文档库 最新最全的文档下载
当前位置:文档库 › ASTM B545-1997(2004)e1 锡电解沉积层标准规范

ASTM B545-1997(2004)e1 锡电解沉积层标准规范

ASTM B545-1997(2004)e1  锡电解沉积层标准规范
ASTM B545-1997(2004)e1  锡电解沉积层标准规范

Designation:B 545–97e 1

Standard Speci?cation for

Electrodeposited Coatings of Tin 1

This standard is issued under the ?xed designation B 545;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon (e )indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.

e 1N OTE —Paragraphs 1.3and 4.1were editorially corrected in March 2001.

1.Scope

1.1This speci?cation covers the requirements for electrode-posited (electroplated)coatings of tin applied to metallic articles.Tin coatings are used to provide a low contact-resistance surface,to protect against corrosion (see 1.2),to facilitate soldering,to provide anti-galling properties,and to be a stopoff coating in the nitriding of high-strength steels.

1.2Some corrosion can be expected from tin coatings exposed outdoors.In normal indoor exposure,tin is protective on iron,steel,nickel,copper,and their alloys.Corrosion can be expected at discontinuities in the coating (such as pores)due to galvanic couples formed between the tin and the underlying metal through the discontinuities,especially in humid atmo-spheres.Porosity increases as the coating thickness decreases,so that minimum thicknesses must be speci?ed for each application.Parts coated with tin can be assembled safely in contact with iron and steel,tin-coated aluminum,yellow chromated zinc,cadmium,and solder coatings.(See X5.2for oxidation and corrosion properties.)

1.3This speci?cation applies to electroplated coatings of not less than 99%tin (except where deliberately alloyed for special purposes,as stated in X6.3)obtained from any of the available tin electroplating processes (see 4.3).

1.4This speci?cation does not apply to hot-dipped tin or other non-electrodeposited coating;it also does not apply to mill products.For mill products,refer to Speci?cations A 623or A 623M.

1.5The values stated in SI units are to be regarded as the standard.The values given in parentheses are for information only.

1.6This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.

2.Referenced Documents 2.1ASTM Standards:

A 623Speci?cation for Tin Mill Products,General Require-ments 2

A 623M Speci?cation for Tin Mill Products,General Re-quirements (Metric)2

B 32Speci?cation for Solder Metal 3

B 183Practice for Preparation of Low-Carbon Steel for Electroplating 4

B 242Practice for Preparation of High-Carbon Steel for Electroplating 4

B 246Speci?cation for Tinned Hard-Drawn and Medium-Hard-Drawn Copper Wire for Electrical Purposes 5

B 281Practice for Preparation of Copper and Copper-Base Alloys for Electroplating and Conversion Coatings 4

B 320Practice for Preparation of Iron Castings for Electro-plating 4

B 322Practice for Cleaning Metals Prior to Electroplating 4B 374Terminology Relating to Electroplating 4

B 487Test Method for Measurement of Metal and Oxide Coating Thicknesses by Microscopical Examination of a Cross Section 4

B 499Test Method for Measurement of Coating Thick-nesses by the Magnetic Method:Nonmagnetic Coatings on Magnetic Basis Metals 4

B 504Test Method for Measurement of Thickness of Me-tallic Coatings by the Coulometric Method 4

B 507Practice for Design of Articles to be Electroplated on Racks 4

B 542Terminology Relating to Electrical Contacts and Their Use 6

B 558Practice for Preparation of Nickel Alloys for Electro-plating 4

B 567Test Method for Measurement of Coating Thickness by the Beta Backscatter Method 4

1This speci?cation is under the jurisdiction of ASTM Committee B08on Metallic and Inorganic Coatingsand is the direct responsibility of Subcommittee B08.08.04on Light Metals.

Current edition approved Oct.10,1997.Published February 1998.Originally published as B 545–https://www.wendangku.net/doc/6816053950.html,st previous edition B 545–92.

2Annual Book of ASTM Standards ,V ol 01.06.3

Annual Book of ASTM Standards ,V ol 02.04.4

Annual Book of ASTM Standards ,V ol 02.05.5

Annual Book of ASTM Standards ,V ol 02.03.6

Annual Book of ASTM Standards ,V ol 03.04.

1

Copyright ?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.

NOTICE:This standard has either been superseded and replaced by a new version or withdrawn.

Contact ASTM International (https://www.wendangku.net/doc/6816053950.html,)for the latest information

B568Test Method for Measurement of Coating Thickness by X-Ray Spectrometry4

B571Test Methods for Adhesion of Metallic Coatings4

B602Test Method for Attribute Sampling of Metallic and Inorganic Coatings4

B659Guide for Measuring Thickness of Metallic and Inorganic Coatings4

B678Test Method for Solderability of Metallic-Coated Products4

B697Guide for Selection of Sampling Plans for Inspection of Electrodeposited Metallic and Inorganic Coatings4

B762Method of Variables Sampling of Metallic and Inor-ganic Coatings4

B765Guide to the Selection of Porosity Tests for Elec-trodeposits and Related Metallic Coatings4

B809Test Method for Porosity in Metallic Coatings by Humid Sulfur Vapor(“Flowers-of-Sulfur”)4

B849Speci?cation for Pre-Treatments of Iron or Steel for Reducing the Risk of Hydrogen Embrittlement4

B850Speci?cation for Post-Coating Treatments of Iron or Steel for Reducing the Risk of Hydrogen Embrittlement4 B851Speci?cation for Automated Controlled Shot Peening of Metallic Articles Prior to Nickel,Autocatalytic Nickel, or Chromium Plating,or as a Final Finish4

D3951Practice for Commercial Packaging7

3.Terminology

3.1De?nitions—Many of the terms used in this speci?ca-tion are de?ned in Terminology B374or B542.

3.1.1rack-plating—an electrodeposition process in which articles to be coated are mounted on racks or other?xtures during the process.

3.1.2signi?cant surface—that portion of the surface of a coated article at which the coating is required to meet all of the requirements of the coating speci?cation for that article; signi?cant surfaces are usually those that are essential to the serviceability or function of the article,or that can be a source of corrosion products or tarnish?lms that interfere with the function or desirable appearance of the article;signi?cant surfaces shall be indicated on the drawings of the parts or by the provision of suitably marked samples.

3.1.3undercoating(see3.1.4)—also called an underplate in the electronics industry.

3.1.4underplating—application of a metallic coating layer between the basis metal or substrate and the topmost metallic coating or coatings.The thickness of such an undercoating is usually greater than0.8μm(30μin.).This is in contrast to strikes or?ashes,whose thicknesses are generally much smaller.

4.Classi?cation

4.1General—Orders for articles to be plated in accordance with this speci?cation shall specify the service class(4.2)(and underplating,if required),indicating the severity of service required for the coating.Other coatings variations,such as surface appearance type(4.3)or alloy composition(Appendix X6),are optional.

4.2Service Class:

Class Minimum Thickness Typical Applications

A 2.5μm(100μin.)Mild service conditions,particularly where the

signi?cant surface is shielded from the atmo-

sphere(as in electronic connector housings).To

provide corrosion and tarnish resistance where

greater thicknesses may be detrimental to the

mechanical operation of the product(for ex-

ample,small electrical spring contacts and re-

lays).Class A is often used for tin coatings that

are not to be soldered,but must function as

low-resistance electrical contact surfaces.

B5μm(200μin.)Mild service conditions with less severe require-

ments than Class C(below).Applications are

as follows:precoating on solderable basis met-

als to facilitate the soldering of electrical com-

ponents;as a surface preparation for protective

painting;for antigalling purposes;and as a sto-

poff in nitriding.Also found on baking pans after

re?ow.

C8μm(320μin.),

(10μm(400μin.)

for steel substrates)

Moderate exposure conditions,usually indoors,

but more severe than Class B.Examples are

electrical hardware(such as cases for relays

and coils,transformer cans,screened cages,

chassis,frames,and?ttings)and for retention

of the solderability of solderable articles during

storage.

D15μm(600μin.)

(20μm(800μin.)

for steel substrates)

Severe service,including exposure to damp-

ness and mild corrosion from moderate indus-

trial environments.Examples are?ttings for gas

meters,automotive accessories(such as air

cleaners and oil?lters),and in some electronic

applications.

E30μm(0.0012in.)Very severe service conditions,including el-

evated temperatures,where underlying metal

diffusion and intermetallic formation processes

are accelerated.Thicknesses of30to125μm

(0.0012to0.005in.)may be required if the

coating is subjected to abrasion or is exposed

to slowly corrosive liquids or corrosive atmo-

spheres or gases.Thicker coatings are used for

water containers,threaded steel couplings of oil

drilling strings,and seacoast atmospheres.

Coatings subject to mild etchants are included.

F 1.5μm(60μin.)Similar to Class A,but for shorter-term contact

applications and short shelf-life requirements,

subject to purchaser approval.

4.3Surface Appearance Type(Electroplating Process): 4.3.1Matte Tin Electrodeposits—Coatings with a matte appearance are obtained from tin plating baths(stannate, sulfate,methylsulfonate,and?uoborate)used without the addition of any brightening agents.However,all matte baths (except for stannate baths)do require the addition of grain-re?ners,and often of other additives in order to produce the desired matte?nish.

4.3.2Bright Tin Electrodeposits—Bright coatings are ob-tained when proprietary brightening agents are used in speci?c bright tin plating baths.

4.3.3Flow-Brightened Electrodeposits—Flow-brightened coatings are obtained by heating the matte coating above the melting point of tin for a few seconds,followed by quenching; palm oil and hydrogenated oils and fats are used as heat-transfer medium at a temperature of26068°C(500614°F), but other heating methods also are in use,such as hot air.The maximum thickness for?ow-brightening is,in most cases,

7Annual Book of ASTM Standards,V ol

15.09.

approximately 8μm (300μin.);thicker coatings tend to dewet.The shape of the part is also a factor;?at surfaces dewet more readily than wires or rounded shapes.

N OTE 1—Terms commonly used in soldering,such as dewet ,are described in soldering textbooks (1)8or reviews of solderability testing (2).Some examples are given in Appendix X6.

5.Ordering Information

5.1In order to make the application of this speci?cation complete,the purchaser must supply the following information to the seller in the purchase order and drawings:

5.1.1Title,ASTM designation number,and year of issue of this speci?cation;

5.1.2Deposit by classi?cation (4.1),including thickness or service class (4.2);

5.1.3Composition and metallurgical condition of the sub-strate to be coated (

6.1);

5.1.4Additional underplating,if required (

6.8);

5.1.5Surface-appearance type (for example,matte,?ow-brightened,or bright),if required (4.3and

6.2);5.1.6Location of signi?cant surfaces (3.1.2);

5.1.7Hydrogen embrittlement relief,if required (Supple-mentary Requirement S2);and

5.1.8Any other items needing agreement (for example,

6.5.2and 8.5).

6.Coating Requirements

6.1Substrate —The metal substrate shall be subjected to such surface preparation,cleaning,and electroplating proce-dures as are necessary to yield deposits with the desired quality.

N OTE 2—Careful preparation of metal surfaces is necessary in order to assure good adhesion and quality.For suitable methods,see Practices B 183,B 242,B 281,B 320,B 322,and B 558.Also see 6.6.

6.2Electroplating shall be applied after all basis metal heat treatments and mechanical operations have been completed.6.3Appearance —Tin coatings shall have the characteristic appearance,including surface texture (4.3),for the process used.The appearance shall be uniform throughout,insofar as the basis metal will permit.They shall be adherent and visually free of blisters,pits,peeled areas,cracks,nodules,and unplated areas.They shall not be stained or discolored.Flow-brightened coatings shall be free of dewetted areas and beads.All surfaces shall be substantially free of grease or oil used in the ?ow-brightening process.

6.4All tin-coated articles shall be clean and undamaged.When necessary,preliminary samples showing the ?nish shall be supplied to and approved by the purchaser.Where a contact mark is inevitable,its location shall be subject to agreement between the supplier and the purchaser.

6.5Thickness of Coatings —Tin coatings on articles shall conform to the thickness requirements speci?ed in 4.2as to the minimum thickness on signi?cant surfaces.

6.5.1Local Thickness —The thickness values speci?ed in 4.2are the minimum local thicknesses measured by one or

more of the methods given in Practice B 659at any number of desired spots on the signi?cant surface.

6.5.2Mean Thickness —When speci?ed by the purchaser,instead of being a local minimum requirement,the thickness requirement can be a minimum (arithmetic)mean thickness.

N OTE 3—Speci?cation of the coating thickness in terms of the mean is normally made when the coated articles are small and relatively simple,such as connector pins and terminals.

N OTE 4—Thickness of electrodeposited coatings varies from point to point on the surfaces of a product (see Practice B 507).The thickness is less in interior corners and holes.Such surfaces are normally exempt from the thickness requirement.If the full thickness is required on these surfaces,the electroplater will have to use special techniques that probably will increase the cost of the process.

N OTE 5—When articles are plated by mass plating techniques (such as barrel plating),such measurement methods as “strip and weigh”or “weigh before and after plating”may be used to determine the mean thickness.

6.6Adhesion —Adhesion of the coating shall be tested by one of the methods given in Appendix X2.The coating should adhere to the basis metal when subjected to the agreed test;?aking or blistering of the coating is to be taken as evidence of unsatisfactory adhesion.

6.7Integrity of the Coating :

6.7.1Gross Defects/Mechanical Damage —Coatings shall be free of visible mechanical damage and similar gross defects when viewed at up to 43magni?cation.For some applications,this requirement may be relaxed to allow for a small number of such defects (per unit area),especially if they are outside of or on the periphery of signi?cant surfaces (also see 6.7.2).

6.7.2Porosity —Almost all as-plated electrodeposits contain some porosity.The amount of porosity in the coating that may be tolerable depends on the severity of the environment that the article is likely to encounter during service or storage.If the pores are few in number,or away from signi?cant surfaces,their presence can often be tolerated.Such acceptance (or pass-fail)criteria,if required,should be part of the product speci?cation for the particular article or coating requiring the porosity test.See 8.5for porosity testing.6.8Underplating :

6.8.1For tin coatings in Class A and Class F (4.2)that will not be exposed to solder temperatures (especially those that must function as electrically conductive surfaces),a nickel underplate or undercoating of at least 1.3μm (50μin.)shall be applied before tin plating.

6.8.2To prevent zinc migration and impairment of solder-ability during service or storage,substrates of brass or other copper alloys containing more than 5%zinc must have a copper undercoating of at least 2.5μm (100μin.),or a nickel undercoating of at least 1.3μm (50μin.),prior to tin plating.A thicker coating of nickel may be required in some situations for additional retardation.

6.9Hydrogen Embrittlement Relief —High-tensile strength steels and severely cold-worked steels are susceptible to embrittlement by hydrogen in both cleaning and electroplating operations.See Supplementary Requirements S1and S2for details.

8

The boldface numbers in parentheses refer to the list of references at the end of this

speci?cation.

7.Sampling

7.1The sampling plan used for inspection of a quantity of the coated articles shall be as agreed upon between the purchaser and the supplier.

N OTE6—The procedure for sampling is accomplished by selecting a relatively small number of the?nished articles at random.These articles (the inspection lots)are inspected and classi?ed as complying or not complying with the requirements of the speci?cation.The size of the sample and the criteria of compliance are determined by the application of statistics.The procedure is known as sampling inspection.Three stan-dards,Test Method B602,Guide B697,and Method B762,contain sampling plans that are designed for the sampling inspection of coatings. Test Method B602contains four sampling plans,three for use with tests that are non-destructive and one for use when they are destructive.The buyer and seller may agree on the plan or plans to be used.If they do not, Test Method B602identi?es the plan to be used.

Guide B697provides a large number of plans and also provides guidance in the selection of a plan.When Guide B697is speci?ed,the buyer and seller must agree on the plan to be used.

Method B762can be used only for coating requirements that have a numerical limit,such as coating thickness.The test must yield a numerical value,and certain statistical requirements must be met.Guide B762 contains several plans and also provides instructions for calculating plans to meet special needs.The buyer and seller may agree on the plan or plans to be used.If they do not,Guide B762identi?es the plan to be used.

7.2An inspection lot shall be de?ned as a collection of coated articles that meet the following requirements:they are of the same kind;have been produced to the same speci?ca-tions;have been coated by a single supplier at one time,or at approximately the same time,under essentially identical con-ditions;and are submitted for acceptance or rejection as a group.

7.3Special Test Specimens—It may be preferable to use special test specimens to represent product in process control or in acceptance inspection when,for example,destructive tests are used and it is desirable not to destroy product or if the test specimen is better adapted to the test.The use of special test specimens,their number,the material from which they are made,their size and shape,and the conditions of their coating shall be as agreed upon by the purchaser and the seller.

8.Test Methods

8.1Deposit Purity—Atomic absorption or energy disper-sion spectrophotometry,or any other methods with a demon-strated uncertainty of less than10%of the component mea-sured,may be used to determine impurities.Initial scanning should be conducted for all elements in order to detect any unknown or unexpected impurities.Determine deposit purity by subtracting the total impurities from100%.

N OTE7—Deposit purity is best determined on samples of the actual product(see Section7).If special test specimens are used(7.3),care must be taken to arrange the specimens so as to electroplate them under the same conditions as typical production pieces.

8.2Thickness:

8.2.1Standard Thickness—The coating thickness shall be measured at locations on signi?cant surfaces by one of the following test methods:Test Methods B487,B499(magnetic substrates only),B504,B567,and B568.Practice B659may be consulted to determine the most appropriate test method.

8.2.1.1When Methods B504and B568are used with tin platings that have been alloyed with more than0.5%of lead, bismuth,or antimony to reduce whiskering(see X6.3.2.5),the standard shall have the same composition as the coating.When Test Method B567is used to measure these types of coatings, the measuring instrument shall be calibrated with thickness standards that have the same substrate and same composition of coating as the product.

8.2.2Mean Thickness—If the entire surface of the article is

a signi?cant surface,the mean thickness can also be deter-mined by the method described in Appendix X1.Also see Note 5.

8.3Adhesion—Adhesion of the coating shall be tested by one of the recommended methods of Test Methods B571(see Appendix X2).

8.4Solderability—For coatings that must be solderable,the method by which solderability is tested shall be speci?ed. Three test methods are described in Appendix X3,while a simple dip test is given in Test Method B678.The purchaser shall specify whether the tested articles are to receive an arti?cial aging treatment,such as that given in Test Method B678,so as to demonstrate whether the articles may be expected to retain their solderability during long storage periods.

8.5Porosity and Gross Defects Testing:

8.5.1Coatings on articles of steel(or iron)having a local thickness of10μ(0.4mil)or greater should be subjected to the test given in Appendix X5.

8.5.2For coatings on articles made from copper or copper alloy as the basis metal,the following tests should be used: 8.5.2.1To determine mechanical damage or gross defects only,subject samples to the sodium polysul?de immersion test outlined in Speci?cation B246.Black spots or lines are evidence of mechanical damage or gross defects.

8.5.2.2To determine all porosity that penetrates down to the copper substrate,especially for coatings in Service Class A,the humid sulfur vapor test(Test Method B809)shall be used. Blackening at pores will be evidence of porosity.

9.Rejection and Rehearing

9.1Articles that fail to conform to the requirements of this speci?cation may be rejected.Rejection shall be reported to the seller promptly and in writing.In cases of rejection,the seller may make a claim for a rehearing.Product that shows coating imperfections in subsequent manufacturing operations may be rejected.

10.Keywords

10.1electrodeposited tin;electroplated tin;tin;tin

coatings

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when speci?ed by the purchaser in the contract or order.

S1.Pretreatment of Iron and Steel for Reducing the Risk of Hydrogen Embrittlement

S1.1Parts for critical applications that are made of steels with ultimate tensile strengths of1000MPa,hardness of31 HRC or greater,that have been machined,ground,cold formed,or cold straightened subsequent to heat treatment,shall require stress relief treatment when speci?ed by the purchaser, the tensile strength to be supplied by the purchaser.Speci?ca-tions B849(heat treatment)and B851(shot peening)may be consulted for a list of pretreatments that are used widely.

S2.Post Coating Treatments of Iron and Steel for Reducing the Risk of Hydrogen Embrittlement

S2.1Parts for critical applications that are made of steels with ultimate tensile strengths of1000MPa,hardness of31 HRC or greater,as well as surface hardened parts,shall require post coating hydrogen embrittlement relief baking when speci-?ed by the purchaser,the tensile strength to be supplied by the purchaser.Speci?cations B850may be consulted for a list of post treatments that are used widely.

S3.Solderability Requirements

S3.1If the coating must be solderable,refer to8.4for test methods for determining solderability.

https://www.wendangku.net/doc/6816053950.html,ernment Packaging Requirements

S4.1Parts plated for the https://www.wendangku.net/doc/6816053950.html,ernment and military, including subcontractors,shall be packaged according to Prac-tice D3951.

N OTE S1.1—Caution:Some contemporary packaging materials may emit fumes that are deleterious to the surface of the coating.

APPENDIXES

(Nonmandatory Information)

X1.DETERMINATION OF MEAN COATING THICKNESS OF SMALL ARTICLES BY THE WEIGHT LOSS METHOD

X1.1Select at random from the production lot the number of coated articles speci?ed by the purchaser.The number of articles shall be sufficient to have a total weight of coating of at least0.2g.Calculate the coated area in mm2to an accuracy of at least1part in100.

X1.2Clean the articles by,for example,washing in a solvent or water-detergent followed by a clean water rinse.Dry and weigh with an accuracy of at least1part in1000.

X1.3Immerse the articles in a solution of20g antimony trioxide in1L of concentrated hydrochloric acid(sp gr1.19) and allow them to remain for1min after gas evolution stops. Remove the articles,rinse them in clean water,wipe and brush as necessary to remove smut(antimony residues),and dry. Reweigh.

X1.4Calculate the mean thickness inμm by dividing the loss in weight of the articles by the area and multiplying the quotient by1.373105.

X2.ADHESION TESTS

X2.1Burnishing Test—Rub an area of not more than630 mm2(1in.2)of the electroplated surface,selected at the discretion of the inspector,rapidly and?rmly for15s with a smooth metal implement.A suitable burnishing implement is a copper or steel disk used edgewise and broadside.Maintain pressure sufficient to burnish the?lm at every stroke,but not so great as to cut the deposit.Poor adhesion will be shown by the appearance of a loose blister that grows as rubbing is contin-ued.If the quality of the deposit is also poor,the blister may crack,and the plating will peel away from the basis metal.

X2.2Quenching Test—Heat the electroplated article in an oven for a sufficient time to reach150610°C(300620°F), and then quench in water at room temperature.Poor adhesion will be shown if the coating blisters,cracks,or peels.

X2.3Re?ow Test—Parts may be evaluated by re?owing in a bath of palm oil at a temperature of235to260°C(455to 500°F)until the plating melts.A bright coating completely covering the signi?cant surfaces will indicate acceptable qual-

ity.

X2.4Bend Test—A sample shall be bent,with the coated surface away,over a mandrel until its two ends are parallel. The mandrel shall have a diameter equal to the thickness of the sample.Examination of43magni?cation should show no evidence of peeling or cracking.Some tin coatings,especially of bright tin,may show?ne cracks during this test,but if these do not separate from the surface,it should not be considered an adhesional failure.

X3.SOLDERABILITY TESTS

X3.1General:

X3.1.1Methods for testing the solderability of tin-coated articles are based on measurement of the extent of wetting by molten solder or determination of the minimum time required to produce full or perfect wetting by the solder(1,2).

X3.1.2The extent of wetting can be observed by simple immersion in solder under controlled conditions,or by per-forming dip tests with automated equipment.Visual examina-tion,time of wetting,measurement of area of spread,and calculation of spread values are used to assess solderability(1, 2).

X3.1.3The minimum wetting time is determined by carry-ing a specimen in a?xture through a standing wave of solder at a controlled speed and measuring the time of immersion required to achieve complete wetting.

X3.2Simple Dip Test—The test in Test Method B678is recommended.

X3.3Wetting Balance(1,3,4):

X3.3.1The wetting balance provides the most objective, operator-independent,and reproducible measure of the solder-ability of a surface of currently known methods.Numerous models are available under different names such as the surface-tension balance,and various trade names,such as“menisco-graph,”but all share certain common features.

X3.3.2The base structure holds a heated solder bath that can be raised or lowered at a speci?c rate.The test piece is held in a clamp that extends from an arm directly over the solder bath.The clamp is attached to a load cell and to a transducer, which transmits a signal to a converter that adjusts the signal to a useful mode(analog or digital)for the recording instrument, computer,or strip-chart recorder.

X3.3.3The parameters of the test are set on the instrument, according to the manufacturer’s instructions,to reveal the most information concerning the solderability of the test piece.

X3.3.4The bath temperature must be held within precise limits at a suitable temperature with respect to the solder alloy. The immersion rate,which may vary from1to25mm/s,must be constant from sample to sample.

X3.3.5The immersed surface area of the standards and samples should be similar,as well as the depth of immersion and the type and weight of?ux on the test piece.

X3.3.6The opposing forces of buoyancy and wetting, versus time,which is transmitted from the transducer to the strip-chart recorder or the computer during the test,is plotted. X3.3.7The most signi?cant information obtained from the graph are the wetting time,rate of wetting,total wetting force, and whether the wetting force remains constant over the time of the test.

X3.3.8Test samples are to be run against a series of standards that have been run to establish averages and to de?ne precision windows.The goal is to de?ne minimum acceptable solderability in terms of a maximum wetting time,minimum wetting rate,minimum force,and stable wetting at a set dwell time.

X4.SOME DEFINITIONS OF WETTING TERMINOLOGY

X4.1dewetting—a condition that results when molten metal has coated a surface and then receded,leaving irregularly shaped mounds of metal separated by areas covered with a thin metal?lm;basis metal is not exposed.

X4.2nonwetting—a condition whereby a surface has con-tacted molten metal,but the metal has not adhered to all of the surfaces;basis metal remains exposed.

X4.3wetting—the formation of a relatively uniform, smooth,unbroken,and adherent?lm of the metal coating to a basis metal.

X5.SULFUR DIOXIDE POROSITY TEST(STEEL SUBSTRATES)

X5.1Principle—Exposure to a moist atmosphere contain-ing a low concentration of sulfur dioxide causes spots of substrate corrosion product to appear at discontinuities in the coating.If the sulfur dioxide concentration in the atmosphere is too high,the corrosion product formed is too?uid to permit easy observation of pore sites.The method provided,which depends on the production of sulfur dioxide from the reaction between sodium thiosulfate and sulfuric acid within the test chamber,ensures suitable conditions for the development of immobile corrosion products at discontinuities.

X5.2

Apparatus:

X5.2.1The test cabinet shall be a chamber?tted with a lid or door,and should preferably be made of glass or a transparent plastic material.The size should be sufficient to accommodate the test specimens with their lowest part at least75mm(3in.) above the surface of a solution occupying at least1/30of the total capacity.

X5.2.2The closure of the vessel and other joints should be gas tight but need not be capable of resisting pressure.A glass plate makes an adequate joint on the lubricated ground edges of a glass tank.

X5.2.3The cabinet should be of uniform cross section,and the solution placed in it should cover the base completely.

X5.2.4The specimens under testing should be supported by a glass or plastic stand inside the cabinet.The signi?cant surfaces may be inclined at any angle,but it may be desirable to choose the same method of support for similar articles.

X5.3Corrosive Medium—The corrosive medium should be moist air containing sulfur dioxide prepared by adding1part by volume of0.1N sulfuric acid to4parts of a solution containing10g of sodium thiosulfate crystals in1L of water. X5.4Temperature of Test—Conduct the test at2065°C (6069°F),taking precautions against rapid temperature ?uctuation in the course of the test.

X5.5Procedure:

X5.5.1Before the test,clean the specimens with an organic solvent(for example,trichloroethane),wipe with a lint-free cloth,and allow to attain room temperature.Introduce into the test cabinet a volume of aqueous sodium thiosulfate solution equal to1/50of the volume of the cabinet.Suspend the test specimens above this solution on nonmetallic supports,with the surfaces of the specimens not less than25mm(1in.)apart, not less than25mm(1in.)from any wall of the cabinet,and not less than75mm(3in.)from the surface of the sodium thiosulfate solution.Add to the sodium thiosulfate solution a volume of0.1N sulfuric acid equal to a quarter of the volume of the thiosulfate solution and seal the cabinet,keeping it shielded from draughts or other causes of rapid temperature fall.Addition of the sulfuric acid may be made before the test specimens are placed in position,provided that the cabinet is closed within5min of addition of the acid.

X5.5.2Leave the specimens in the closed vessel for24h. After removing the specimens from the corrosive atmosphere, allow them to dry without wiping or cleaning in any way,and then examine them using the options outlined in Guide B765, Sections6and7.

X6.DESIGN CONSIDERATIONS

X6.1General—Properties of electrodeposited tin coatings are affected to various degrees by their service and storage environments(4.2).These should be taken into account when designing for special applications.

X6.2Temperature and Other Environmental Effects:

X6.2.1Diffusion and Intermetallic Formation—Interdiffusion between tin coatings and copper or copper alloys does occur.The diffusion is slow at room temperature and rapid at elevated temperatures.Evidence of diffusion is the formation of a layer of copper-tin intermetallic at the interface and diffusion of zinc to the surface if the substrate is brass. Diffusion may lead to darkening of a thin coating and impair-ment of its solderability characteristics,particularly after long storage.With such thin coatings,a diffusion barrier of nickel may be advantageous,although users should also consider the use of thicker coatings when solderability must be maintained over a period of years(6.8).An underplating of nickel or copper must be used as a diffusion barrier on brass.

X6.2.2Tin Phase Transformation—Tin coatings,like pure metal,may be subject to allotropic transformation at low temperatures(also called tin pest or disease).Where electro-plated tin coatings are subject to long-term storage or use at very low temperatures,it may be advisable,when speci?ed by the purchaser,to codeposit small amounts(<1%)of bismuth, antimony,or lead with the tin.These alloying additions, particularly the?rst,have been shown to inhibit the transfor-mation.

X6.2.3Tin Oxidation(5,6)—In clean,dry atmospheres at room temperature,tin is covered quickly with a very thin,but continuous,air-formed oxide?lm.Although the tin surface will remain bright for long periods in the absence of moisture,this invisible surface oxide layer is not truly protective.It gradually thickens,and it may eventually produce a dull gray appearance. X6.2.3.1In the presence of water vapor(humidity),the oxidation rate tends to increase greatly.The oxide?lm has been found to increase(as determined by weight gain measure-ments)almost linearly with time,with the formation of a gray ?lm,or even of a slight yellow discoloration.

X6.2.3.2Tin coatings begin to oxidize rapidly in air at 150°C and melt at232°C.

X6.2.3.3When exposed out of doors,the tin surface may acquire a very thin accumulation of light gray or white corrosion product.The original oxide?lm,in comparatively short or dry exposures,is primarily in the gray-to-black stannous oxide form,which is then hydrated by atmospheric moisture to the white hydroxyl form.Drying can reverse the reaction.Fortunately,these oxidation products are not hygro-scopic,so that(according to Britton(5))“tin is not attacked below100%relative humidity(RH),unless the dust falling on the surface is hygroscopic.”

X6.2.4Oxides and Solderability—Tin oxide?lms are not as easily reduced as copper oxide.However,the non-hydrated ?lms are not an impediment to soldering,because as soon as a break is made in the oxide,the molten solder can interact with the layer of free tin below the oxide?lm.The

mechanical

forces of the molten solder and tin?owing together break up the oxide layer.There needs to be sufficient free tin below the oxide layer in order for this to occur,because the intermetallic compounds formed from tin and the basis metal will not react in this way(7).

X6.3Whisker Growth:

X6.3.1Sometimes metal?laments,usually called whiskers, grow spontaneously from the surface of electrodeposited metals(for example,tin,cadmium,and zinc)within a period after plating that may vary from weeks or months to years. These whiskers frequently are approximately2.5μm(0.0001 in.)in diameter,but they can grow to10mm(3?8in.)or longer (25-mm whiskers have been recorded)and can have a current carrying capacity of as much as10mA.In many applications for tin coatings,whisker growth has not been a problem,but there are critical applications(X6.3.2)in which it may create a problem.

X6.3.2Whiskers are particularly undesirable when associ-ated with miniaturized low-voltage apparatus where narrow spacing exists between adjacent components that must remain electrically isolated to avoid short circuits.In this specialized application,the occurrence of whisker growth is sufficiently frequent to be an obstacle to the use of tin.Therefore,in designing for low-voltage electronic equipment where compo-nents are closely spaced,tin coatings should either not be used, or whisker formation should be inhibited or prevented by the application of prevention methods.Practically all of the fol-lowing methods take into account the chief cause of tin whiskering,which is the presence of stresses in the tin coating (8):

X6.3.2.1Flow brightening(1)or annealing the tin plating to reduce the internal stresses.

X6.3.2.2Plating the tin to sufficient thickness to minimize stress-producing epitaxial effects.

X6.3.2.3Use of compatible underplatings,especially nickel.

X6.3.2.4Avoiding high compressive loads and stresses while making joints or connections.

X6.3.2.5Codepositing lead,bismuth,antimony,copper,or nickel with the tin reduces the risk of whisker growth(9).A tin-lead plating that is used extensively for the prevention of whiskering has a nominal lead composition of7%(with allowed variations of65%)by mass,the balance being tin. However,some of these platings cannot be used in contact with food.

REFERENCES

(1)For example,Wassink,R.J.,Klein,Soldering in Electronics,Electro-

chemical Publications,Ltd.,Ayr,Scotland,1989.

(2)Long,J.B.,“A Critical Review of Solderability Testing,”in Properties

of Electrodeposits,Their Measurement and Signi?cance,Sard,R., Leidheiser,H.,and Ogburn,F.,Eds.,The Electrochemical Society, 1975,Chapter7.

(3)Wooldridge,J.R.,“Lessons Learned During a Year of Production

Solderability Testing with a Wetting Balance,”in12th Annual Elec-tronics Manufacturing Seminar Proceedings,Naval Weapons Center, China Lake,CA1988.

(4)Yoshida,H.,Warwick,M.E.,Hawkins,S.P.,“The Assessment of the

Solderability of Surface Mounted Devices Using the Wetting Bal-

ance,”Brazing&Soldering,No.12,Spring1987.

(5)Britton,S.C.,Corrosion,L.L.Shreir,Ed.,John Wiley and Sons,New

York,1963.

(6)Leidheiser,H.,The Corrosion of Copper,Tin,and Their Alloys,John

Wiley and Sons,New York,1971.

(7)Wassink,R.J.,Klein,Soldering in Electronics,Electrochemical

Publications Ltd.,Ayr,Scotland,1984,pp.144and149.

(8)Diehl,R.F.,and Cifaldi,N.A.,“Elimination of Tin Whisker Growth

on Interconnections,”in Proceedings8th Annual Connector Sympo-sium,1975,p.328;also references cited therein.

(9)Arnold,S.M.,“Repressing Growth of Tin Whiskers,”Plating,

PLATA,V ol53,January1966,p.96.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this https://www.wendangku.net/doc/6816053950.html,ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@https://www.wendangku.net/doc/6816053950.html,(e-mail);or through the ASTM website

(https://www.wendangku.net/doc/6816053950.html,).

筛网目数对照表

过滤器滤网精度换算 微米0000 毫米目数105 目数微米目数微米目数微米目数微米 2. 4459925 33 89 5005 9132502 粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸()宽度的筛网内的筛孔数表示,因而称之为“目数”。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一。 目前国际上比较浒用等效体积颗粒的计算直径来表示粒径。以μm或mm表示。 下表为我国通常使用的筛网目数与粒径(μm)对照表。 微米概念:微米是长度单位,符号[micron],读作[miu]。1微米相当于1米的一百万分之一(此即为「微」的字义)。换算关系:1000000皮米(pm)=1微米(μm)1000纳米(nm)=1微米(μm)毫米(mm)=1微米(μm)... 旋风分离器的作用 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 工作原理 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 性能指标 分离精度

电解铜箔电解液制造工艺流程

1.电解铜箔生产工艺 电解铜箔自20 世纪30 年末开始生产后,被用于电子工业,随着电子工业的发展,电解铜箔的品质在不断提高,其制造技术也在快速发展,各铜箔生产企业及相关研究单位对电解铜箔制造技术的研究也取得了相当大的进步,形成多家多种电解铜箔制造技术,各企业生产电解铜箔的关键技术千差万别,但无论关键技术及其具体工艺区别有多大,作为电解铜箔制造的工艺过程都大致包括电解液制备、原箔制造、表面处理、分切加工以及相关的检测控制、附属配备等工序。基本工艺流程如图5-1-1 。 5.11工艺流程 2.电解液的制备 电解液制备是电解铜箔生产的第一道工序,主要就是将铜料溶解成硫酸溶液,并经一系列过滤净化,制备出成分合格、纯净度很高的电解液。电解液质量的好坏,直接影响着铜箔产品品质的好坏,不但影响铜箔的内在质量,还影响铜箔外观质量。因此,必须严格控制溶铜造液过程所用的原料辅料,还要严格控制电解液制备的生产设备和操作过程。 作为制备电解液过程,所用的原料有电解铜、裸铜线、铜元杆、铜米等。要求原料含铜纯度必须达到99.95% 以上,铜料中各种杂质如Pb 、Fe、Ni 、As 、Sb 、AI 、S 及有机杂质等必须符合GB 4667-1997《电解阴极铜》国家标准中一号铜要求。硫酸作为一种重要的材料,生产过程中必不可少,其质量也要达到国家标准化学纯级技术要求。 (1).几种常见的电解液制备工艺流程 第一种流程

第二种流程 第三种流程

第四种流程 3. 电解液制备过程 上面仅列举了4 种有代表性的电解液制备工艺流程,除此之外,由于各铜箔生产企业技术水平、设备条件、配套能力等区别,以及生产铜箔档次要求的不同,在电解液制备循环方式上都有一定的区别。虽然电解液循环方式不同,但其机理都是一样的,都包含有铜料溶解、有机物去除、固体颗粒过滤、温度调整、电解液成分调整等作用和目的。 首先将经过清洗的铜料及硫酸、去离子水加入到具有溶解能力的溶铜罐中,向罐内鼓人压缩空气,在加热(一般为50-90 t) 条件下,使铜发生氧化,生成的氧化铜与硫酸发生反应,生成硫酸铜水溶液,当溶解到一定cu2 + 浓度(一般为120 -150 gIL) 时,进入原液罐(或经过滤后再到原液罐),与制筒机回流的贫铜电解液(一般为70 -100 gIL) 混合,以使电解液成分符合工艺要求,然后再经过一系列活性炭过滤、机械过滤、温度调整等设备及过程后,把符合工艺要求的电解液送人制筒机(或称电解机组)进行原箱生产制造。在实际生产过程中,电解液都是循环使用的,不断的从制循机中生产原筒,消耗电解液中的铜,而由溶铜罐不断溶铜,再经一系列过滤、温度调整、成分调整后,不断送人制筒机。这其中,利用活性炭吸附掉电解液中的有机物(包括有机添加剂) ,机械过滤滤掉(截留) 电解液中的固体颗粒物。 电解制备过程不但要保证电解液连续不断地循环,还要及时调整并控制好电解液成分(含铜、含硫酸浓度)、电解液温度、循环量匹配等技术指标。 4. 电解液制备主要工艺参数 电解液工艺指标是一个非常重要的参数,在很大程度上决定着电解铜锚质量,决定着溶铜造液的能力和电解液制备所用的设备规格和数量,电解液各工艺

标准筛粒度(目数)对照表

标准筛粒度(目数)对照表 1. 目是指每平方英吋筛网上的空眼数目,50目就是指每平方英吋上的孔眼是50个,500目就是500个,目数越高,孔眼越多。除了表示筛网的孔眼外,它同时用于表示能够通过筛网的粒子的粒径,目数越高,粒径越小。 2. 粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一。 3、筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数”。 4、我国采用的是美国标准。

目是指颗粒的粒径,目数越大颗粒越细 目是有量度含义的,具体如下: 筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数” 。 目数粒度对照表 目数粒度um 目数粒度um 目数粒度um 5 3900 140 104 1600 10 10 2000 170 89 1800 8 16 1190 200 74 2000 6.5

20 840 230 61 2500 5.5 25 710 270 53 3000 5 30 590 325 44 3500 4.5 35 500 400 38 4000 3.4 40 420 460 30 5000 2.7 45 350 540 26 6000 2.5 50 297 650 21 7000 1.25 60 250 800 19 12500 1 80 178 900 15 100 150 1100 13 120 124 1300 11

电解铜箔表面结构及性能影响因素

西安工业大学 题目:电解铜箔表面结构及性能影响因素 姓名:刘畅 专业:机械设计制造及其自动化 班级:080217班 学号:080217 指导教师:贾建利

电解铜箔表面结构及性能影响因素 摘要:对铜箔进行化学处理,考察阴极钛辊表面粗糙度及阴极钛辊的腐蚀对铜箔的性能及表面图像影响。研究结果表明:增加处理液中 Cu2+浓度及提高电流密度,有利于表面粗糙度增加,抗剥离强度增大,蚀刻因子 Ef 降低。若同时降低浸泡复合液中 Cu2+和 Zn2+浓度,增加 Sb2+浓度,则表面粗糙度及抗剥离强度降低,蚀刻因子增加;复合液中 Sb2+浓度增加也能使表面粗糙度增加,蚀刻因子增加,但是,抗剥离强度基本没有变化。添加 CuSO4后,阴极钛辊腐蚀速度下降,当 CuSO4质量浓度达到 20 g/L后,钛的耐腐蚀速度在 0.050 mm/a以下;当钛辊表面粗糙度 Rz降低时,电解铜箔表面相对平整,晶粒大小较均匀,排列较规则。 关键词:电解铜箔;化学处理;表面粗糙度;腐蚀 Abstract:Effects of surface roughness and erosion of titanium cathode drum on performance of electrolytic copper foils and surface images were studied by chemical treatments. The results show that surface roughness and contradict debonding intensity increases and etch factorial (Ef) decreases with the increase of copper concentration and electric current density. When the concentration of copper and zinc of leached compound solution decreases, surface roughness and contradict debonding intensity decreases but etch factorial (Ef) increases. When the concentration of Sb2+ of leached

目数、粒度对照表

目数、粒度对照表

目数对照表筛孔尺寸:4.75mm 标准目数:4目 筛孔尺寸:4.00mm 标准目数:5目 筛孔尺寸:3.35mm 标准目数:6目 筛孔尺寸:2.80mm 标准目数:7目 筛孔尺寸:2.36mm 标准目数:8目 筛孔尺寸:2.00mm 标准目数:10目 筛孔尺寸:1.70mm 标准目数:12目 筛孔尺寸:1.40mm 标准目数:14目 筛孔尺寸:1.18mm 标准目数:16目 筛孔尺寸:1.00mm 标准目数:18目 筛孔尺寸:0.850mm 标准目数:20目 筛孔尺寸:0.710mm 标准目数:25目 筛孔尺寸:0.600mm 标准目数:30目 筛孔尺寸:0.500mm 标准目数:35目 筛孔尺寸:0.425mm 标准目数:40目 筛孔尺寸:0.355mm 标准目数:45目 筛孔尺寸:0.300mm 标准目数:50目 筛孔尺寸:0.250mm 标准目数:60目 筛孔尺寸:0.212mm 标准目数:70目 筛孔尺寸:0.180mm 标准目数:80目 筛孔尺寸:0.150mm 标准目数:100目 筛孔尺寸:0.125mm 标准目数:120目 筛孔尺寸:0.106mm 标准目数:140目 筛孔尺寸:0.090mm 标准目数:170目 筛孔尺寸:0.0750mm 标准目数:200目 筛孔尺寸:0.0630mm 标准目数:230目 筛孔尺寸:0.0530mm 标准目数:270目 筛孔尺寸:0.0450mm 标准目数:325目 筛孔尺寸:0.0374mm 标准目数:400目

目数前加正负号则表示能否漏过该目数的网孔。负数表示能漏过该目数的网孔,即颗粒尺寸小于网孔尺寸;而正数表示不能漏过该目数的网孔,即颗粒尺寸大于网孔尺寸。例如,颗粒为-100目~+200目,即表示这些颗粒能从100目的网孔漏过而不能从200目的网孔漏过,在筛选这种目数的颗粒时,应将目数大(200)的放在目数小(100)的筛网下面,在目数大(200)的筛网中留下的即为-100~+200目的颗粒。 目数粒度对照表

目数及粒径对照表

? 筛网目数与粒径对照表以及相关知识 ? ?目数,就是孔数,就是每平方英寸上的孔数目。目数越大,孔径越小。一般来说,目数×孔径(微米数)=15000。比如,400目的筛网的孔径为38微米左右;500目的筛网的孔径是30微米左右。由于存在开孔率的问题,也就是因为编织网时用的丝的粗细的不同,不同的国家的标准也不一样,目前存在美国标准、英国标准和日本标准三种,其中英国和美国的相近,日本的差别较大。我国使用的是美国标准,也就是可用上面给出的公式计算。 由此定义可以看出,目数的大小决定了筛网孔径的大小。而筛网孔径的大小决定了所过筛粉体的最大颗粒Dmax。所以,我们可以看出,400目的抛光粉完全有可能非常细,比如只有1-2微米,也完全有可能是10微米、20微米。因为,筛网的孔径是38微米左右。我们生产400目的抛光粉的D50就有20微米。 ?

────────────────────

──────────────────── 目数|目数定义|粒度|孔径对照表 标准筛目数: 1.目是指每平方英吋筛网上的空眼数目,50目就是指每平方英吋上的孔眼是50 个,500目就是500个,目数越高,孔眼越多。除了表示筛网的孔眼外,它同时用于表示能够通过筛网的粒子的粒径,目数越高,粒径越小,标准筛需要配合标准振筛机才能准确测定 2. 粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。 筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数”。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一。目前国际上比较浒用等效体积颗粒的计算直径来表示粒径。以μm或mm表示 标准筛目数|粒度对照表:

目数,粒度对照表

目数对照表 筛孔尺寸:标准目数:4目 筛孔尺寸:标准目数:5目 筛孔尺寸:标准目数:6目 筛孔尺寸:标准目数:7目 筛孔尺寸:标准目数:8目 筛孔尺寸:标准目数:10目 筛孔尺寸:标准目数:12目 筛孔尺寸:标准目数:14目 筛孔尺寸:标准目数:16目 筛孔尺寸:标准目数:18目 筛孔尺寸:标准目数:20目 筛孔尺寸:标准目数:25目 筛孔尺寸:标准目数:30目 筛孔尺寸:标准目数:35目 筛孔尺寸:标准目数:40目 筛孔尺寸:标准目数:45目 筛孔尺寸:标准目数:50目 筛孔尺寸:标准目数:60目 筛孔尺寸:标准目数:70目 筛孔尺寸:标准目数:80目 筛孔尺寸:标准目数:100目 筛孔尺寸:标准目数:120目 筛孔尺寸:标准目数:140目 筛孔尺寸:标准目数:170目 筛孔尺寸:标准目数:200目 筛孔尺寸:标准目数:230目 筛孔尺寸:标准目数:270目

筛孔尺寸:标准目数:325目 筛孔尺寸:标准目数:400目 目数前加正负号则表示能否漏过该目数的网孔。负数表示能漏过该目数的网孔,即颗粒尺寸小于网孔尺寸;而正数表示不能漏过该目数的网孔,即颗粒尺寸大于网孔尺寸。例如,颗粒为-100目~+200目,即表示这些颗粒能从100目的网孔漏过而不能从200目的网孔漏过,在筛选这种目数的颗粒时,应将目数大(200)的放在目数小(100)的筛网下面,在目数大(200)的筛网中留下的即为-100~+200目的颗粒。

颗粒大小表示目数粒度对照表 点击次数:10749 发布时间:2011-11-24 提供商:杭州利辉环境检测设备有限公司资料大小:JPG 图片类型:JPG下载次数:37 次 资料类型:JPG浏览次数:10749 次 相关产品: 详细介绍:文件下载图片下载 目数粒度对照表 在进行环境检测设备,特别市砂尘试验箱工作中经常遇到表示颗粒大小的方法,主要有目数和粒度,先将其对照如下: 筛分粒度就是颗粒可以通过标准筛网的筛孔尺寸,以1英寸宽度的筛网内

筛目粒径对照参考表

筛目\粒径对照参考表 各国标准筛的规格不尽相同,常用的泰勒制是以每英寸长的孔数为筛号,称为目。例如100目的筛子表示每英寸筛网上有100个筛孔。 筛孔尺寸与标准目数对应: 筛孔尺寸:4.75mm 标准目数: 4目 筛孔尺寸:4.00mm 标准目数: 5目 筛孔尺寸:3.35mm 标准目数: 6目 筛孔尺寸:2.80mm 标准目数: 7目 筛孔尺寸:2.36mm 标准目数: 8目 筛孔尺寸:2.00mm 标准目数:10目 筛孔尺寸:1.70mm 标准目数:12目 筛孔尺寸:1.40mm 标准目数:14目 筛孔尺寸:1.18mm 标准目数:16目 筛孔尺寸:1.00mm 标准目数:18目 筛孔尺寸:0.850mm标准目数:20目 筛孔尺寸:0.710mm标准目数:25目 筛孔尺寸:0.600mm标准目数:30目 筛孔尺寸:0.500mm标准目数:35目 筛孔尺寸:0.425mm标准目数:40目 筛孔尺寸:0.355mm标准目数:45目 筛孔尺寸:0.300mm标准目数:50目 筛孔尺寸:0.250mm标准目数:60目 筛孔尺寸:0.212mm标准目数:70目 筛孔尺寸:0.180mm标准目数:80目 筛孔尺寸:0.150mm标准目数:100目 筛孔尺寸:0.125mm标准目数:120目 筛孔尺寸:0.106mm标准目数:140目 筛孔尺寸:0.090mm标准目数:170目 筛孔尺寸:0.0750mm标准目数:200目 筛孔尺寸:0.0630mm标准目数:230目 筛孔尺寸:0.0530mm标准目数:270目 筛孔尺寸:0.0450mm标准目数:325目 筛孔尺寸:0.0380mm标准目数:400目 我国通常使用的筛网目数(mesh)与粒径(μm)对照表 目数粒度um 目数粒度um 目数粒度um 5 3900 140 104 1600 10

电解铜箔制造过程及其生产原理

电解铜箔制造过程及其生产原理 (一)电解铜箔制造工艺过程 电解铜箔自20 世纪30 年末开始生产后,被用于电子工业,随着电子工业的发展,电解铜箔的品质在不断提高,其制造技术也在快速发展,各铜箔生产企业及相关研究单位对电解铜箔制造技术的研究也取得了相当大的进步,形成多家多种电解铜箔制造技术,各企业生产电解铜箔的关键技术千差万别,但无论关键技术及其具体工艺区别有多大,作为电解铜箔制造的工艺过程都大致包括电解液制备、原箔制造、表面处理、分切加工以及相关的检测控制、附属配备等工序。基本工艺流程如图5-1-1 。 (二)电解液制备 电解液制备是电解铜箔生产的第一道工序,主要就是将铜料溶解成硫酸溶液,并经一系列过滤净化,制备出成分合格、纯净度很高的电解液。电解液质量的好坏,直接影响着铜箔产品品质的好坏,不但影响铜箔的内在质量,还影响铜箔外观质量。因此,必须严格控制溶铜造液过程所用的原料辅料,还要严格控制电解液制备的生产设备和操作过程。 作为制备电解液过程,所用的原料有电解铜、裸铜线、铜元杆、铜米等。要求原料含铜纯度必须达到99.95% 以上,铜料中各种杂质如Pb 、Fe、Ni 、As 、Sb 、AI 、S 及有机杂质等必须符合GB 4667-1997《电解阴极铜》国家标准中一号铜要求。硫酸作为一种重要的材料,生产过程中必不可少,其质量也要达到国家标准化学纯级技术要求。 1.几种常见的电解液制备工艺流程 (1)第一种流程(图5-1-2)

(4) 第四种流程(图5-1-5 ) 2. 电解液制备过程 上面仅列举了4 种有代表性的电解液制备工艺流程,除此之外,由于各铜箔生产企业技术水平、设备条件、配套能力等区别,以及生产铜箔档次要求的不同,在电解液制备循环方式上都有一定的区别。虽然电解液循环方式不同,但其机理都是一样的,都包含有铜料溶解、有机物去除、固体颗粒过滤、温度调整、电解液成分调整等作用和目的。

目数、粒度对照表

目数对照表 筛孔尺寸:4.75mm 标准目数:4目 筛孔尺寸:4.00mm 标准目数:5目 筛孔尺寸:3.35mm 标准目数:6目 筛孔尺寸:2.80mm 标准目数:7目 筛孔尺寸:2.36mm 标准目数:8目 筛孔尺寸:2.00mm 标准目数:10目 筛孔尺寸:1.70mm 标准目数:12目 筛孔尺寸:1.40mm 标准目数:14目 筛孔尺寸:1.18mm 标准目数:16目 筛孔尺寸:1.00mm 标准目数:18目 筛孔尺寸:0.850mm 标准目数:20目 筛孔尺寸:0.710mm 标准目数:25目 筛孔尺寸:0.600mm 标准目数:30目 筛孔尺寸:0.500mm 标准目数:35目 筛孔尺寸:0.425mm 标准目数:40目 筛孔尺寸:0.355mm 标准目数:45目 筛孔尺寸:0.300mm 标准目数:50目 筛孔尺寸:0.250mm 标准目数:60目 筛孔尺寸:0.212mm 标准目数:70目 筛孔尺寸:0.180mm 标准目数:80目 筛孔尺寸:0.150mm 标准目数:100目 筛孔尺寸:0.125mm 标准目数:120目 筛孔尺寸:0.106mm 标准目数:140目 筛孔尺寸:0.090mm 标准目数:170目 筛孔尺寸:0.0750mm 标准目数:200目 筛孔尺寸:0.0630mm 标准目数:230目 筛孔尺寸:0.0530mm 标准目数:270目 筛孔尺寸:0.0450mm 标准目数:325目 筛孔尺寸:0.0374mm 标准目数:400目 目数前加正负号则表示能否漏过该目数的网孔。负数表示能漏过该目数的网孔,即颗粒尺

寸小于网孔尺寸;而正数表示不能漏过该目数的网孔,即颗粒尺寸大于网孔尺寸。例如,颗粒为-100目~+200目,即表示这些颗粒能从100目的网孔漏过而不能从200目的网孔漏过,在筛选这种目数的颗粒时,应将目数大(200)的放在目数小(100)的筛网下面,在目数大(200)的筛网中留下的即为-100~+200目的颗粒。 目数粒度对照表

目数及粒径对照表

筛网目数与粒径对照表以及相关知识 ? 目数,就是孔数,就是每平方英寸上的孔数目。目数越大,孔径越小。一般来说,目数×孔径(微米数)=15000。比如,400目的筛网的孔径为38微米左右;500目的筛网的孔径是30微米左右。由于存在开孔率的问题,也就是因为编织网时用的丝的粗细的不同,不同的国家的标准也不一样,目前存在美国标准、英国标准和日本标准三种,其中英国和美国的相近,日本的差别较大。我国使用的是美国标准,也就是可用上面给出的公式计算。 由此定义可以看出,目数的大小决定了筛网孔径的大小。而筛网孔径的大小决定了所过筛粉体的最大颗粒Dmax。所以,我们可以看出,400目的抛光粉完全有可能非常细,比如只有1-2微米,也完全有可能是10微米、20微米。因为,筛网的孔径是38微米左右。我们生产400目的抛光粉的D50就有20微米。

────────────────────

──────────────────── 目数|目数定义|粒度|孔径对照表 标准筛目数: 1.目是指每平方英吋筛网上的空眼数目,50目就是指每平方英吋上的孔眼是50个,500目就是500个,目数越高,孔眼越多。除了表示筛网的孔眼外,它同时用于表示能够通过筛网的粒子的粒径,目数越高,粒径越小,标准筛需要配合标准振筛机才能准确测定 2. 粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸()宽度的筛网内的筛孔数表示,因而称之为“目数”。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一。目前国际上比较浒用等效体积颗粒的计算直径来表示粒径。以μm或mm表示

电解铜箔生产常见问题及处理

电解铜箔生产常见问题及处理随着电子信息产业的发展,电子产品轻量化、集成化要求越来越高,电解铜箔作为电子行业的基础性材料,不仅对产品的抗拉强度、延伸率、抗剥离强度、防氧化性等物化性能指标提出了更高要求,而且要求铜箔微观晶粒组织和表面微观形貌结构更均匀精细。电解铜箔生产工艺复杂,涉及专业广泛,生产过程既有机械电子设备又有电化学过程,分系统之间相互关联相互影响,相关技术大多是交叉、边缘学科,对处理实际生产中遇到的复杂问题缺乏成熟的理论支持。本文通过对实际生产中常见问题的总结,提出了一些有参考价值的处理方法,希望能引起同行的注意和指正,引发更成熟的研究方法和处理方法。 1、溶液净化 未处理箔(毛箔)的制造过程是铜箔生产中最关键的环节,绝大多数的物化性能指标与毛箔有着直接或间接的关系。毛箔的电沉积过程离不开溶液,所以其溶液尤为重要,纯净无杂质、成分均匀稳定的毛箔溶液是生产高品质铜箔的必需条件。实际生产中不可避免会有一些杂质通过原料铜、废箔、水、酸的加入和设备自身的磨损腐蚀进入到溶液中,因此生产中的溶液含有不溶性的微粒、可溶的离子分子基团和有机物等各种杂质,这些杂质大多数对铜箔品质有负面影响,应尽可能减少杂质进入溶液系统或采用有效方法把杂质控制在合理范 围内。 不溶性微粒主要来源于原料铜的加入和废箔回用,活性炭和其它

有机物吸附剂在使用中也会少量分解形成不溶性微粒。在基箔电沉积过程中微粒夹杂于组织内或吸附于铜箔表面,造成箔面粗糙、针孔、渗透点等质量缺陷。一般采用多级过滤的办法将微粒由大到小逐级过滤去除,过滤精度最高可以达到0. 5μm以内。随着过滤层级的增加和过滤精度的提高溶液净化效果相应提高,铜箔组织的致密性和表面微观结构的细致性都明显优化,表现为延伸率、抗拉强度等指标的提高。高度净化的基箔溶液是生产高品质铜箔前提条件之一。增加过滤次数也是溶液净化的有效方法,通常循环过滤液量应为生产供液量的1.5倍以上。提高溶液的净化,设备投入和运行费用会大幅增加,在净化工艺设计时要兼顾工艺性和经济性。过滤器在初期运行时往往达不到设计精度,使用一段时间后过滤材料的表面会因为滤渣的沉积而产生―搭桥‖作用,过滤压力略微增加而过滤精度提高并更稳定,所以过滤器的清洗和滤料的更换应该交替周期处理,前一级和后一级过滤器不宜同时进行,避免因集中处理造成溶液净化度发生波动。 可溶性的离子分子基团对铜箔质量的影响机理非常复杂。溶液中的离子除Cu2+、H+及SO42-之外都会干扰铜箔正常的电沉积过程。某些金属阳离子直接参与铜箔晶体的成核过程,导致铜箔微观组织结构缺陷——孪晶、错层等;这些金属阳离子杂质具有与Cu2+的离子水合物体积大小接近或硫酸体系下电极电位接近的特点。Cu+离子在正常溶液中含量极少,而且随着H2SO4浓度的提高而降低;Cu+离子自身会发生歧化反应生成Cu0和Cu2+,Cu0呈分子状态分散在溶液中,阴极沉积时随机夹杂于铜箔组织中,其结晶尺寸远比正常结

粉体细度粒径单位换算对照表

目粒度 粉体颗粒大小称颗粒粒度。由于颗粒形状很复杂,通常有筛分粒度、沉降粒度、等效体积粒度、等效表面积粒度等几种表示方法。 筛分粒度就是颗粒可以通过筛网的筛孔尺寸,以1英寸(25.4mm)宽度的筛网内的筛孔数表示,因而称之为“目数”。 粉体细度粒径单位换算对照表 粒径(m)微米um纳米nm日式单位(目) 10-4m100um100000nm180目 10-5m10um10000nm1800目 10-6m1um1000nm1.8万目 10-7m0.1um100nm18万目 10-8m0.01um10nm180万目 10-9m0.001um1nm1800万目 10-9m以下0.001um以下进入i1nm以下接近原子大1800万目以上 1米(m)=100厘米(cm);1厘米(cm)=10m=10毫米(mm); 1毫米(mm)=10m=1000微米(um);1微米(um)=10m=1000纳米(nm);1纳米=10m。【病毒大小约100纳米】 纳米(nm)=[10的-7至10的-9次方米]之间=细度大小折合日式单位换算约18万目~1800万目。 微米(um)=[10的-6次方米以下]=细度大小折合日式单位换算约1.8万目以下。微米之极限细度是18000目。 趋纳米=微纳米=[10的-6次方米]至[10的-7次方米]之间=18000目~180000目之间。 320目320mesh目的英文单位是mesh

目数,就是孔数,就是每平方英寸上的孔数目。目数越大,孔径越小。一般来说,目数×孔径(微米数)=15000。比如,400目的筛网的孔径为38微米左右;500目的筛网的孔径是30微米左右。由于存在开孔率的问题,也就是因为编织网时用的丝的粗细的不同,不同的国家的标准也不一样,目前存在美国标准、英国标准和日本标准三种,其中英国和美国的相近,日本的差别较大。我国使用的是美国标准,也就是可用上面给出的公式计算。美国泰勒标准筛的筛目尺寸对照表.可在下面网页看到详细资料. 由此定义可以看出,目数的大小决定了筛网孔径的大小。而筛网孔径的大小决定了所过筛粉体的最大颗粒Dmax。所以,我们可以看出,400目的抛光粉完全有可能非常细,比如只有1-2微米,也完全有可能是10微米、20微米。因为,筛网的孔径是38微米左右。我们生产400目的抛光粉的D50就有20微米。附图给出的就是这种抛光粉的照片,注意标尺是50 微米。

电解铜箔制造过程及其生产原理(二)

电解铜箔制造过程及其生产原理(二) 来源:PCB资源网作者:PCB资源网发布时间:2008-09-08 发表评论 (三)原箔制造 原箔制造是电解铜生产的一道关键工序,原箔就是成品电解铜的半成品,它决定了电解铜箔的大部分质量性能。如铜箔致密度、抗拉强度、延伸率、铜纯度、质量电阻率、针孔渗透点等指标,而且还在很大程度上决定了后道工序表面处理质量的好坏,也是对上道工序电解液制备系统先进性和可靠性的检验。 1.原筒制造的基本过程 原箔制造过程即是一种电解过程。它是在一种专用电解设备中完成的。它一般采用由专用铁材制作的铁质表面辐筒作为阴极辘,以含银1% 优质铅银合金(或者采用特殊涂层铁板)作为阳极,在阴阳极之间加入硫酸铜电解液,在直流电作用下,阴极辑上便有金属铜析出。随着阴极辑的不断转动,铜不断地在辑面上析出,而不断地将析出的金属铜从辑面上剥离,再经水洗、烘干,缠绕成卷,这就形成了原筒。调节不同的阴极辐转速,就生产出不同厚度的原筒。 2. 原宿制造主要工艺参数 作为原箔制造过程中,各生产厂家采用的设备特别是阴极辑区别较大,工艺条件也有很大区别,因此,作为原宿制造的主要工艺参数也就有很大的区别,表5-1-7 列出几组有代表性的工艺参数供参考。 由此可以看出,各厂家工艺参数区别相当大,这是正常的。但各参数之间都有一定的匹配关系,每个工艺参数的选择及其相互间的匹配关系,决定了原箔的质量优劣。因此,各厂家也在不断地探索合适的工艺参数组合,以寻求最佳的质量和最高的生产效率。 3. 原宿制造的辅助条件

作为原筒制造所要求的辅助条件,除了电解液制备及供给外,还需要具备直流供电,阴极辐研磨及电解槽引风、添加剂加入等条件。 (1)直流供电目前原宿制造所用直流电属于大电流低电压直流电,一般在1 000~50000A。它由一套变压整流设备来提供。 而对制筒机供电的方式有两种:一种是多机串联供电,一种是单机供电,两种供电方式各有优缺点,但目前比较倾向于单机供电,因为它有利于单机操作及单机产品质量调整。 (2) 添加剂加入电解铜锚的一些特性,如抗拉强度、延伸率、毛面粗糙度、质量电阻率等指标在很大程度上取决于原锚的质量,而要使上述性能达到优良,除了必须供给高纯度的电解液外,还必须向电解液中加入必要的添加剂,如明胶、骨胶、硫服、聚乙烯醇、淀粉以及一些阴离子和金属盐类等。一般只加入其中的一种或几种。添加剂的加入方式有两种:一种是直接加入到电解液循环的整体系统中,称为系统加入法;另一种是在电解液进入制宿机前的管道中加入,称为单机加入法。相比之下,单机加入法更好些,但无论采取哪种方式添加,都必须做到添加剂与电解液要充分均匀地温合。 (3)电解槽引风电解铜锚的生产,对环境的要求是非常严格的,除了对生产空间进行空气净化,调节温度湿度外,还必须对制借机电解槽进行良好的引风,以便使制循机在生产过程挥发的含有酸雾的气体不排人生产环境空间内,而直接被抽走。被抽走的含酸气体,要经过酸雾净化设备分离出硫酸,使气体净化后再排入大气. (4) 阴极辑研磨阴极辑的表面质量直接影响电解铜宿光面质量及视觉效果,其研磨技术已成为电解铜筒生产的关键莓术之一。在阴极辘研磨这个问题上,各生产厂家所采用的工艺方法很多,区别也很多,但总的来说,所使用的研磨材料有:各规格砂纸(布)、尼龙轮、尼龙刷轮、PYA 轮、研磨绒片、研磨绒盘、绒砂轮、绒片刷等。每个厂家都根据研磨工艺选用不同的研磨材料。阴极辑研磨可分为下线研磨抛光和在线抛光,所谓下线研磨抛光就针对新辑、外表有划伤等缺陷的辑及在线生产使用时间较长表面发生变化较大的情况,在专用设备上,对阴极辑进行一系列研磨及抛光的过程,在线抛光就是将抛光装置安装在制描机上,阴极辐每生产使用一段时间就对阴极辘辘面进行抛光,这样有利于减少阴极辐装卸次数,提高生产效率。 4. 原筒制造的基本原理 原宿制造采用硫酸铜水溶液作为电解液,其主要成分有Cu2 + 、H+ 及少量的其他金属阳离子和OH- 、S042 - 等阴离子。在直流电的作用下,阳离子移向阴极,阴离子移向阳极,阳极一般采用不溶阳极(铅银合金或涂层铁板等)。由于各种离子的析出电位不同,其成分含量差别较大。在阴极上,Cu2 + 得到2 个电子还原成Cu ,在阴极辐面上电化结晶,电极反应如下: Cu2 + + 2e ==Cu 在阴极上OH 放电后生成氧气和H\ 即: 20H- -2e 一→2H+ +02 ,所以说整个过程还是一个造酸过程。因为氧气跑掉,H\S042 - 结合形成硫酸,即: 2H+ +SO42→H2 S04 。 总反应为:

电解铜箔生产实践的关键

电解铜箔生产实践的关键,是通过应用一系列的生产技术和技巧,来控制铜箔的质量满足要求。众所周知,国际标准IPC4562将印制线路用金属电解铜箔按照特性的质量保证水平差异分为三级: 1级:适用于要求电路功能完整,机械性能和外观缺陷不重要的应用场合。 2级:适用于电路设计、工艺及规范一致性要求允许局部区域不一致的应用场合。 3级:适用于要求保证等级最高的应用场合。 在这三个等级中,3级的质量保证水平最高,2级的质量保证水平适中,1级的质量保证水平最低。 电解铜箔的质量缺陷主要有外观缺陷(箔材存在针孔和气隙度,麻点和压痕,缺口和撕裂,皱折,划痕)、尺寸缺陷(面积质量及厚度及偏差,箔轮廓超标)、物理性能缺陷(拉伸强度,疲劳延展性,延伸率,剥离强度,载体分离强度,金属箔表面粗糙度不能满足要求)、工艺性能不能满足要求(可蚀刻性,可焊性)以及其它性能(如纯度、质量电阻率)。 电解铜箔的最终性能,除剥离强度、可焊性等个别指标外,大多数是由生箔的性能所决定的。而这些性能,如拉伸强度、疲劳延展性、延伸率、金属箔表面粗糙度等均与生箔(毛箔)的晶体学织构有关。材料的晶体学织构表达了组成晶体材料的无数晶粒的取向分布方式。晶体的每个晶粒都是各向异性的,即其性能随着测量方位的变化而变化。用于测量这种晶体学织构的传统方法是X射线衍射法。在大多数工程材料及常用电沉积层中,其正常晶体的取向为优势取向,这就是所谓残余各向异性,电解铜箔的织构与其自身的沉积过程密切相关,电解沉积层的形成是由形核及晶体长大两个不同的过程所控制的,而织构的发展也可能是这两个过程相互竞争的结果。 沉积超电势及间接影响超电势的每个工艺参数,如流体动力学,添加剂等在织构形成中起着首要作用。有关研究表明,电解铜箔的生箔铜箔在小于12μm的情况下,XRD衍射图谱中的主峰为(111)面,并目(311)面呈现一定的择优取向。随着厚度的增加,其(220)衍射峰强度不断提高,其他晶面衍射强度则逐渐降低,当铜箔厚度达到21μm时,(220)晶面的织构系数达到92%。很显然,依靠简单技术使电解铜箔的性能达到压延铜箔的性能指标几乎不现实。 在生箔电解过程中,阴极基体材料的表面条件也是影响织构发展的重要因素。电解铜箔是铜离子在阴极辊表面晶体上结晶结构的延续,铜离子电沉积在钛晶体上,并由此而生长成铜箔。阴极钛辊表面的晶体结构决定着电解铜箔最初的结晶状态。随着电解沉积层的增加,阴极表面基体组织对铜沉积层结晶结构的影响越来越小。这可以从电解铜箔的毛面和光面的晶向变化上看出。

颗粒的目数粒度对照表(新)

颗粒的目数粒度对照表 泰勒标准筛,所谓的多少目是指在每英寸(一个规定的单位长度2.54厘米)的长度上有多少筛孔,如果有100个孔,就是100目筛,孔数越多,孔眼也就越小。但由于制作材料不同,比如有不锈钢筛、尼龙筛、铜筛等,它们的粗细不同,所以同是100目筛地话,大小实际上也有区别。目前在国内外尚未有统一的粉体粒度技术标准,各个企业都有自己的粒度指标定义和表示方法。在不同国家、不同行业的筛网规格有不同的标准,因此“目”的含义也难以统一。 目前国际上比较流行用等效体积颗粒的计算直径来表示粒径,以μm或mm为单位。 目为非标准单位,经验的换算方法为:粒度(um)x 目数=16000 筛分粒度测试方法: 一、显微图象法: 显微图象法包括显微镜、CCD摄像头(或数码像机)、图形采集卡、计算机等部分组成。它基本工作原理将显微镜放大后颗粒图像通过CCD摄像头和图形采集卡传输到计算机中,由计算机对这些图像进行边缘识别等处理,计算出每个颗粒投影面积,根据等效投影面积原理得出每个颗粒粒径,再统计出所设定粒径区间颗粒数量,就可以得到粒度分布了。由于这种方法单次所测到颗粒个数较少,对同一个样品可以通过更换视场方法进行多次测量来提高测试结果真实性。除了进行粒度测试之外,显微图象法还常用来观察和测试颗粒形貌。 二、其它颗粒度测试方法:除了上述几种粒度测试方法以外,目前在生产和研究领域还常用刮板法、沉降瓶法、透气法、超声波法和动态光散射法等。 (1) 刮板法:把样品刮到一个平板表面上,观察粗糙度,以此来评价样品粒度否合格。此法涂料行业采用一种方法。一个定性粒度测试方法。 (2) 沉降瓶法:它原理与前后讲沉降法原理大致相同。测试过程首先将一定量样品与液体在 500ml或1000l量筒里配制成悬浮液,充分搅拌均匀后取出一定量(如20ml)作为样品总重量,然后根据Stokes定律计算好每种颗粒沉降时间,在固定时刻分别放出相同量悬浮液,来代表该时刻对应粒径。将每个时刻得到悬浮液烘干、称重后就可以计算出粒度分布了。此法目前在磨料和河流泥沙等行业还有应用。

目数粒径对照表

颗粒目数的定义: 所谓目数,是指物料的粒度或粗细度,一般定义是指在1英寸*1英寸的面积内有多少个网孔数,即筛网的网孔数,物料能通过该网孔即定义为多少目数:如200目,就是该物料能通过1英寸*1英寸内有200个网孔的筛网。以此类推,目数越大,说明物料粒度越细,目数越小,说明物料粒度越大。 筛孔尺寸与标准目数对应: 筛孔尺寸:4.75mm 标准目数:4目 筛孔尺寸:4.00mm 标准目数:5目 筛孔尺寸:3.35mm 标准目数:6目 筛孔尺寸:2.80mm 标准目数:7目 筛孔尺寸:2.36mm 标准目数:8目 筛孔尺寸:2.00mm 标准目数:10目 筛孔尺寸:1.70mm 标准目数:12目 筛孔尺寸:1.40mm 标准目数:14目 筛孔尺寸:1.18mm 标准目数:16目 筛孔尺寸:1.00mm 标准目数:18目 筛孔尺寸:0.850mm标准目数:20目 筛孔尺寸:0.710mm标准目数:25目 筛孔尺寸:0.600mm标准目数:30目 筛孔尺寸:0.500mm标准目数:35目 筛孔尺寸:0.425mm标准目数:40目 筛孔尺寸:0.355mm标准目数:45目 筛孔尺寸:0.300mm标准目数:50目 筛孔尺寸:0.250mm标准目数:60目 筛孔尺寸:0.212mm标准目数:70目 筛孔尺寸:0.180mm标准目数:80目 筛孔尺寸:0.150mm标准目数:100目 筛孔尺寸:0.125mm标准目数:120目 筛孔尺寸:0.106mm标准目数:140目 筛孔尺寸:0.090mm标准目数:170目 筛孔尺寸:0.0750mm标准目数:200目 筛孔尺寸:0.0630mm标准目数:230目 筛孔尺寸:0.0530mm标准目数:270目 筛孔尺寸:0.0450mm标准目数:325目

电解法生产铜箔的发展历史

上页下页 1.3 电解法生产铜箔的发展历史(1) 分享到: sinaqzonerenrenkaixingdoubanmsn 1.3.1 电解铜箔的产生 电解法生产的铜箔, 除仍保持其他方法生产的铜箔所具有的高导电性、高导热性、一定的 机械强度、美丽的金属光泽外, 还由于电解铜箔一面光洁, 另一面较为粗糙, 便于粘贴到其他材 料的表面。因此, 电解铜箔除像压延铜箔可以广泛应用于建筑装饰材料、挠性母线、电波屏蔽板、高频汇流排及热能搜集器外, 主要用于印刷线路板的导电材料和锂电池的电极材料。 英文“foil”(箔)来自拉丁语“folium”, 意为叶子。大百科全书中说“箔, 是经过机械敲 打或轧制成如叶子厚度的固体金属”。自史前以来, 经敲打制成的金箔用于装饰品, 其他金属如锡、银、铜、铝、和黄铜也可以经机械敲打或轧制制成箔材。习惯上, 一般将厚度小于0.5mm 有色金属薄带称之为箔, 如铝箔、铜箔、锡箔、金箔等。 1922年美国的Edison发明了金属镍箔的连续制造专利, 成为了现代电解铜箔连续制造技术 的先驱。他将阴极旋转辊下半部分浸入电解液, 经过半圆弧状的阳极, 通过电解而形成金属镍箔。箔覆在阴极辊表面, 当辊筒转出液面时, 就可连续剥离、卷取得到金属镍箔。 20世纪30年代, 当时世界上最大的有色金属公司, 他们在智利的矿山冶炼粗铜, 然后在新 泽西州Perth Ambox的Anaconda(安那康大)铜厂进行电解精练, 其精炼的最大能力为每月20000t。 在铜电解精炼过程中, 由于粗铜中所含的氧化铜产生化学溶解, 溶解掉的粗铜量往往多于电 解沉积在阴极上的量, 因此, 溶液中的铜含量就会越来越高。为了确保铜电解精炼的正常进 行, 精炼厂一般采用两种方法使电解液中的铜含量保持平衡: (1)蒸发部分溶液以硫酸铜的形式降低电解液中多余的铜; (2)采用一种不溶性阳极, 以电解沉积铜的形式提取电解液中多余的铜。 1937年美国新泽西州Perth Amboy的Anaconde铜冶炼厂利用上述Edison专利原理及工艺途径, 成功地开发出工业化生产的电解铜箔产品。他们使用不溶性阳极“造酸析铜”, 通过连续生 产电解铜箔达到整个系统电解液铜离子平衡。这种方法生产铜箔, 要比压延法生产铜箔更加方便。因此, 铜箔当时大量地作为建材产品, 用于建筑上防潮、装饰。 上页下页

电解铜箔生产常见问题及处理

电解铜箔生产常见问题及处理 随着电子信息产业的发展,电子产品轻量化、集成化要求越来越高,电解铜箔作为电子行业的基础性材料,不仅对产品的抗拉强度、延伸率、抗剥离强度、防氧化性等物化性能指标提出了更高要求,而且要求铜箔微观晶粒组织和表面微观形貌结构更均匀精细。电解铜箔生产工艺复杂,涉及专业广泛,生产过程既有机械电子设备又有电化学过程,分系统之间相互关联相互影响,相关技术大多是交叉、边缘学科,对处理实际生产中遇到的复杂问题缺乏成熟的理论支持。本文通过对实际生产中常见问题的总结,提出了一些有参考价值的处理方法,希望能引起同行的注意和指正,引发更成熟的研究方法和处理方法。 1、溶液净化 未处理箔(毛箔)的制造过程是铜箔生产中最关键的环节,绝大多数的物化性能指标与毛箔有着直接或间接的关系。毛箔的电沉积过程离不开溶液,所以其溶液尤为重要,纯净无杂质、成分均匀稳定的毛箔溶液是生产高品质铜箔的必需条件。实际生产中不可避免会有一些杂质通过原料铜、废箔、水、酸的加入和设备自身的磨损腐蚀进入到溶液中,因此生产中的溶液含有不溶性的微粒、可溶的离子分子基团和有机物等各种杂质,这些杂质大多数对铜箔品质有负面影响,应尽可能减少杂质进入溶液系统或采用有效方法把杂质控制在合理范围内。 不溶性微粒主要来源于原料铜的加入和废箔回用,活性炭和其它有机物吸附剂在使用中也会少量分解形成不溶性微粒。在基箔电沉积过程中微粒夹杂于组织内或吸附于铜箔表面,造成箔面粗糙、针孔、渗透点等质量缺陷。一般采用多级过滤的办法将微粒由大到小逐级过滤去除,过滤精度最高可以达到0. 5μm以内。随着过滤层级的增加和过滤精度的提高溶液净化效果相应提高,铜箔组织的致密性和表面微观结构的细致性都明显优化,表现为延伸率、抗拉强度等指标的提高。高度净化的基箔溶液是生产高品质铜箔前提条件之一。增加过滤次数也是溶液净化的有效方法,通常循环过滤液量应为生产供液量的1.5倍以上。提高溶液的净化,设备投入和运行费用会大幅增加,在净化工艺设计时要兼顾工艺性和经济性。过滤器在初期运行时往往达不到设计精度,使用一段时间后过滤材料的表面会因为滤渣的沉积而产生―搭桥‖作用,过滤压力略微增加而过滤精度提高并更稳定,所以过滤器的清洗和滤料的更换应该交替周期处理,前一级和后一级过滤器不宜同时进行,避免因集中处理造成溶液净化度发生波动。 可溶性的离子分子基团对铜箔质量的影响机理非常复杂。溶液中的离子除Cu2+、H+及SO42-之外都会干扰铜箔正常的电沉积过程。某些金属阳离子直接参与铜箔晶体的成核过程,导致铜箔微观组织结构缺陷——孪晶、错层等;这些金属阳离子杂质具有与Cu2+的离子水合物体积大小接近或硫酸体系下电极电位接近的特点。Cu+离子在正常溶液中含量极少,而且随着H2SO4浓度的提高而降低;Cu+离子自身会发生歧化反应生成CuO和Cu2+,CuO呈分子状态分散在溶液中,阴极沉积时随机夹杂于铜箔组织中,其结晶尺寸远比正常结晶大的多,使箔层出现毛刺、粗糙、针孔等缺陷;在溶铜时氧化不充分会产生Cu+离子,所以溶铜应保证鼓风量大于铜氧化需氧量,促进Cu完全氧化生成Cu2+,同时控制好H2SO4浓度抑制Cu+离子产生,溶铜出液H2SO4浓度不应低于60g/L,另外加入适量双氧水可促使Cu+离子转化为Cu2+离子。Cu的同族金属的影响不容忽视,例如Ag+离子,应尽可能防止其进入溶液或设法清除。H+离子是电流的主要传递介质,其浓度大小与槽电压呈正比关系,所以适当提高H+离子浓度可以减少制造基箔的电能消耗;但H+浓度增加设备尤其是阴极辊、阳极板腐蚀速度加快,H+浓度过高铜箔表面出现粗化趋势。溶液中的阴离子主要影响阳极反应过程,某些小基团阴离子也参与阴极反应过程,如卤族元素F-、Cl-等。氢氟酸是钛的强溶剂,常温下即使微量也会腐蚀阳极板、阴极辊,应严禁F-离子进入溶液。Cl-离子活性较F-离子略低一些,在酸性和加热条件下对钛有腐蚀性,Cl-离子浓度不宜太高。Cl-离子在溶液中一方面与Cu+离子反应生成CuCl胶体颗粒,抑制了Cu+的影响,同时也是一种有效的光亮剂,负

相关文档