文档库 最新最全的文档下载
当前位置:文档库 › 同步电动机三自由度内模动态解耦控制

同步电动机三自由度内模动态解耦控制

同步电动机三自由度内模动态解耦控制
同步电动机三自由度内模动态解耦控制

多变量解耦控制方法

多变量解耦控制方法 多变量解耦控制方法 随着被控系统越来越复杂,如不确定性、多干扰、非线性、滞后、非最小相位等,需要控制的变量往往不只一个,且多个变量之间相互关联,即耦合,传统的单变量控制系统设计方法显然无法满足要求,工程中常常引入多女量矗解WSi+o其思想早在控制科学发展初期就已形成,其实质是通过对一个具有耦合的多输入多输出控制系统,配以适当的补偿器,将耦合程度限制在一定程度或解耦为多个独立的单输入单输出系统。其发展主要以.血豹疔1964年提出的基于精确对消的全解竊映右全向癌及 Rosenbroc好20世纪60年代提出的基于对角优势化的现代频率法为代表,但这两种方 *法都要求被控对象精确建模,在应用上受到一定的限制。 近年来,随着控制理论的发展’多种解耦控制方渕应运而生,如特征结构配置解須、自校正解粮、拿性二次型解耦、奇异摄动解耦、自适应解耦、智能解耦、模糊解越等等护解耦控制丄直是一个充满活力、富有挑战性的问题。本文针对解耦方法进行了概述,并分析了其应用现状。-* 一、解耦控制的现状及问题 传统解耦控制 传统解耦方法包括前置补偿幺和现代频率法。前者包括矩阵求逆解耦、不变性解耦和逆向解耦G扁陶鮒滾漆nuM玆佼疇fW擄林遞跖网禅融8 据是其理论基础,比较适合 于线性金常竝力系统。主要尙括:七?? 1)逆奈氏阵列法

逆奈氏阵列法是对控制对象进行预先补偿,使传统函数的逆成为具有对角优势和正规性的矩阵。由于正规阵特征值对摄动不敏感,因而有较强的鲁棒性,其应用广泛。当然,当正规阵的上(下)三角元素明显大于下(上)三角元素时,可采用非平衡补偿法进行修正来提高鲁棒性,同时由于利用逆奈氏判据选择反馈增益时并不能保证闭环传递函数本身的对角优势,因此需反复调整补偿器的参数,使设计结果真正符合对角优势。 2)特征轨迹法 特征轨迹法是一种分析.必滋系统性态的精确方法。当采用其中的増益平衡法和特征向量配正法对补偿器进行近似处理时,其精确性难以得到保证,因而工程应用有限。倘若采用并矢展开法,则可利用其对角分解中变换矩阵与频率无关的特性解决补偿器工程难以实现的问题,但要求被控对象能够并矢分解,往往此条件难以满足’因而工程中应用不多见。 3)序列回差法 该方法是将补偿器逐个串入回路构成反馈,易于编程实现。从解耦的角度看’类似三角解耦,但其补偿器的确定方法并不明确,不能实现完全解耦。 4)奇异值分解法 包括奇异值带域法和逆结构正则化法。主要是先绘制开环传递函数的奇异值图,采用主増益、主相位分析法,或者广义奈氏定理来确定主带域与临界点的关系,从而判别系统的鲁棒稳定性,特别适于无法特征分解或并矢分解的系统。它是近年来普遍使用的方法之一。 此外,还有一些比较成功的频率方法,包括相对増益法、逆曲线法、特征曲线分析法。以上解耦方法中,补偿器严重依赖被控对象的精确建模,在现代的工业生产中不具有适应性,难以保证控制过程品质,甚至导致系统不稳定。即使采用这些方法进行部分解耦或者单向解耦,也不能实现完全解耦,而且辅助设计的工作量很大,不易实现动态解耦。 自适应解耦控制 自适应解耦岡是将自适应控制技术与解耦控制技术相结合并用于多变量系统,也即将被控对象的解耦、控制和辨识结合起来,以此实现参数未知或时变系统的在线精确解耦控制。吉禹萸底宴将耦合项视为可测干扰,采用自校正前馈控制的方法,对耦合进行动、静态补偿,对补偿器的参数进行寻优。它是智能解耦理论的基础,适于时变对象。对于最小相位系统,自适应解耦控制采用最爪分臺佥前俺可以抑制交联,对于非最小相位系统,它可采用广义最小方差控制律,只要性能指标函数中含有耦合项,就可达到消

系统解耦控制

实验二、 系统解耦控制 一、实验目的 1、 掌握解耦控制的基本原理和实现方法。 2、 学习利用模拟电路实现解耦控制及实验分析。 二、实验仪器 1、 TDN —AC/ACS 型自动控制系统实验箱一台 2、 示波器 3、 万用表 三、实验原理与内容 一般多输入多输出系统的矩阵不是对角阵,每一个输入量将影响所有输出量,而每一个输出量同样受到所有输入量的影响,这种系统称为耦合系统。系统中引入适当的校正环节使传递矩阵对角化,实现某一输出量仅受某一输入量的控制,这种控制方式为解耦控制,其相应的系统称为解耦系统。解耦系统输入量与输出量的维数必相同,传递矩阵为对角阵且非奇异。 1、 串联控制器()c G s 实现解耦。 图2-1用串联控制器实现解耦 耦合系统引入控制器后的闭环传递矩阵为 1 ()[()()()]()()p c p c s I G s G s H s G s G s -Φ=+ 左乘[()()()]p c I G s G s H s +,整理得 1()()()[()()]p c G s G s s I H s s -=Φ-Φ 式中()s Φ为所希望的对角阵,阵中各元素与性能指标要求有关, 在()H s 为对角阵的条件下,1 [()()]I H s s --Φ仍为对角阵, 1 1 ()()()[()()]c p G s G s s I H s s --=Φ-Φ

设计串联控制器()c G s 可使系统解耦。 2、 用前馈补偿器实现解耦。 解耦系统如图2-2, 图2-2 用前馈控制器实现解耦 解耦控制器的作用是对输入进行适当变换实现解耦。解耦系统的闭环传递函数 1()[()]()()p p d s I G s G s G s -Φ=+ 式中()s Φ为所希望的闭环对角阵,经变换得前馈控制器传递矩阵 1()()[()]()d p p G s G s I G s s -=+Φ 3、 实验题目 双输入双输出单位反馈耦合系统结构图如图。 图2-3 系统结构图 设计解耦控制器对原系统进行解耦,使系统的闭环传递矩阵为 10 (1) ()10(51)s s s ????+? ?Φ=? ???+? ? 通过原系统输出量(1,2y y )与偏差量(1,2e e )之间的关系

解耦控制设计与仿真

解耦控制系统设计与仿真 姓名: 专业: 学号:

第一章解耦控制系统概述 1.1背景及概念 在现代化的工业生产中,不断出现一些较复杂的设备或装置,这些设备或装置的本身所要求的被控制参数往往较多,因此,必须设置多个控制回路对该种设备进行控制。由于控制回路的增加,往往会在它们之间造成相互影响的耦合作用,也即系统中每一个控制回路的输入信号对所有回路的输出都会有影响,而每一个回路的输出又会受到所有输入的作用。要想一个输入只去控制一个输出几乎不可能,这就构成了“耦合”系统。由于耦合关系,往往使系统难于控制、性能很差。 所谓解耦控制系统,就是采用某种结构,寻找合适的控制规律来消除系统中各控制回路之间的相互耦合关系,使每一个输入只控制相应的一个输出,每一个输出又只受到一个控制的作用。解耦控制是一个既古老又极富生命力的话题,不确定性是工程实际中普遍存在的棘手现象。解耦控制是多变量系统控制的有效手段。 1.2主要分类 三种解耦理论分别是:基于Morgan问题的解耦控制,基于特征结构配置的解耦控制和基于H_∞的解耦控制理论。 在过去的几十年中,有两大系列的解耦方法占据了主导地位。其一是围绕Morgan问题的一系列状态空间方法,这种方法属于全解耦方法。这种基于精确对消的解耦方法,遇到被控对象的任何一点摄动,都会导致解耦性的破坏,这是上述方法的主要缺陷。其二是以Rosenbrock为代表的现代频域法,其设计目标是被控对象的对角优势化而非对角化,从而可以在很大程度上避免全解耦方法的缺陷,这是一种近似解耦方法。

1.3相关解法 选择适当的控制规律将一个多变量系统化为多个独立的单变量系统的控制问题。在解耦控制问题中,基本目标是设计一个控制装置,使构成的多变量控制系统的每个输出变量仅由一个输入变量完全控制,且不同的输出由不同的输入控制。在实现解耦以后,一个多输入多输出控制系统就解除了输入、输出变量间的交叉耦合,从而实现自治控制,即互不影响的控制。互不影响的控制方式,已经应用在发动机控制、锅炉调节等工业控制系统中。多变量系统的解耦控制问题,早在30年代末就已提出,但直到1969年才由E.G.吉尔伯特比较深入和系统地加以解决。 1.3.1完全解耦控制 对于输出和输入变量个数相同的系统,如果引入适当的控制规律,使控制系统的传递函数矩阵为非奇异对角矩阵,就称系统实现了完全解耦。使多变量系统实现完全解耦的控制器,既可采用状态反馈结合输入变换的形式,也可采用输出反馈结合补偿装置的形式。给定n维多输入多输出线性定常系统(A,B,C)(见线性系统理论),将输出矩阵C表示为 为C的第j个行向量,j=1,2,…,m,m为输出向量的维数。再规定一组结构指 数di(i=1,2,…,m):当B=0,AB=0…,AB=0时,取di=n-1;否则,di取为使CiAB≠0的最小正整数N,N=0,1,2,…,n-1。利用结构指数可组成解耦性判别矩阵: 已证明,系统可用状态反馈和输入变换,即通过引入控制规律u=-Kx+Lv,实现完全解耦的充分必要条件是矩阵E为非奇异。这里,u为输入向量,x为状

解耦控制系统仿真

.. . .. . . 综合性设计型实验报告 系别:化工机械系班级:10级自动化(2)班2013—2014学年第一学期

系统的相对增益矩阵为: 0.570.43 0.430.57 ?? Λ=?? ?? 。 由相对增益矩阵可以得知,控制系统输入、输出的配对选择是正确的;通道间存在较强的相互耦合,应对系统进行解耦分析。 系统的输入、输出结构如下图所示 (2)确定解耦调节器 根据解耦数学公式求解对角矩阵,即 ()() ()()()()()() ()()()() ()()()()?? ? ? ? ? - - - = ? ? ? ? ? ? s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G s G P P P P P P P P P P P P P P P P 22 11 21 11 22 12 22 11 21 12 22 11 22 21 12 11 1 22 222 128.752.8 3.313.6530.15 1 216.282.8 5.882544055128.752.8 3.3 S S S S S S S S S S ?? ++--- =?? ++++++ ??采用对角矩阵解耦后,系统的结构如下图所示: 解耦前后对象的simulink阶跃仿真框图及结果如下: 1)不存在耦合时的仿真框图和结果

图a 不存在耦合时的仿真框图(上)和结果(下)2)对象耦合Simulink仿真框图和结果

图b 系统耦合Simulink仿真框图(上)和结果(下) 对比图a和图b可知,本系统的耦合影响主要体现在幅值变化和响应速度上,但影响不显著。其实不进行解耦通过闭环控制仍有可能获得要求品质。 3)对角矩阵解耦后的仿真框图和结果

第十章_解耦

第10章 解耦控制系统 当再同一设备或装置上设置两套以上控制系统时,就要考虑系统间关联的问题。其关联程度可通过计算各通道相对增益大小来判断。如各通道相对增益都接近于1,则说明系统间关联较小;如相对增益于1差距较大,则说明系统间关联较为严重。对于系统间关联比较小的情况,可以采用控制器参数整定,将各系统工作频率拉开的办法,以削弱系统间的关联的影响。如果系统间关联非常严重,就需要考虑解耦的办法来加以解决。解耦的本质是设置一个计算装置,去抵消过程中的关联,以保证各个单回路控制系统能独立地工作。 为了便于分析,下面对2×2系统的关联及其解耦方法进行研究。具有关联影响的2×2系统的方块图如图10—1所示。 从图10—1可看出,控制器c 1的输出p 1(s )不仅通过传递函数G 11(s )影响Y 1,而且通过交叉通道传递函数G 21(s )影响Y 2。同样控制器c 2的输出p 2(s )不仅通过传递函数G 22(s )影响Y 2,而且通过交叉通道传递函数G 12(s )影响Y 1。 上述关系可用下述数学关系式进行表达: Y 1(s )=G 11(s )P 1(s )+G 12(s )P 2(s ) (10—1) Y 2(s )=G 21(s )P 1(s )+G 22(s )P 2(s ) (10—2) 将上述关系式以矩阵形式表达则成: ?? ? ?????????=??????)()()() ()()()()(212221121121s P s P s G s G s G s G s Y s Y (10—3) 或者表示成: Y (s )=G (s )P (s ) (10—4) 式中 Y (s )——输出向量; P (s )——控制向量; G (s )——对象传递矩阵: ?? ? ? ??=)() ()() ()(22211211s G s G s G s G s G (10—5) 所谓解耦控制,就是设计一个控制系统,使之能够消除系统之间的耦合关系, R 1 ) R 2 图10—1 2×2关联系统方块图

异步电机电流内模解耦控制系统分析与仿真_蒋卫宏

异步电机电流内模解耦控制系统分析与仿真 蒋卫宏 (连云港职业技术学院机电工程学院,连云港222006) 摘要:在同步速d-q坐标系下异步感应电机动态模型和解耦控制原理的基础上引入了内模控制方法,详细设计了基于转子磁链定向和内模控制的定子电流调节器。为了计及实际系统中异步感应电机磁场会随着电机负载(转矩)变化而呈不同程度的饱和以致电机参数的非线性,分析了电流内模控制器对这种非线性参数的鲁棒性,建立了整个异步感应电机矢量控制仿真系统,并分别对忽略磁路饱和和考虑磁路饱和两种情况下的系统进行了仿真分析。结果表明电流内模控制调节器在模型匹配和失配下均能提供良好的转矩动和静态解耦效果。 关键词:矢量变换;解耦控制;磁场定向;电流内模控制 中图分类号:T M341 文献标识码:A 文章编号:1003-8930(2007)05-0079-05 Analysis and Simulation of Decoupled Control System of Asynchronous Motor Using Internal Model Current Control JIANG Wei-hong (Department of Electro mechanic,Liany ungang Technical Co llege, Liany ungang222006,China) Abstract:T he internal model contr ol method is intro duced based on t he dy namic mo del of asynchr o no us mo tor in d-q refer ence fr ame.And the desig n of stat or cur rent co ntr o ller is pr oposed in deta il based on r oto r flux or iented v ector co ntro l.In or der t o take pa rameter nonliner ar ity into account which is caused by lo ad v ariatio n in real system,ro bustness of t he cur rent int ernal model co ntro ller to such nonlinea rit y is ana ly zed, and the vecto r cno nt ro l simulation system is established.Simula tio n result s under flux saturat ion co nsider ed and not co nsider ed show that the cur rent inter nal model co nt ro ller can pr ov ide go od per for mance w ith matched model and unmat ched model. Key words:vecto r t ransfor mation;decoupled co ntro l;field-or ientation;internal model cur rent contr ol 1 前言 交流异步电机是一个多变量、强耦合、非线性、时变系统,其瞬时转矩控制困难,难以获得如同直流电机一样的高动态调速性能。矢量变换控制技术[1,2],无论是转子磁场定向[2]、气隙磁场定向[3]还是定子磁链定向[4]、定子电压定向[5],其基本思想均是通过旋转坐标变换将定子电流分解为相互垂直的直流量励磁(无功)电流i d和转矩(有功)电流i q,且分别对两者进行独立的闭环调节以实现对交流异步电机的解耦控制。 现有的电流控制方法有电流滞环控制、定子坐标系下的PI调节和同步速坐标系下的PI调节控制。其中,同步速坐标系下的电流PI调节控制尤能取得良好的稳态性能,然而该方法由于坐标变换引入的d、q之间的耦合将直接解耦的动态效果,此外d、q轴PI控制器的参数调节传统上通过试验的方法调试得到。对此,文献[6,7]将工业过程控制中的内模控制(internal model contro l,IM C)引入到交流电机的电流控制中,并仅以永磁同步电机为例给出了电流环控制参数设计过程和相应的仿真和实验结果。但是对电流内模控制方法在电机由于负载变化引起的参数非线性条件下其解耦效果和鲁棒性能研究在现有的文献中鲜见分析。 第19卷第5期2007年10月 电力系统及其自动化学报 Pr oceedings o f the CSU-EPSA Vo l.19N o.5 O ct. 2007 收稿日期:2006-11-16;修回日期:2007-03-09

解耦控制

第三章复杂控制系统的仿真研究 3.4 解耦控制系统 3.4.1 系统分析及控制策略 随着工业的发展,生产规模越来越复杂,而且在一个过程中,需要控制的变量以及操作变量常不止一对,一个生产装置要求若干个控制回路来稳定各被控量。一个过程变量的变化必然会波及到其它过程变量的变化,这种现象称之为耦合。严重耦合的系统对于工程实际很不利,直接影响控制质量甚至导致系统无法运行。例如,对于一个精馏塔而言,其顶部产品成分和流量、回流、送料量、上下塔板温度等,都是一些彼此有关的量,那么在这种情况下,对某一个参数的控制不可避免地要考虑另一些有关联的参数或操作变量的影响,因此这些单个参数的控制系统之间就必定有通道互相交错,就涉及到多变量控制的问题,必须进行解耦控制。常规解耦方法有前馈补偿法、对角矩阵法和单位矩阵法[2]。 1、前馈补偿法 前馈补偿是自动控制里最早出现的一种克服干扰的方法,它同样适用于解耦控制系统,方框图如图3-12。 图3-12 前馈解耦控制方框图 其中D21和D12是补偿器,利用补偿器原理: K21g21(s) + D21K22g22(s) = 0 K12g12(s) + D12K11g11(s) = 0 - 33 -

第三章 复杂控制系统的仿真研究 - 34 - 解得补偿器的数学模型为: )()(2222212121s g K s g K D -= )()(1111121221s g K s g K D -= (3-9) 采用前馈解耦,解耦器形控制器环节比较简单。 2、对角矩阵法 对角矩阵法与单位矩阵法类似,不同之处在于其使系统传递函数矩阵成 为如下形式:?????????????=??????)()()(0 0)()()(21221121s M s M s G s G s Y s Y c c 同样可以求得解耦器为: ?????????????=??????-)(00)()()()()()()()()(221112221121122211211s G s G s G s G s G s G s D s D s D s D (3-10) 加入解耦器后,各回路保持前向通道特性,互相不再关联影响。于是针对单回路整定好的控制器可以不加变化地使用。但其缺点与单位矩阵法相似,即对于复杂对象往往无法实现。 3、单位矩阵法 单位矩阵法和对角矩阵法的原理相似,它们的方框图如图3-13所示。 单位矩阵法求解解耦器的数学模型将使系统传递矩阵成为: ?? ??????????=??????)()(1001)()(2121s M s M s Y s Y c c ,即: ????? ?=?????????????1001)()()()()()()()(2221121122211211s D s D s D s D s G s G s G s G 则解耦器为12221121122211211)()()()()()()()(-??????=??????s G s G s G s G s D s D s D s D (3-11)

多变量解耦控制方法研究

本科毕业设计论文 题目多变量解耦控制方法研究 专业名称 学生姓名 指导教师 毕业时间

毕业 一、题目 多变量解耦控制方法研究 二、指导思想和目的要求 通过毕业设计,使学生对所学自动控制原理、现代控制原理、控制系统仿真、电子技术等的基本理论和基本知识加深理解和应用;培养学生设计计算、数据处理、文件编辑、文字表达、文献查阅、计算机应用、工具书使用等基本事件能力以及外文资料的阅读和翻译技能;掌握常用的多变量解耦控制方法,培养创新意识,增强动手能力,为今后的工作打下一定的理论和实践基础。 要求认真复习有关基础理论和技术知识,认真对待每一个设计环节,全身心投入,认真查阅资料,仔细分析被控对象的工作原理、特性和控制要求,按计划完成毕业设计各阶段的任务,重视理论联系实际,写好毕业论文。 三、主要技术指标 设计系统满足以下要求: 每一个输出仅受相应的一个输入控制,每一个输入也仅能控制相应的一个输出。 四、进度和要求 1、搜集中、英文资料,完成相关英文文献的翻译工作,明确本课题的国内 外研究现状及研究意义;(第1、2周) 2、完成总体设计方案的论证并撰写开题报告;(第 3、4周) 3、分析控制系统解耦;(第5、6周) 4、应用前馈补偿法进行解耦;(第7、8周) 5、应用反馈补偿法进行解耦;(第9、10周) 6、利用MATLAB对控制系统进行仿真;(第11周) 7、整理资料撰写毕业论文; (1)初稿;(第12、13周)

(2)二稿;(第14周) 8、准备答辩和答辩。(第15周) 五、主要参考书及参考资料 [1]卢京潮.《自动控制原理》,西北工业大学出版社,2010.6 [2]胡寿松.《自动控制原理》,科学2008,6出版社,2008.6 [3]薛定宇.陈阳泉,《系统仿真技术与应用》,清华大学出版社,2004.4 [4]王正林.《MATLAB/Simulink与控制系统仿真》,电子工业出版社,2009.7 [5]刘豹.《现代控制理论》,机械工业出版社,2004.9 [6]古孝鸿.周立群.线性多变量系统领域法[M].上海:上海交通大学出版社,1990. [7]李帆.不确定系统的解耦控制与稳定裕度分析[D].西安:西北工业大学,2001. [8]柴天佑.多变量自适应解耦控制及应用[M].北京:科学出版社,2001. [9]张晓婕.多变量时变系统CARMA模型近似解耦法[J].中国计量学院学报,2004,15(4):284-286. 学生指导教师系主任

计算机解耦控制系统装置

第3章解耦控制系统 3.1 多变量解耦控制系统概述 3.2 解耦控制理论 3.3 解耦控制方法与设计 3.3.1解耦控制系统分类及解耦方法 3.3.2解耦控制方案 3.3.3解耦控制中的问题 3.4 解耦控制算法 3.5 几种先进解耦控制理论的介绍 3.1 多变量解耦控制系统概述 工业生产过程中的被控对象往往是多输入多输出系统(MIMO),如冶金工业中的钢坯加热炉的多段炉温,轧机中的厚度与板型;电力工业中发电机组的蒸汽压力与温度;石化工业中的精馏塔顶部产品流量和成分、底部产品流量和成分;国防工业中的飞行控制、风动稳定段总压和试验段马赫数等,都是需要控制而又是彼此关联的量。多变量系统的控制就是调整被控系统的多个输入作用使系统输出达到某些指定的目标。 在实际的工业过程中,常常遇到的多变量系统具有不确定性,也就是系统的某些参数位置或时变或受到未知的随机干扰。因此,现代工业过程本身就是是一个复杂的变化过程,在现代化的工业生产中,为了达到指定的生产要求,不断出现一些较复杂的设备或装置。然而,这些设备或装置的本身所要求的被控制参数往往较多,相应的,决定和影响这些参数的原因也不止一个。随着生产规模的不断扩大化,对控制的要求也越来越高。而且,在一个生产过程中,要求控制的变量以及操作往往不止一对,需要设置的控制回路也不止一个。因此,必须设置多个控制回路对该种设备进行控制。由于控制回路的增加,往往会在它们之间造成相互影响、相互干扰的作用。因此大多数工业过程控制是一个相互关联的多输入多输出过程。在这样的过程中,一个输入将影响到多个输出,而一个输出也将受到多个输入的影响。也即系统中一些控制回路的输入信号对其它回路的输出都有影响,而一些回路的输出又会受到其它输入的作用。如果将一对输入输出称为一个控制通道,则在各通道之间存在相互作用,我们把这种输入与输出间、通道与通道间复杂的相互影响与相互作用的因果关系称为过程变量或通道间的耦合。由此看来,要想一个输入只去控制一个输出几乎不可能,这就构成了“耦合”系统。由于耦合关系,往往使系统难于控制、性能很差。为了获得满意的控制效果,必须对多变量系统实现解耦控制。 解耦控制是多变量系统控制的有效手段。对于确定的的线性多变量系统可以采取对角矩阵法、状态变量法、相对增益分析法、特征曲线分析法等进行解耦控制,也就是通过解耦补偿器的设计,使解耦补偿器与被控对象组成的广义系统的传递函数矩阵是对角矩阵,从而把一个有耦合影响的多变量系统,化成多个无耦合的单变量系统。 多变量系统的解耦控制问题,早在30年代末就已提出,但直到1969年才由E.G.吉尔伯特比较深入和系统地加以解决。随后,现代控制理论进入迅猛发展阶段,为解耦控制的发展提供了极为强有力的理论支撑。于是,各种解耦理论如雨后春笋般涌现出来,自20世纪至今最为著名的有三大解耦理论,分别是:基于Morgan问题的解耦控制,基于特征结构配置的解耦控制和基于H_∞的解耦控制理论。 在过去的几十年中,有两大系列的解耦方法占据了主导地位。其一是围绕Morgan问题的一系列状态空间方法,这种方法属于全解耦方法。这种基于精确对消的解耦方法,遇到被控对象的任何一点摄动,都会导致解耦性的破坏,这是上述方法的主要缺陷。其二是以罗森布洛克(H.H.Rosenbrock)为代表的现代频域法,其设计目标是被控对象的对角优势化而非对角化,从而可以在很大程度上避免全解耦方法的缺陷,这是一种近似解耦方法。 目前国外研究多变量解耦系统的方法主要有两种:一是利用状态空间的反馈方法来实现解耦;而是利用现代频率法的所谓对角线优势,籍助于逆奈奎斯特判据来设计解耦控制系统。

多变量解耦控制方法

多变量解耦控制方法 随着被控系统越来越复杂,如不确定性、多干扰、非线性、滞后、非最小相位等,需要控制的变量往往不只一个,且多个变量之间相互关联,即耦合,传统的单变量控制系统设计方法显然无法满足要求,工程中常常引入多变量的解耦设计。其思想早在控制科学发展初期就已形成,其实质是通过对一个具有耦合的多输入多输出控制系统,配以适当的补偿器,将耦合程度限制在一定程度或解耦为多个独立的单输入单输出系统。其发展主要以Morgar于1964年提出的基于精确对消的全解耦状态空间法及Rosenbrock ????????于20世纪60年代提出的基于对角优势化的现代频率法为代表,但这两种方法都要求被控对象精确建模,在应用上受到一定的限制。 近年来,随着控制理论的发 多种解耦控制方法应运而生, 如特征结构配置解耦、展,自校正解耦、线性二次型解 耦、奇异摄动解耦、自适应解耦、智能解耦、模糊解耦等等。解耦控制一直是一个充满活力、富有挑战性的问题。本文针对解耦方法进行了概述,并分析了其应用现状。 一、解耦控制的现状及问题 传统解耦控制 传统解耦方法包括前置补偿法和现代频率法。前者包括矩阵求逆解耦、不变性解耦和逆向解耦;后者包括时域方法,其核心和基础是对角优势,奈氏(Nyquist)稳定判据是其理论基础,比较适合于线性定常MIM系统。主要包括: 1)逆奈氏阵列法 逆奈氏阵列法是对控制对象进行预先补偿,使传统函数的逆成为具有对角优势和正规性的矩阵。由于正规阵特征值对摄动不敏感,因而有较强的鲁棒性,其应用广泛。当然,当正规阵的上(下)三角元素明显大于下(上)三角元素时,可采用非平衡补偿法进行修正来提高鲁棒性,同时由于利用逆奈氏判据选择反馈增益时并不能保证闭环传递函数本身的对角优势,因此需反复调整补偿器的参数,使设计结果真正符合对角优势。 2)特征轨迹法 特征轨迹法是一种分析MIM系统性态的精确方法。当采用其中的增益平衡法和特征向量配正法对补偿器进行近似处理时,其精确性难以得到保证,因而工程应用有限。倘若采用并矢展开法,则可利用其对角分解中变换矩阵与频率无关的特性解决补偿器工程难以实现的问题,但要求被控对象能够并矢分解,往往此条件难以满足,因而工程中应用不多见。 3)序列回差法 该方法是将补偿器逐个串入回路构成反馈,易于编程实现。从解耦的角度看,类似三角解耦,但其补偿器的确定方法并不明确,不能实现完全解耦。 4)奇异值分解法 包括奇异值带域法和逆结构正则化法。主要是先绘制开环传递函数的奇异值图,采用主

多变量解耦控制方法

多变量解耦控制方法 多变量解耦控制方法 随着被控系统越来越复杂,如不确定性、多干扰、非线性、滞后、非最小相位 等,需要控制的变量往往不只一个,且多个变量之间相互关联,即耦合,传统的单变量控制系统设计方法显然无法满足要求,工程中常常引入多变量的解耦设计........ 。其思想早在控制科学发展初期就已形成,其实质是通过对一个具有耦合的多输入多输出控制系统,配以适当的补偿器,将耦合程度限制在一定程度或解耦为多个独立的单输入单输出系统。其发展主要以Morgan 于1964年提出的基于精确对消的全解耦状态空间法........及Rosenbrock 于20世纪60年代提出的基于对角优势化的现代频率法.....为代表,但这两种方法都要求被控对象精确建模,在应用上受到一定的限制。 近年来,随着控制理论的发展,多种解耦控制方法应运而生,如特征结构配置解 耦、自校正解耦、线性二次型解耦、奇异摄动解耦、自适应解耦、智能解耦、模糊解耦等等。解耦控制一直是一个充满活力、富有挑战性的问题。本文针对解耦方法进行了概述,并分析了其应用现状。 一、解耦控制的现状及问题 传统解耦控制 传统解耦方法包括前置补偿法和现代频率法。前者包括矩阵求逆解耦、不变性解 耦和逆向解耦;后者包括时域方法,其核心和基础是对角优势,奈氏(Nyquist )稳定判据是其理论基础,比较适合于线性定常MIMO 系统。主要包括: 1)逆奈氏阵列法 Company Document number :WTUT-WT88Y-W8BBGB-BWYTT-19998

逆奈氏阵列法是对控制对象进行预先补偿,使传统函数的逆成为具有对角优势和正规性的矩阵。由于正规阵特征值对摄动不敏感,因而有较强的鲁棒性,其应用广泛。当然,当正规阵的上(下)三角元素明显大于下(上)三角元素时,可采用非平衡补偿法进行修正来提高鲁棒性,同时由于利用逆奈氏判据选择反馈增益时并不能保证闭环传递函数本身的对角优势,因此需反复调整补偿器的参数,使设计结果真正符合对角优势。 2)特征轨迹法 特征轨迹法是一种分析MIMO 系统性态的精确方法。当采用其中的增益平衡法和特征向量配正法对补偿器进行近似处理时,其精确性难以得到保证,因而工程应用有限。倘若采用并矢展开法,则可利用其对角分解中变换矩阵与频率无关的特性解决补偿器工程难以实现的问题,但要求被控对象能够并矢分解,往往此条件难以满足,因而工程中应用不多见。 3)序列回差法 该方法是将补偿器逐个串入回路构成反馈,易于编程实现。从解耦的角度看,类似三角解耦,但其补偿器的确定方法并不明确,不能实现完全解耦。 4)奇异值分解法 包括奇异值带域法和逆结构正则化法。主要是先绘制开环传递函数的奇异值图,采用主增益、主相位分析法,或者广义奈氏定理来确定主带域与临界点的关系,从而判别系统的鲁棒稳定性,特别适于无法特征分解或并矢分解的系统。它是近年来普遍使用的方法之一。 此外,还有一些比较成功的频率方法,包括相对增益法、逆曲线法、特征曲线分析法。以上解耦方法中,补偿器严重依赖被控对象的精确建模,在现代的工业生产中不具有适应性,难以保证控制过程品质,甚至导致系统不稳定。即使采用这些方法进行部分解耦或者单向解耦,也不能实现完全解耦,而且辅助设计的工作量很大,不易实现动态解耦。 自适应解耦控制 也即将被控对象的解耦、控制和辨识结合起来,以此实现参数未知或时变系统的在线精确解耦控制。它的实质是..... 将耦合项视为可测干扰,采用自校正前馈控制的方法,对耦合进行动、静态补偿,对补偿器的参数进行寻优。它是智能解耦理论的基础,适于时变对象。对于最小相位系统,自适应解耦控制采用最小方差....控制律... 可以抑制交联,对于非最小相位系统,它可采用广义最小方差控制律,只要性能指标函数中含有耦合

相关文档