离为

又,∴

(II)由(I)知椭圆的方程为

设A(x1,y1)、B(x2,y2)

由题意知l的斜率为一定不为0,故不妨设l:x=my+1

代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.

由韦达定理有:,,①

假设存在点P,使成立,则其充要条件为:

点P的坐标为(x1+x2,y1+y2),

点P在椭圆上,即.

整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.

又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、

故2x1x2+3y1y2+3=0②

将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得

∴,

x1+x2=,即

当;

22.(2014?南充模拟)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F两点.

(Ⅰ)若,求k的值;

(Ⅱ)求四边形AEBF面积的最大值.

计算题;压轴题.

(1)依题可得椭圆的方程,设直线AB,EF的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F

(x2,kx2),且x1,x2满足方程(1+4k2)x2=4,进而求得x2的表达式,进而根据求得x0的表达

等式的性质求得最大值.

解:(Ⅰ)依题设得椭圆的方程为,

直线AB,EF的方程分别为x+2y=2,y=kx(k>0).

如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,

且x1,x2满足方程(1+4k2)x2=4,

故.①

由知x0﹣x1=6(x2﹣x0),得;

由D在AB上知x0+2kx0=2,得.

所以,

化简得24k2﹣25k+6=0,

解得或.

(Ⅱ)由题设,|BO|=1,|AO|=2.由(Ⅰ)知,E(x1,kx1),F(x2,kx2),

不妨设y1=kx1,y2=kx2,由①得x2>0,根据E与F关于原点对称可知y2=﹣y1>0,

故四边形AEBF的面积为S=S△OBE+S△OBF+S△OAE+S△OAF

=?(﹣y1)

=

=x2+2y2

===,

当x2=2y2时,上式取等号.所以S的最大值为.

本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点

23.(2014?福建)已知双曲线E:﹣=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.

(1)求双曲线E的离心率;

(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB 的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

2017年宝山区高考数学一模试卷含答案

2017年宝山区高考数学一模试卷含答案 2016.12 一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim 1 n n n →∞+=+ 2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U A C B = 3. 不等式 102 x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=??=?(θ为参数)的焦距为 5. 设复数z 满足23z z i +=-(i 为虚数单位),则z = 6. 若函数cos sin sin cos x x y x x =的最小正周期为a π,则实数a 的值为 7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为 9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为 10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示) 11. 设常数0a >,若9()a x x +的二项展开式中5 x 的系数为144,则a = 12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为 二. 选择题(本大题共4题,每题5分,共20分) 13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件 14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( ) A. 80 B. 96 C. 108 D. 110

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练 1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式 (Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解: (Ⅰ)由题意知,(A a . 因为OA t =,所以2 2 2a a t +=.由于0t > 由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为 1c t +=. 又因点A 在直线BC 上,故有 1a c +=,将(1)代入上式,得1a c =, 解得2c a =+ (Ⅱ)因为(2D a +,所以直线CD 的斜率为 1CD k = ===-. 所以直线CD 的斜率为定值. 2.设F 是抛物线2 :4G x y =的焦点. (I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u r g ,延长AF ,BF 分别交抛物线G 于点C D ,,求 四边形ABCD 面积的最小值. 2.解:(I )设切点2 004x Q x ?? ???,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为 2000()42x x y x x -=-. 即2 04 24x x y x =-. 因为点(0)P -4,在切线上. 所以2 044 x -=-,2 016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,. 由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.

圆锥曲线常见题型与答案

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中 222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 例题: (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( ) A .421=+PF PF B .6 21=+PF PF C .1021=+PF PF D .122 2 2 1 =+PF PF (答:C ); (2) 方程8=表示的曲线是_____ (答:双曲线的左支) (3)已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) (4)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值围为____ (答:11(3,)(,2)22---U ); (5)双曲线的离心率等于25 ,且与椭圆14 922=+y x 有公共焦点,则该双曲线的方程_______(答:2 214x y -=); (6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为 _______(答:226x y -=) 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平面几何方法处理; 圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±; ③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为 2a ,短轴长为2b ; ④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 p e c b a ,,,,

圆锥曲线的综合问题(答案版)讲课教案

圆锥曲线的综合问题 【考纲要求】 1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入 和设而不求的思想. 2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向 量等在解决问题中的综合运用. 【复习指导】 本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 【基础梳理】 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时 为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或 变量y )的一元方程. 即?? ?==++0 ),(0y x F c By Ax ,消去y 后得02 =++c bx ax (1)当0≠a 时,设方程02 =++c bx ax 的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交;Δ=0?直线与圆锥曲线C 相切;Δ<0?直线与圆锥曲线C 无公共点. (2)当0=a ,0≠b 时,即得一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点, 此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线, 则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)定义:直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做 圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长. (2)圆锥曲线的弦长的计算 设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB | =1+k 2 |x 1-x 2|=]4))[(1(212212x x x x k -++=a k ? ? +2 1=1+1 k 2·|y 1-y 2|. (抛物线的焦点弦长|AB |=x 1+x 2+p =2p sin 2 θ ,θ为弦AB 所在直线的倾斜角). 3、一种方法 点差法:在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,

2017年浦东新区高三数学一模官方定稿版(浦东印稿答案)

浦东新区2016学年度第一学期教学质量检测 高三数学试卷 2016.12 注意:1. 答卷前,考生务必在答题纸上指定位置将姓名、学校、考号填写清楚. 2. 本试卷共有21道试题,满分150分,考试时间120分钟. 一、填空题(本大题共有12题,满分54分)只要求直接填写结果,1-6题每个空格填对 得4分,7-12题每个空格填对得5分,否则一律得零分. 1.已知U =R ,集合{}421A x x x =-≥+,则U A =C ___()1,+∞___. 2.三阶行列式351 2 367 2 4 ---中元素5-的代数余子式的值为___34_____. 3.8 12x ??- ? ?? 的二项展开式中含2x 项的系数是____7_____. 4.已知一个球的表面积为16π,则它的体积为____ 32 3 π____. 5.一个袋子中共有6个球,其中4个红色球,2个蓝色球. 这些球的质地和形状一样,从中任意抽取2个球,则所抽的球都是红色球的概率是_____ 2 5 _____. 6.已知直线l :0x y b -+=被圆C :2225x y +=所截得的弦长为6,则b = 7.若复数(1)(2)ai i +-在复平面上所对应的点在直线y x =上,则实数a =___3___. 8 .函数()cos sin )f x x x x x =+-的最小正周期为___π____. 9.过双曲线C : 22 214 x y a -=的右焦点F 作一条垂直于x 轴的垂线交双曲线C 的两条渐近线于A 、B 两点,O 为坐标原点,则OAB ?的面积的最小值为___8____. 10.若关于x 的不等式1 202 x x m -- <在区间[0,1]内恒成立, 则实数m 的取值范围为___?? ? ??223 ,__.

新课标高考《圆锥曲线》大题专题含答案

新课标高考《圆锥曲线》大题专题含答案

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考江西卷(理)) 过点2,0) 引直线l 与曲线2 1y x = +相交于 A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线 l 的斜 率 等 于 ( ) A .y E B B C CD =++3 B .3 C .3± D .32 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 双曲线 2 214 x y -=的顶点到其渐近线的距离等于 ( ) A .25 B .4 5 C 25 D 453 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 已知中心在原 点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程 是 ( ) A .22 145 x -= B .22 145 x y -= C . 22 125 x y -= D . 22 125 x -=

4 .(2013年高考新课标1(理)) 已知双曲线C : 22 2 21x y a b -=(0,0a b >>)的离心率为52 ,则C 的渐近 线 方 程为 ( ) A .14y x =± B .13 y x =± C . 12 y x =± D .y x =± 5 .(2013年高考湖北卷(理)) 已知04π θ<<,则双曲线 22 122:1 cos sin x y C θθ -=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦 距相等 D .离心率相等 6 .(2013年高考四川卷(理)) 抛物线2 4y x =的焦点到双曲线 2 21 3 y x -=的渐近线的距 离 是 ( ) A .12 B .3 2 C .1 D 3

高考圆锥曲线中的定点与定值问题(题型总结超全)

专题08解锁圆锥曲线中的定点与定值问题 一、解答题 1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标. 【答案】(1)(2) 【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得 。设x轴上的定点为,可得 ,由定值可得需满足,解得可得定点坐标。 解得。 ∴椭圆的标准方程为. (Ⅱ)证明: 由题意设直线的方程为, 由消去y整理得, 设,,

要使其为定值,需满足, 解得 . 故定点的坐标为 . 点睛:解析几何中定点问题的常见解法 (1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意. 2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2 :2C y px =(0,p p >为常数)交于不同的两点,M N ,当1 2 k =时,弦MN 的长为15(1)求抛物线C 的标准方程; (2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4- 【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设()()() 2221122,2,,2,,2M t t N t t Q t t ,则1 2 MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++= ()1212:220NQ x t t y t t -++=. 由()1,0-在直线MN 上1 1 t t ?= (1); 由()1,1-在直线MQ 上22220t t tt ?+++=将(1)代入()121221t t t t ?=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ?-+-+-=,即可得出直线NQ 过定点.

圆锥曲线基础测试题大全

(北师大版)高二数学《圆锥曲线》基础测试试题 一、选择题 1.已知椭圆 116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2. 椭圆32x 2+16 y 2 =1的焦距等于( )。 A .4 B 。8 C 。16 D 。123 3.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( ) A . 116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 4.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 5.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于 ( ) A .2 B .3 C .2 D .3 6.抛物线x y 102=的焦点到准线的距离是 ( ) A .25 B .5 C .2 15 D .10 7. 抛物线y 2=8x 的准线方程是( )。 (A )x =-2 (B )x =2 (C )x =-4 (D )y =-2 8.已知抛物线的焦点是F (0,4),则此抛物线的标准方程是( ) (A )x 2=16y (B )x 2=8y (C )y 2=16x (D )y 2=8x 9.经过(1,2)点的抛物线的标准方程是( ) (A )y 2=4x (B )x 2= 21y (C ) y 2=4x 或x 2=2 1 y (D ) y 2=4x 或x 2=4y 10.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-±

文科圆锥曲线专题练习与答案

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32 a x =上一点,12PF F ?是底角为30o 的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题. 【解析】∵△21F PF 是底角为030的等腰三角形, ∴0 260PF A ∠=,212||||2PF F F c ==,∴2||AF =c ,∴322 c a = ,∴e =34, 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162 =的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:2 2 2 x y a -=,将4x =代入等轴双曲线方程解 得y =,∵||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2) 到直线x y 3= 的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以222 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

上海市闵行区2017届高三一模数学试卷(含答案)

高三年级质量调研考试数学试卷 第1页共9页 C 1 D 1 B 1 A 1 C A B D E 闵行区2016学年第一学期高三年级质量调研考试 数 学 试 卷 (满分150分,时间120分钟) 考生注意: 1.答卷前,考生务必在答题纸上将学校、班级、考生号、姓名等填写清楚. 2.请按照题号在答题纸各题答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 3.本试卷共有21道试题. 一、填空题(本大题共有12题,满分54分)考生应在答题纸上相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分. 1. 方程()lg 341x +=的解=x _____________. 2. 若关于x 的不等式 0x a x b ->-(),a b ∈R 的解集为()(),14,-∞+∞ ,则a b +=____. 3. 已知数列{}n a 的前 n 项和为21n n S =-,则此数列的通项公式为___________. 4. 函数()1f x =的反函数是_____________. 5. () 6 12x +的展开式中3 x 项的系数为___________.(用数字作答) 6. 如右图,已知正方体1111ABCD A BC D -,12AA =, E 为棱1CC 的中点,则三棱锥1D ADE -的体积为________________. 7. 从单词“shadow ”中任意选取4个不同的字母排成一排,则其中含 有“a ”的共有_____________种排法.(用数字作答) 8. 集合[]{} cos(cos )0,0,x x x ππ=∈= _____.(用列举法表示) 9. 如右图,已知半径为1的扇形AOB ,60AOB ∠=?,P 为弧 AB 上的一个动点,则OP AB ? 的取值范围是__________. 10. 已知,x y 满足曲线方程2 21 2x y + =,则22x y +的取值范围是____________.

圆锥曲线大题20道(含答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+ =kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>?OB OA (其 中O 为原点). 求k 的取值范围. 解:(Ⅰ)设双曲线方程为12222=-b y a x ).0,0(>>b a 由已知得.1,2,2,32222==+== b b a c a 得再由 故双曲线C 的方程为.13 22 =-y x (Ⅱ)将得代入13 222 =-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得?????>-=-+=?≠-. 0)1(36)31(36)26(, 0312 222 k k k k 即.13 1 22<≠ k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319 ,31262 2>+>?--=-= +B A B A B A B A y y x x OB OA k x x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x .1 37 3231262319)1(22222 -+=+-+--+=k k k k k k k 于是解此不等式得即,01393,213732 222>-+->-+k k k k .33 1 2<

(完整版)高考圆锥曲线题型归类总结(最新整理)

)直接法:直接利用条件建立之间的关系; 和直线的距离之和等于 ),端点向圆作两条切线

的距离比它到直线的距离小于 :和⊙:都外切,则动圆圆心 代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨 是抛物线上任一点,定点为,分所成的比为 参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。 过抛物线的焦点作直线交抛物线于

?OA OB ⊥?121K K ?=-?0OA OB ?= ?12120 x x y y += ②“点在圆内、圆上、圆外问题” “直角、锐角、钝角问题” “向量的数量积大于、等于、小于0问题”?? >0; ?1212x x y y + ③“等角、角平分、角互补问题” 斜率关系(或);?120K K +=12K K = ④“共线问题” (如: 数的角度:坐标表示法;形的角度:距离转化法); AQ QB λ= ?(如:A 、O 、B 三点共线直线OA 与OB 斜率相等);? ⑤“点、线对称问题” 坐标与斜率关系;? ⑥“弦长、面积问题” 转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);?六、化简与计算;七、细节问题不忽略; ①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 7、思路问题:大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而

圆锥曲线练习题(附答案)

) 圆锥曲线 一、填空题 1、对于曲线C ∶1 42 2-+-k y k x =1,给出下面四个命题: ①由线C 不可能表示椭圆; ②当1<k <4时,曲线C 表示椭圆; ③若曲线C 表示双曲线,则k <1或k >4; ④若曲线C 表示焦点在x 轴上的椭圆,则1<k <2 5 其中所有正确命题的序号为_____________. ? 2、已知椭圆)0(122 22>>=+b a b y a x 的两个焦点分别为21,F F ,点P 在椭圆上,且满 足021=?PF PF ,2tan 21=∠F PF ,则该椭圆的离心率为 3.若0>m ,点?? ? ??25,m P 在双曲线15422=-y x 上,则点P 到该双曲线左焦点的距离为 . 4、已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 5、已知点P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是 (4,a ),则当||a >4时,||||PA PM +的最小值是 . 6. 在ABC 中,7 ,cos 18 AB BC B ==- .若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = . 7.已知ABC ?的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为 8.离心率3 5 = e ,一条准线为x =3的椭圆的标准方程是 .

9.抛物线)0(42<=a ax y 的焦点坐标是_____________; 10将抛物线)0()3(42≠-=+a y a x 按向量v =(4,-3)平移后所得抛物线的焦点坐标为 . ^ 11、抛物线)0(12 <=m x m y 的焦点坐标是 . 12.已知F 1、F 2是椭圆2 2 22)10(a y a x -+=1(5<a <10=的两个焦点,B 是短轴的一个端 点,则△F 1BF 2的面积的最大值是 13.设O 是坐标原点,F 是抛物线)0(22>=p px y 的焦点,A 是抛物线上的一点, 与x 轴正向的夹角为60°,则||为 . 14.在ABC △中,AB BC =,7 cos 18 B =-.若以A B ,为焦点的椭圆经过点 C ,则该椭圆的离心率e = . 二.解答题 15、已知动点P 与平面上两定点(A B 连线的斜率的积为定值1 2 -. . (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=3 2 4时,求直线l 的方程.

2017年高三数学一模(文科)答案

2017年沈阳市高中三年级教学质量监测(一) 数学(文科)参考答案与评分标准 说明: 一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则. 二、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 三、只给整数分数,选择题和填空题不给中间分. 一、选择题(本大题共12小题,每小题5分,在每小题四个选项中,只有一项是符合题目要求的) 6 二、填空题(本大题共4小题,每小题5分,共20分) 13. 2 3 14. 3 15. 3 16. 9 三、解答题 17. (本小题满分12分) 解:(Ⅰ)设等差数列}{n a 的公差为d ,由题意得23 1 4=-= a a d , ……………………1分 所以n n d n a a 22)1(2)1(1n =?-+=?-+=. ……………………………………2分 设等比数列}{n b 的公比为q ,由题意得82 5 3 ==b b q ,解得2=q . ……………………3分 因为22 1== q b b ,所以n n n n q b b 222111=?=?=--. ……………………………………6分 (Ⅱ)2 1) 21(22)22(--?++?= n n n n S 2212-++=+n n n . ……………………12分 (分别求和每步给2分) 18. (本小题满分12分) 解:(Ⅰ)x 20 50004.0= ? ,∴100=x . ……………………………………1分 ∵1005104020=++++y ,∴25=y . ……………………………………2分 008.05010040=?,005.05010025=?,002.05010010=?,001.050 1005 =?

(完整word版)2019-2020年高考数学大题专题练习——圆锥曲线(一)

2019-2020年高考数学大题专题练习——圆锥曲线(一) 1.设F 1,F 2为椭圆22 143 x y +=的左、右焦点,动点P 的坐标为(-1,m ),过点F 2的直线与 椭圆交于A ,B 两点. (1)求F 1,F 2的坐标; (2)若直线P A ,PF 2,PB 的斜率之和为0,求m 的所有整数值. 2.已知椭圆2 214 x y +=,P 是椭圆的上顶点.过P 作斜率为k (k ≠0)的直线l 交椭圆于另一点A ,设点A 关于原点的对称点为B . (1)求△P AB 面积的最大值; (2)设线段PB 的中垂线与y 轴交于点N ,若点N 在椭圆内部,求斜率k 的取值范围. 3.已知椭圆()22 22:10x y C a b a b +=>>的离心率为5,定点()2,0M ,椭圆短轴的端点是 1B ,2B ,且21MB MB ⊥. (1)求椭圆C 的方程; (2)设过点M 且斜率不为0的直线交椭圆C 于,A B 两点,试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标,若不存在,说明理由.

4.已知椭圆C 的标准方程为22 1 1612x y +=,点(0,1)E . (1)经过点E 且倾斜角为 3π 4 的直线l 与椭圆C 交于A 、B 两点,求||AB . (2)问是否存在直线p 与椭圆交于两点M 、N 且||||ME NE =,若存在,求出直线p 斜率的取值范围;若不存在说明理由. 5.椭圆1C 与2C 的中心在原点,焦点分别在x 轴与y 轴上,它们有相同的离心率2 e =,并且2C 的短轴为1C 的长轴,1C 与2C 的四个焦点构成的四边形面积是22. (1)求椭圆1C 与2C 的方程; (2)设P 是椭圆2C 上非顶点的动点,P 与椭圆1C 长轴两个顶点A ,B 的连线PA ,PB 分别与椭圆1C 交于E ,F 点. (i)求证:直线PA ,PB 斜率之积为常数; (ii)直线AF 与直线BE 的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

圆锥曲线大题题型归纳3

圆锥曲线大题题型归纳 基本方法: 1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题; 3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根; 4. 点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式; 5. 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题; 基本思想: 1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关; 4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。 题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题 例1、 已知F 1,F 2为椭圆2100x +2 64 y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少? 点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。 变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且

相关文档
相关文档 最新文档