文档库 最新最全的文档下载
当前位置:文档库 › 碳纳米管的改性研究进展

碳纳米管的改性研究进展

碳纳米管的改性研究进展
碳纳米管的改性研究进展

碳纳米管的改性研究进展

摘要:碳纳米管因其独特的结构与优异的性能,在许多领域具有巨大的应用潜力而引起了广泛的关注。由于碳纳米管不溶于水和有机溶剂,极大地制约了其性能的应用,因此碳纳米管的功能化改性

就成为目前研究的热点。本文简要介绍了碳纳米管及其性质作,详细阐述了碳纳米管的改性研究进展,并对今后的研究方向进行了展望。

关键词:碳纳米管;结构与性能;功能化;共价改性;非共价改性

1. 碳纳米管及其性能简介

1.1碳纳米管的结构

碳纳米管(Carbon Nanotubes,CNTs)是1991年由日本筑波NEC公司基础研究实验室的Iijima在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时意外发现的一种具有一维管状结构的碳纳米材料。因其独特的准一维管状分子结构、优异的力学、电学和化学性质及其在高科技领域中潜在的应用价值,引起了世界各国科学家们的广泛关注,由此引发了碳纳米管的研究热潮和十多年来纳米科学和技术的飞速发展。

碳纳米管是单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝、中空的

微管,每层纳米管是一个由碳原子通过SP2杂化与周围3个碳原子完全键合后所构成的

六边形平面组成的圆柱面。根据构成管壁碳原子层数的不同,CNTs可以分为:单壁碳纳

米管(single-walled carbon nanotube,SWNT)和多壁碳纳米管(multi-walled carbon nanotube, MWNT)两种形式。MWNTs的层间接近ABAB堆垛,其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。MWNTs的典型直径和长度分别为2~30nm

和0.1~50μm;SWNTs典型的直径和长度分别为0.75~3nm和1~50μm。与MWNTs 比,SWNTs是由单层圆柱型石墨层构成,其直径的分布范围小,缺陷少,具有更高的

均匀一致性。无论是MWNTs还是SWNTs都具有很大的长径比,一般为100~1000,

最大可达到1000~10000,可以认为是一维分子。CNTs有直形、弯曲、螺旋等不同外形。在MWNTs中不同石墨层的螺旋角各不相同,由Euler定理可知,在CNTs的弯曲处,一定要有成对出现的五元环和七元环才能使碳纳米管在弯曲处保持光滑连续,而封

闭的两端半球形或多面体的圆拱形是由五元环参与形成的。但是实际制备的CNTs或多

或少存在这样那样缺陷,主要缺陷有三种类型:拓扑学缺陷,重新杂化缺陷和非完全键

合缺陷。目前,CNTs的生长机理还不十分清楚,在提出的几种模型中,“开口生长模型”解释了多壁CNTs内层管壁的生长机理。其基本观点认为CNTs的生长始于原子在催化剂颗粒的表面析出,重排呈管状,此后当周围的碳原子通过碰撞等方式与碳纳米管“开口”端的碳原子结合成键时,CNTs逐渐长长,而当开口端封闭时,CNTs结束生长。这种模型可解释电弧放电法制备CNTs的生长机理。

图1 碳纳米管示意图:SWNTs(左)与MWNTs(右)

1.2碳纳米管的性质

CNTs具有最简单的化学组成及原子结合形态,却展现了丰富多彩的结构以及与之相关的物理、化学性能。由于它可看成是片状石墨卷成的圆筒,因此必然具有石墨优良的本征特性,如耐热、耐腐蚀、耐热冲击、传热和导电性好、有自润滑性和生物相容性等一系列综合性能。但CNTs的尺度、结构、拓扑因素等相结合又赋予了CNTs极为独特而具有广阔应用前景的性能。

(1)力学性能:CNTs的基本网格和石墨烯一样,是由自然界最强的价键之一,由SP2杂化形成的C=C共价键组成,有着很高的机械强度,其轴向弹性模量目前从理论估计和实验测定均接近石墨烯片,又由于CNTs是中空的笼状物并具有封闭的拓扑结构,能通过体积变化来呈现其弹性,故能承受大于40%的张力应变,所以CNTs具有极高的强度和弹性模量。理论上测定的单壁碳纳米管的杨氏模量可达1. 28TPa,其弹性模量与金刚石的弹性模量几乎相同,约为钢的5倍,其理论抗拉强度为钢的100倍,而密度仅为钢的l/6;并且具有超高的韧性和可弯曲性,理论最大延伸率可达20%,SWNTs可承受扭转形变并可弯成小圆环,应力卸除后可完全恢复到原来状态。多壁碳纳米管的杨氏模量为200~400GPa,弯曲张力为14GPa,抗扭曲张力为100GPa。碳纳米管的强度比其他纤维高200倍,可以经受100万个大气压而不破裂。CNTs无论强度还是韧性,都远远优于任何纤维材料。

(2)电学性能:CNTs的碳原子之间是SP2杂化,每个碳原子有一个未成对电子位

于垂直于层片的p轨道上,因此CNTs具有优良的导电性能。CNTs的能隙随螺旋结构或直径变化受量子尺寸效应的影响,随着螺旋度和直径的不同,单壁碳纳米管中电子从价带进入导带的能隙可从接近零连续变化到leV,即CNTs可以呈现出金属性、半金属性或半导体性。此外,电子在CNTs的径向运动受到限制,表现出典型的量子限域效应,而电子在轴向的运动不受任何限制。CNTs的径向电阻大于轴向电阻,并且这种电阻的各向异性随着温度的降低而增大。

(3)热学性能:CNTs具有良好的传热性能,并且由于具有非常大的长径比,因此其沿着长度方向的热交换性能很高,而其在垂直方向的热交换性能较低,通过合适的取向,CNTs可以用来制备高各向异性的热传导材料。碳的石墨化程度越高,其导热系数越大。另外,CNTs有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。

(4)热学性能:CNTs由于比表面积大,表面能和表面结合能较高,因而表现出很高的化学活性,并且具有优良的电子传导能力,对反应物和产物有吸附和脱附性能以及特殊的空腔立体选择性等诸多性质。CNTs可吸附大小适合其内径的任意分子,利用其开口顶端的活性作为粒子吸附剂,吸附一些活性高的粒子,做成分子水平的优良催化剂。此外,碳纳米管还可以作为纳米模板应用在化学合成中,将化学反应限制在一维空间中,是形成纳米级复合物,构筑纳米元件和制备一维纳米导线最有效的手段。

(5)生物相容性:CNTs结构稳定不易降解,而且具有疏水性表面,用于生物医药材料时必须考虑其生物相容性。研究发现,通过生物分子修饰可显著改善其生物相容性,而且CNTs表面与众多医药分子之间存在较强的π-π作用,因此可望用作药物载体,生物传感器,生物催化剂等,在生物医药领域将会发挥巨大作用。

(6)催化性能:碳材料本身就是一种优良的催化材料,化工生产中有着广泛的应用。CNTs还具有独特的空腔结构和良好的吸附能力,也是优良的催化剂载体。因此,CNTs 在催化方面也显示出良好的应用前景。

2. 碳纳米管的改性研究进展

虽然CNTs自问世以来一直以其独特的结构和优异的性能成为人们关注的焦点,并在复合材料、场发射器、纳电子器件、SPM探针、催化剂及储氢材料等方面表现出巨大的应用潜力,但只有实现大规模、高纯度的生产才能保证CNTs相关的基础研究和应用探索。然而,CNTs是一种高分子的无机材料,管与管之间具有较强的吸附力,CNTs 易聚集成束或缠绕,使得CNTs不溶于水和有机溶剂,并且成束难以分散,与其他材料

相比,CNTs表面是相对惰性的,这极大的限制了CNTs在各个领域的应用研究。因此,为进一步发挥和改善CNTs的性能,CNTs的研究方向主要转向CNTs的改性方面或功能化处理方面,CNTs的改性和功能化处理己成为国际CNTs研究的一个重要领域。

CNTs的改性就是指用物理或化学方法对其表面进行处理,改变其表面的物化性质,降低CNTs的表面能,消除其表面电荷,提高其与有机相的结合力;目前已报道的许多改性CNTs的方法大致可以分为四类:CNTs管壁共价键化学改性、管壁及管端缺陷点的化学改性、非共价键改性以及管内填充;根据改性目的的不同,CNTs改性可分为油溶性改性、水溶性改性以及复合材料相容性改性。功能化修饰可提高CNTs的溶解度,有助于CNTs的纯化,使其结构发生特定的变化,在保持原有特性的基础上产生一些具有反应活性的官能团,从而引入新的性能。CNTs的功能化方法按其反应机理可分为共价功能化和非共价功能化2种,目前,CNTs功能化研究已逐步发展成为制备具有某些特定功能的CNTs及其复合材料的手段。功能化后的CNTs不仅保持了原有的特异性质,而且还表现出修饰基团参加反应的活性,为CNTs的分散、组装及表面反应提供了可能。将共价功能化的CNTs应用到复合材料、催化剂载体、电子器件、光学材料及生物医学等领域当中,逐渐成为一个新的研究热点,引起了科学家的极大兴趣,也使得CNTs在纳米材料的舞台上更加活跃。

2.1碳纳米管的共价键功能化改性

理论上讲,CNTs完美的类石墨表面结构具有很好的稳定性和化学反应惰性,但在端头及弯折处存在大量缺陷,这些缺陷部位易被氧化生成羧基和羟基等,从而可与其它的化学试剂发生反应。共价功能化按功能化的部位可分为端口功能化和侧壁功能化。一般采用的手段是用浓酸氧化开口,截成短管,使末端或(和)侧壁的缺陷位点带上羧基,然后再进行修饰。另外,活泼性反应基团如重氮盐或卤素等也可直接与侧壁的SP2杂化碳原子进行反应。共价改性能够将功能性基团牢固的键合在CNTs表面,但可能会对CNTs的结构和性能造成明显破坏。下面主要从从碳纳米管的端口与缺陷位置功能化和侧壁功能化两个方面进行阐述。

2.1.1 碳纳米管的端口与缺陷位置功能化改性

CNTs的端头是由碳的五元环和六元环组成的半球形,强氧化剂可将端头打开氧化成羧基,从而与其它的化学试剂反应。而在管壁上CNTs本身就含有一些缺陷位置,如图2所示,五元/七元环对位置缺陷,sp3杂化位置缺陷以及纳米管晶格空位缺陷。这些原生的缺陷点就很容易通过强酸对管壁的氧化破坏作用而留下空洞,从而连接功能基团。由于

CNTs 端口与缺陷位置的存在,因此可以通过连接不同的化学物质与基团而达到CNTs 的功能化。

CNTs 的端帽处是锥度和曲度最大处,是CNTs 的最择优反应部位,许多研究就是

利用这一择优反应打开CNTs 的两端。CNTs 的共价功能化的研究最初是从CNTs 的化学

切割开始的。1994年Green 等发现,利用强酸对CNTs 进行化学切割,可以得到开口的

CNTs 。他们随后研究表明,强酸处理后的CNTs 在其表面生成了很多—COOH 、

—OH 官

能团,而且在强酸处理前对其进行超声波预处理,可以增加官能团的数量。Liu 等首先

将单壁碳纳米管用混酸处理得到100~300nm 的短管,接着用体积比为4:1的浓硫酸和

30%的过氧化氢氧化,得到羧基化单壁CNTs 。CNTs 的共价功能化基团可以明显改善

CNTs 在有机溶剂与水溶液中的溶解度。1998年,Hamon 等利用十八胺与单壁CNTs 的

酰氯进行反应,得到了CNTs 的十八胺衍生物。这种单壁CNTs 可以溶于CS 2、CHCl 3、CH 2Cl 2 等多种有机溶剂,高浓度时呈黑色,低浓度时呈棕色,是世界上首次得到的可

溶性碳纳米管。碳纳米管管端的改性见图4所示。

图 4 碳纳米管的管端的改性

Niyogi和Chen等通过氨基和羧基之间的缩合反应,将长链烷基胺引入到CNTs表面。实验过程为:先将含—COOH官能团的CNTs与氯化亚砜反应从而将羧基转化为酰氯,然后再与十八烷基胺(ODA) 反应,得到含有酰胺官能团的CNTs;或者将经强酸氧化后的CNTs直接与胺基化合物进行缩合反应,该化学修饰过的CNTs能溶解在四氢呋喃(THF) 或二氯苯中。CNTs端头和侧壁缺陷位置在羧基化基础上,还能继续进行胺化、酯化和酰化等反应。Liu等发现,CNTs经强酸氧化后,端帽打开,而端帽和管壁侧面缺陷处的—COOH官能团还能进一步发生衍生反应。Azamian等先对CNTs羧酸化,然后再在碳化二亚胺辅助活化下与2—胺乙硫醇反应,实现了CNTs的硫胺化,引进的巯基官能团用粒径均匀的金胶标记,这样用原子力显微镜(AFM) 就可直接观察到碳纳米管共价功能化的情况。

同样,进一步的功能基团修饰改善了CNTs与不同溶剂的相互作用,也使CNTs的溶解度得到很大的提高。Yamaguchi等将硝酸处理过的CNTs (末端含有酰氯基团)和聚醚(酰)亚胺(PEI)通过胺化反应制备出侧壁PEI分子功能化的碳纳米管,表面的长链PEI 分子使其可溶于水、甲醇、二甲亚砜等强极性溶剂中。Lin等以N,N’—二环己基碳二亚胺作引发剂,将经硝酸预处理过的CNTs和聚乙烯醇(PV AL) 通过酯化反应制备出聚乙烯醇功能化(含PV AL链段) 的CNTs,此CNTs能溶于水和二甲亚砜等强极性溶剂。

在功能化碳纳米管的材料上,人们又尝试把金属或半导体性质的纳米簇连接到CNTs上,在构建分子水平的具有新性能、新效应及新应用的复合器件。但是,由于CNTs 的化学惰性,连接纳米簇之前要首先对其表面进行化学功能化活化,通过功能基团作用将金属微粒或离子―拴‖在CNTs表面上。Yu等采用氧化等手段,在CNTs的表面引入功能基团,再利用过渡金属的配位性能将铂掺入到碳纳米管中。Lordi等利用原位还原K2PtCl4和离子交换,通过羧基将铂纳米簇―拴‖在CNTs表面上。利用表面活性剂或是化学预处理,CNTs的表面也可以被一些金属离子或是金属团簇所修饰:Satishkumar制备了Au、Pt 和Ag纳米颗粒修饰的经酸预处理的CNTs;Hernadi通过热分解AlCl3和异丙醇铝(AlIP),制得铝覆层的多壁碳纳米管复合物,研究发现其中经表面活性剂预处理的碳管与AlCl3作用可得到均匀覆层Al (OH)3的CNTs。

Hazani等通过共焦荧光成像研究了DNA功能化的碳纳米管特性,为研究DNA选择性杂交提供了新的材料和方法。DNA修饰的CNTs不仅增加了CNTs的水溶性,而且使碳纳米管成为生物传感器的重要元件。特别应该指出的是碳化二亚胺辅助活化法,它是生物分子(水溶性蛋白、核酸等)共价功能化的有效途径,明显改进了CNTs的溶解度。Huang等通过活性二酰亚胺胺化反应把蛋白质(BSA)耦合到CNTs上,而且BSA仍保持着活性。Hazani等通过碳化二亚胺辅助酰胺化,实现了CNTs胺基功能化的低聚核苷酸的共价修饰,得到高水溶性的加合物。Fu等以氨丙基三乙氧基硅烷为媒介在CNTs表面生长SiO2,其重要性在于在不破坏碳纳米管电子结构特性的情况下,为CNTs包裹了一层SiO2,使CNTs表面能够固定特定的生物分子。

2.1.2碳纳米管的侧壁功能化改性

非平面共轭有机分子的应力主要产生于两个方面:共轭碳原子的锥形化和相邻共轭碳原子对的π—轨道非线性化。这是导致碳纳米管加成反应的主要原因。碳纳米管的侧壁是由C的六元环构成,每六元环的碳原子都以sp2杂化为主,每个碳原子又都以sp2杂化轨道与相邻六元环上的碳原子sp2杂化轨道相互重叠形碳的σ键,每个碳原子的3个sp2杂化轨道的对称轴之间的夹角是120°,这样就形成了正六边的碳骨架。此外,每个碳原子还有1个垂直于此平面的P轨道,它们形成高度离域化的大π键,这些P电子可以通过π-π键的相互作用和其他含π电子的化合物作用而得到改性的碳纳米管。例如,单壁碳纳米管的sp2杂化轨道与镍的d轨道重新杂化而形成Ni-CNTs复合材料。碳纳米管侧壁的改性如图5所示。

图 5 碳纳米管的管侧壁的改性

碳纳米管侧壁化学修饰始于碳纳米管的氟化研究。Hamwi等发现碳纳米管与元素氟

能发生加成,形成氟化的CNTs。控制不同的反应温度,可以控制氟化的程度。氟化后的CNTs易被亲核试剂进攻,从而得到可溶的CNTs。机理上,氟与单壁碳纳米管的加成存在1, 4-加成和1, 2-加成两种方式。Halas等借助AM1和CNDO计算1, 4-加成从能量上是有利的,并且很好地解释了首次获得单壁氟化碳纳米管的扫描电镜(STM) 图像的带形分界现象。进一步研究发现,在醇中超声波作用下,氟化CNTs可形成溶液相,状态可稳定数天或一周。这可能是氟化碳纳米管中的氟和醇中的氢形成较强的氢键所致。这种在醇中溶剂化为研究侧壁氟化碳纳米管的物理和化学性质成为可能。

侧壁氟化为侧壁连接亲核取代基打开了通道,并且取代基的末端官能团(例如—NH2、—OH、—COOH)可根据需要进一步进行化学修饰。对碳纳米管的亲核加成、芳基化作用、自由基加成和亲核取代等反应都有相应研究。Boul等通过格氏试剂和甲基锂试剂将烷基由C—C键共价连接到碳管侧壁,并证明在CNTs上修饰烷基是通过化学吸附作用而不是物理吸附。在单壁碳纳米管壁上引入烷基或烷氧基会明显改善溶解度,这种侧壁加成将单壁碳纳米管的侧壁部分碳原子从sp2杂化改为sp3杂化,会导致电子结构改变。

Margrave和Smalley等研究了单壁碳纳米管在不同温度下的氟化反应,将纯化后的CNTs通入氟和氦的混合气体,能得到侧壁氟化的纳米氟管。这种氟化碳管在醇溶液中呈单分散,可得到亚稳态的溶液。用无水肼可使氟管脱氟,得到不含氟的碳纳米管,也可将氟管在甲醇钠中超声处理,管壁上的氟可与甲氧基发生取代反应而被取代,得到甲氧基碳纳米管;还可进一步与烷基锂(如己基锂)或烷基溴化镁在超声波作用下反应,得到含有烷基链的氟化碳纳米管,并可溶于氯仿和四氢呋喃等多种有机溶剂。碳纳米管的氟化、脱氟及进一步的化学修饰可为其多功能化提供了一条重要途径。Margrave等从能量角度考虑,认为是通过加成—消除机理进行取代(S N2) 机理。

Huang等以端氨基聚乙二醇低聚物(PEG)作为功能化试剂,采用3种功能化方法:酸—碱两性离子作用(即直接热反应) 、酰化—酰胺化及碳化二亚胺活化的偶合反应,研究不同反应条件下CNTs功能化效果的差异。结果表明,直接热反应和酰化—酰胺化可得到了分散性良好的CNTs,碳化二亚胺功能化适合一些特定需要。迄今,所有功能化方法的局限在于溶解和分散CNTs,需消耗超大量的溶剂。Dyke等报道了一种免溶剂制备功能化碳纳米管的方法,对碳纳米管实现了各种4-取代苯胺的侧壁功能化,为大规模的CNTs功能化开辟了新的途径。Stevens等利用氟化碳管作为前体,端胺基二胺为亲核试剂,将N-次烷氨基通过C—N键共价连接到CNTs的侧壁。这种C—N功能化方法为键合氨基酸、DNA、聚合物等提供了合成途径,并且为尼龙—碳纳米管高分子材料的合成

提供了纳米管前驱体。

2.2碳纳米管的非共价键功能化改性

非共价键功能化改性也是对CNTs进行改性的一种重要手段。由于共价键功能化改性会破坏CNTs的结构,从而大大减弱甚至消除了其独特的性质。于是,既可以保持CNTs 的原有性质,又可以实现功能化的修饰方法便成为研究的核心课题,非共价功能化开始越来越多地被人们所认识,非共价改性的特点在于在对CNTs进行化学改性的同时不影响碳管的电子结构。CNTs侧壁由sp2碳原子构成,具有大量高度离域的π电子体系,这些π电子可以与含有π电子的其他化合物通过π-π键作用而结合得到功能化的CNTs。CNTs也可通过自组装而形成热力学稳定结构, 在不破坏纳米管原来结构的基础上,利用氢键、π-π键、静电引力、范德华力、疏水和亲水作用来使小分子在其侧壁上吸附,而大分子通过高聚物链缠绕而实现修饰作用。

Smalley等人成功地将线性聚合物聚乙烯比咯烷酮(PVP)和磺化聚苯乙烯(PSS)通过π-π相互作用包裹到SWNTs管壁上,得到了水溶性的SWNTs。实验结果表明,聚合物分子紧密、均匀地缠绕在SWNTs管壁上,如图6所示。聚合物链改善了SWNTs管壁的疏水性,较好地解除了SWNTs的聚集效应,使其呈单分散,具有较好的亲水性。值得一提的是,这种聚合物和SWNTs之间的包裹作用是可逆的,通过改变溶剂体系,聚合物链能从SWNTs管壁上脱落,而且不会影响SWNTs的结构和性质。研究还表明,烷基链的长度及形状对表面活性剂分散碳纳米管的效率有较大的影响,烷基链越长,枝化度越高的表面活性剂分散碳纳米管的效率越高。

图6 侧壁高聚物链的非共价包裹

Zhao等利用芳香有机分子对CNTs进行修饰,发现芳香族化合物与CNTs之间的电子耦合作用可影响CNTs的导电和电子传输性质。在梯度归纳( GGA) 的水平上,利用

密度功能化计算方法比较了不同的有机分子( C6H6、C6H12、C8N2O2Cl2)在与CNTs发生π电子耦合过程中的电子传输能力。结果表明,对CNTs而言,C6H6、C6H12是很弱的电子给予体;而C8N2O2Cl2是很强的电子接收体,其与CNTs之间的耦合作用可将碳纳米管由半导体变成了导体。Kim等人用十六烷基三甲基氢氧化铵与4-乙烯基苯磺酸进行中和反应获得了一种带有可聚合反离子的阳离子表面活性剂(CTVB)。然后,将SWNTs分散于CTVB水溶液中,引发反离子进行原位自由基聚合,将表面活性剂固定在SWNTs 上,最后进行冷冻干燥得到了聚合物改性的SWNTs粉末,该粉末只需轻微搅拌在10分钟之内即可溶于水中,实验过程如图7所示。

图7 聚合物改性的SWNTs粉末的制备

Carrillo等以双亲高聚物——聚苯乙烯顺丁烯二酸酐( h-PSMA) 为原料,首先利用疏水作用与碳纳米管表面接着,随后利用h-PSMA上的碳酸基团再次引入第2种高聚物——聚哌嗪,从而形成彼此交错的双高聚物层,提高了高聚物层的稳定性。反复利用同样的方法可以不断接上各种高聚物,形成多层高聚物。通过这些高聚物就可以使碳纳米管与金纳米颗粒、生物分子及各种配体接着,从而达到各种功能化的需求。

Islam等利用阴离子表面活性剂十二烷基苯磺酸钠( NaDDBS) 十二烷基磺酸钠( SDS) 和非离子表面活性剂Triton X-100分别处理碳纳米管,分析了表面活性剂吸附在碳纳米管表面的机理如图8所示,他们认为,表面活性剂包覆在碳纳米管的表面,提高了碳纳米管在水溶液中的分散性并且表面活性剂所带的活性基团烷基链的长度以及与碳纳米管之间的相互作用是影响碳纳米管分散的主要因素。阴离子表面活性剂主要是通过憎水基团吸附在碳纳米管的表面,亲水基团所带的同种电荷增加了碳纳米管之间的静电斥力,从而提高了碳纳米管的分散性。

图8 不同表面活性剂在碳纳米管表面吸附的示意图

Star等以碘和正丁醇等小分子作为模板,先将直链淀粉预组装成左手螺旋结构,然后让CNTs与小分子竞相进入螺旋结构内部,从而使其溶于水中。支链淀粉不能与碘形成复合物,因此不溶解CNTs,但其存在有助于直链淀粉与CNTs形成稳定的水溶物。在此基础上,Kim等首先将SWNTs在水中预超声进行分散,然后将直链淀粉及分散好的碳纳米管放入一定浓度的二甲基亚砜( DMSO) 水溶液中,然后再超声,最大程度地协调碳纳米管与直链淀粉的作用,使纳米管能迅速、完全地溶解于DMSO水溶液及纯水中。碳纳米管的非共价功能化是近几年发展起来的新兴研究方向,由于起步较晚,尚存在许多不足。例如,溶性的碳纳米管的合成方法尚不完备,表征方法尚不成熟,许多功能化后的纳米管由于无法表征而不能得出令人信服的结论,而功能化后的碳纳米管组装问题也更待研究。

3. 结语与展望

碳纳米管因其特殊的管状结构,使其具有特异的电学性能与力学性能,在复合材料、电学材料、传感器及生物医药等领域有着广泛的应用。然而它在溶剂中的溶解性以及与其他材料的相容性均较差,这制约了它的应用,因此需要对其进行改性,以增加其在溶剂及其他材料中的分散性。碳纳米管的功能化涉及无机化学、有机化学和生物化学等领域,正是这种多学科的交叉与渗透更加显示其有巨大的研究和应用价值。目前,碳纳米管功能化主要是在结构上进行化学共价与非共价修饰,使其在某些溶液环境或者纳米复合材料中均匀分散,并且表现出继续参加反应的活性。功能化改性后的碳纳米管具有良好的溶解性和分散性,可用于色谱、毛细管电泳等液相分离技术领域。与此同时,由于碳纳米管在功能化后具有修饰物和本身的双重性质,因此成为物理学、生物学、材料学、医药学以及其他相关学科争相研究的对象。碳纳米管的改性是近年发展起来的一个新兴研究方向,从目前的研究现状来看,碳纳米管的改性研究尚处于起步阶段,有待于进一步完善。例如:改性的方法还不是很成熟,碳纳米管之间还很难真正完全分开,表征手

段也不完备,目前真正实现工业化还有一段距离。但是随着碳纳米管功能化改性和修饰的不断深入,这些问题将会逐步得到解决,使碳纳米管在物理、生物、材料、能源等相关领域的得到真正的应用。

参考文献

[1] 李秀秀,李晓东,杨荣杰. 碳纳米管的功能化研究进展[J]. 碳素技术. 2004 (2), 23:23-27.

[2] 薛朝华. 碳纳米管的功能化及其性能研究[D].浙江大学.2008.

[3] 廖晓宁,李凤仪,华丽等. 碳纳米管的改性与应用[J].化工新型材料. 2006 (6), 34(6):25-28.

[4]. H. Kuzmanya, A. Kukoveczb, F. Simon, et al. Functionalization of carbon nanotubes[J]. Synthetic Metals. (2004), 141:113–122.

[5] 史运华,任玲玲,李殿卿. 碳纳米管分散研究进展[J]. 化学通报. 2012, 75(6):502-507.

[6] 王宗花,赵凯,陈相康等. 共价功能化碳纳米管的应用研究进展[J]. 化学研究. 2009 (3), 20(1):104-109.

[7] Yuan T, Bin G, Verónica L, et al. Effect of surface modification on single-walled carbon nanotube retention and transport in saturated

and unsaturated porous media[J]. Journal of Hazardous Materials. 2012(9), 239(240): 333– 339.

[8] Nikolaos K, Nikos T. Current Progress on the Chemical Modification of Carbon Nanotubes[J]. Chem. Rev. 2010(1), 110: 5366–5397.

[9] 曾祥兵. 碳纳米管改性及其在复合材料中的应用研究[J].湖南大学.2005.

[10] 宋长文,颜红侠,李朋博等. 碳纳米管化学修饰的研究进展[J]. 炭素技术. 2009 , 3 (28):30-34..

[11]. Zhao Y L, Stoddart J. F. Noncovalent Functionalization of Single-Walled Carbon Nanotubes[J]. Accounts of Chemical Research.

2009(8), 42(8): 1161-1171.

[12] 毛蕾蕾,王宗花. 碳纳米管的非共价功能化研究进展[J].现代化工. 2006 (2), 29(2):29-33.

碳纳米管聚合物复合材料

碳纳米管/聚合物复合材料的制备及应用现状 *** (***大学,材料科学与工程学院,安徽,***) 摘要:本文综述了三类碳纳米管—聚合物复合材料的制备方法,碳纳米管/复合材料的力学、光、电化学等性质,以及当前研究的焦点和存在的问题,侧重讨论碳纳米管与聚合物相互作用的机理,并展望两类复合材料的应用前景。 关键词:碳纳米管聚合物复合材料 Carbon Nanotube/Polymer Composites and Applications *** (School of Materials Science and Engineering,*** , ***,Anhui,China) Abstract: A review on the fabrication and the properties of three types of carbon nanotube-polymer composites,such as the mechanical properties,nonlinear optical properties and conductibility is given in this paper. The study focus,as well as the defects about the composites have been mentioned. The interaction mechanism of carbon nanotubes-polymers is discussed and the application prospect of two types of composites is envisaged. Key words: carbon nanotubes;polymers;composites 复合材料,根据国际标准化组织所下的定义,由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料,但复合材料的性质却不是各个组分性能的简单加和,而是在保持各个组分材料的某些特点的基础上,具有组分间协同作用所产生的综合性能纳米级复合材料是指两种或两种以上的固相组成,其中至少有一相物质在一维方向处于纳米级范围,即接近分子水平的微粒。因纳米复合材料分散相尺寸介于宏观与微观之间,将给材料的物理化学性质带来特殊的变化。碳纳米管复合材料是纳米复合材料的一种,目前研究的CNTs复合材料主要有:金属或陶瓷基CNTs复合材料、金属或金属氧化物填充CNTs复合材料、储氢CNTs复合材料、聚合物基CNTs复合材料等f301。CNTs因其具有超强的力学性能、高的导电性和导热性、大的比表面积和优异的吸附性能以及显著的

苯并恶嗪树脂的合成及其改性的研究进展_吴广磊

苯并恶嗪树脂的合成及其改性的研究进展 吴广磊寇开昌晁敏王伟蒋洋王益群张教强 (西北工业大学理学院,西安710129) 摘要综述了近年来国内外在苯并恶嗪树脂基础研究与应用领域内的最新进展情况;介绍了苯并恶嗪树脂的合成及其改性方法,并对苯并恶嗪树脂的发展趋势进行了展望。 关键词苯并恶嗪树脂合成改性 苯并恶嗪是由O原子和N原子构成的六元杂环化合 物。该类化合物具有下列特点:①较低的熔融黏度,便于成型加工;②不需要以强酸为催化剂,加热或使用Lewis酸等催化剂就可使其开环聚合,聚合后形成类似酚醛树脂的结构;③聚合时无小分子放出,制品孔隙率低;④聚合过程中收缩很小,可保证制品精度;⑤聚合物耐热性好,有高的玻璃化转变温度(T g )和热稳定性;⑥聚合物有良好的力学性能、电气性能、阻燃性能和高的残炭率,并且吸水率极低;⑦具有灵活的分子设计性等。苯并恶嗪已广泛应用于复合材料基体树脂[1]、无溶剂浸渍漆[2]、电子封装材料[3]、阻燃材料[4]和电绝缘材料[5]等领域。然而,单官能度的苯并恶嗪在开环聚合时存在链转移反应,所得聚合物的分子量低,限制了其应用范围;而双官能度(如双酚A型)的苯并恶嗪尽管可用作高性能材料,但由于分子结构自身的特点,致使苯并恶嗪聚合物存在交联密度低、性脆、韧性较差等缺点。因此,为适应特殊的使用要求,需对苯并恶嗪进行合成工艺的探索和适当的改性,以便获得满足要求的性能。 1苯并恶嗪树脂的合成 1.1溶剂法合成 赵圩等[6]以甲苯为溶剂,采用苯酚、苯胺、甲醛和二甲苯甲醛树脂(XF)为原料,通过Mannich反应合成了一种二甲苯型苯并恶嗪。此苯并恶嗪分子量分布较窄,在加热条件下可开环聚合,其固化温度为145 230?,此苯并恶嗪固化产物(聚苯并恶嗪)具有优良的热性能,其耐热指数为197?。王军等[7]以双酚芴、环己胺和甲醛为原料,合成了一种新型双官能度芴。芴基苯并恶嗪呈现典型的热开环固化反应,芴基以Mannich桥键链接方式悬挂在聚合物网络结构中,分子 内和分子间氢键及刚性的芴基链段使得聚合物的T g 达到189.4?。失重5%和10%时,对应的热分解温度为329?和351?,800?时残炭率达到31%。刘晓丽等[8]以3-氯丙烯、苯酚、甲醛和苯胺为原料,制备了烯丙基苯并恶嗪及其中间体烯丙基苯基醚、邻烯丙基苯酚,发现邻烯丙基苯酚与苯胺、甲醛在适当的配比反应6h,烯丙基苯并恶嗪的产率较高,可达到98.8%。张英强等[9]以烯丙基双酚A、间氨基苯乙炔和甲醛为原料,以二氧六环为溶剂,合成了含烯炔结构的苯并恶嗪化合物。对该恶嗪化合物的固化产物进行了动态力 学分析(DMA),结果表明,制备的恶嗪化合物固化物的T g 高达367.61?。说明通过引入烯、炔结构,可大大提高苯并恶嗪树脂的使用温度。蒋健美等[10]以双酚、甲醛和二胺为主要原料,以甲苯为溶剂,合成了苯并恶嗪(BOZ)中间体。发现双酚二胺类BOZ体系具有较宽的固化峰,在200?左右开始开环固化,具有良好的加工性能;双酚二胺类BOZ体系比双酚单胺类BOZ体系具有较高的分解温度和良好的耐高温性能,其300?时无热失重,700?时的残炭率均超过40%,说明该双酚二胺类BOZ体系是一种良好的耐高温材料,可以用于耐高温胶粘剂的制备。白会超等[11]以对羟基苯甲醛、苯胺、甲醛为主要原料,以三氯甲烷和二氯甲烷为溶剂,合成了含醛基的苯并恶嗪中间体。结果表明,含醛基的苯并恶嗪中间体在氮气保护下,800?的残碳率高达65.63%,与普通的苯并恶嗪树脂相比,残炭率提高了20%,耐热指数为221.09?。G.P.Cao等[12]用溶剂法2,6-二(4-二氨基苯甲酰氧基)苯甲腈、苯酚和甲醛合成了一种含氰基的苯并恶嗪(BZCN),并借助红外光谱(IR)和核磁共振对其结构进行了表征。并用IR、差示扫描量热(DSC)和热失重(TG)测试了其热性能。结果发现,完全固化后的材料在氮气保护下,800?的残炭率可达70%,在空气中(含20%氧气)600?时的残炭率可达64%。而且氰基的引入提高了苯并恶嗪的T g ,为250?。 1.2无溶剂法合成 邹志量等[13]采用无溶剂二步法制得了双酚A型苯并恶嗪,并将它的初级产品和溶剂法制得的苯并恶嗪的初级产品的成环率进行了比较。通过比较发现,无溶剂二步法制得的苯并恶嗪的成环率高。赵恩顺等[14]采用无溶剂法以双酚A、甲醛分别和苯胺、间甲苯胺、对甲苯胺、3,5-二甲基苯胺为原料合成苯并恶嗪树脂。通过对比固化后树脂的介电常数表明,苯胺苯环上甲基的存在和不同位置对苯并恶嗪固化树脂介电常数有影响。同时采用在树脂中引入氟原子的方法来降低树脂的介电常数。陶果等[15]以4-氨基苯基马来酰亚胺、甲醛、苯酚为原料,采用两步法合成苯并恶嗪。表征分析发现,马来酰亚胺引入恶嗪化合物后可以明显提高聚合产物的热性能;采用含马来酰亚胺结构合成的苯并恶嗪单体化合物的熔点为113.3?,苯并恶嗪在150?的固化率大大增加, 收稿日期:2011-06-17

碳纳米管的应用领域—陶瓷

引言 纳米材料是纳米技术的基础,而碳纳米管又可称为纳米材料之王。碳纳米材料在纳米材料技术开发中举足轻重,它将影响到国民经济的各个领域。碳纳米管的发现是碳团簇领域的又一重大科研成果。在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。由于碳纳米管具有独特的金属或半导体导电特性、非常好的力学性能、极高的机械强度、吸附能力、场致电子发射性能和宽带电磁波吸收特性等,碳纳米管被发现之后立即受到物理、化学和材料科学界以及高新技术产业部门的极大重视。碳纳米管被认为是一种性能优异的新型功能材料和结构材料,在信息技术、生命科学、环境科学、自动化技术、航空航天技术及能源技术等方面具有广阔的 应用前景。可以预见,碳纳米管将在诸多领域形成新的产业,产生重大的经济效益和社会效益。 原子形成的石墨烯片卷成的无缝、中空的管体。碳纳米管因其独特的结构而具有许多独特的性能,除了在半导体器件、储氢、传感器、吸附材料、电池电极、催化剂载体等领域具有非常广阔和诱人的应用前景外,碳纳米管在制备结构、功能以及结构/功能一体化复合材料方面也将大有作为。CNTs陶瓷复合材料的研究才刚起步, 目前仍处于尝试阶段。虽然CNTs的增强和功能(导电和导热) 效果已有初步体现,但效果并不理想,相对于微米级增强相的优势还不明显,离理论预测的效果还有很大差距,还有许多工作要做。

1、CNTs陶瓷复合材料着重的研究工作: 1.1 CNTs在基体中的均匀分散技术 只有CNTs均匀地分散到基体中去,才能最大程度地发挥CNTs的增强作用以及功能特性。可以说,均匀分散是制备高性能CNTs陶瓷复合材料的前提。CNTs直径小且纵横比大,表面积大且易团聚,这一方面导致均匀分散的难度非常大,另一方面也导致制备高体积含量CNTs陶瓷复合材料的难度也非常大, 而足够的 CNTs体积分数对于增强效果和功能特性是很重要的。球磨混合、超声混合、使用表面活性剂、原位合成是目前报道的提高分散均匀性的方法。其中,原位合成可以制备出分散均匀且体积含量高的CNTs陶瓷复合材料,值得深入研究; 1.2 CNTs陶瓷复合材料的致密化技术。 足够的致密度是获得高力学性能CNTs陶瓷复合材料的前提,目前报道的致密化技术大都是高温高压烧结技术,它不仅会破坏CNTs的结构,减少CNTs的数量,而且当CNTs体积含量较高,分散均匀性较差时,高温高压烧结技术很难获得高致密度,从而严重削弱CNTs的增强效果和功能特性。虽然已有利用SPS技术制备出高致密度CNTs陶瓷复合材料的报道,但开发低温无压致密化技术的需求依然迫切; 1.3 CNTs基体界面结构设计与控制。 CNTs是一种纳米尺度的增强相,具有独特的表面特性和非常大的比表面积,这就决定了CNTs与基体的接触面积很大,界面结构也与众不同。因此,界面结构对CNTs陶瓷复合材料性能有着非常大的影响,当CNTs体积含量较高时,这种影响程度就更大了。从这个意义上说,从原子尺度上研究CNTs与基体之间的界面结构及其对复合材料性能的影响,以及通过CNTs表面处理等手段进行界面结构设计与控制将是今后工作的重点; 1.4 CNTs陶瓷复合材料微观结构研究。 从目前研究情况看,往往只单纯考虑CNTs含量与复合材料性能的关系,而没有从CNTs和基体相互协同的角度考虑问题,忽略了基体结构以及CNTs结构对性能的影响,从而引起一些错误结论。今后应注意研究CNTs 结构在制备过程中的变化以及由于CNTs引入而引起的基体结构的变化;

纳米技术在高分子材料改性中的应用

纳米技术在高分子材料改性中的应用 (南通大学化学化工学院高分子材料与工程132 朱梦成1308052064 ) [摘要] 纳米材料及其技术是随着科技发展而形成的新型应用技术。纳米材料的研究是从金属粉末、陶瓷等领域开始的,现已在微电子、冶金、化工、电子、国防、核技术、航天、医学和生物工程等领域得到广泛的应用。近年来将纳米材料分散于聚合物中以提高高分子材料性能的研究也日益活跃,并取得了许多可观的成果。 [关键词] 纳米技术;高分子材料;改性;应用 1纳米粒子的特性及其对纳米复合材料的性能影响 1.1纳米粒子的特性 纳米粒子按成分分可以是金属,也可以是非金属,包括无机物和有机高分子等;按相结构分可以是单相,也可以是多相;根据原子排列的对称性和有序程度,有晶态、非晶态、准晶态。由于颗粒尺寸进入纳米量级后,其结构与常规材料相比发生了很大的变化,使其在催化、光电、磁性、热、力学等方面表现出许多奇异的物理和化学性能,具有许多重要的应用价值。 1.1.1表面与界面效应 纳米微粒比表面积大,位于表面的原子占相当大的比例,表面能高。由于表面原子缺少邻近配位的原子和具有高的表面能,使得表面原子具有很大的化学活性,从而使纳米粒子表现出强烈的表面效应。利用纳米材料的这种特点,能与某些大分子发生键合作用,提高分子间的键合力,从而使添加纳米材料的复合材料的强度、韧性大幅度提高。 1.1.2小尺寸效应 当超细微粒的尺寸与传导电子的德布罗意波长相当或更小时,晶体周期性的边界条件将被破坏,导致其磁性、光吸收、热、化学活性、催化性及熔点等发生变化。如银的熔点为900℃,而纳米银粉的熔点仅为100℃(一般纳米材料的熔点为其原来块体材料的30%~50%)。应用于高分子材料改性,利用纳米材料的高流动性和小尺寸效应,可使纳米复合材料的延展性提高,摩擦系数减小,材料表面光洁度

碳纳米管作为一维纳米材料

碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能……碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料 由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。 碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料, 可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。 碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。 碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。理论预测其导电性能取决于其管径和管壁的螺旋角。当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线。有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景。 碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善 ( 氢气被很多人视为未来的清洁能源。但是氢气本身密度低,压缩成液体储存又十分不方便。碳纳米管自身重量轻,具有中空的结构,可以作为储存氢气的优良容器,储存的氢气密度甚至比液态或固态氢气的密度还高。适当加热,氢气就可以慢慢释放出来。研究人员正在试图用碳纳米管制作轻便的可携带式的储氢容器。 在碳纳米管的内部可以填充金属、氧化物等物质,这样碳纳米管可以作为模具,首先用金属等物质灌满碳纳米管,再把碳层腐蚀掉,就可以制备出最细的纳米尺度的导线,或者全新的一维材料,在未来的分子电子学器件或纳米电子学器件中得到应用。有些碳纳米管本身还可以作为纳米尺度的导线。这样利用碳纳米管或者相关技术制备的微型导线可以置于硅芯片上,用来生产更加复杂的电路。 利用碳纳米管的性质可以制作出很多性能优异的复合材料。例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。

碳纳米管增强塑料仍面临技术挑战

51 中国粉体工业 2010年第1期 行业资讯 纳米复合材料工程项目落户化隆加合 工业园区 日前,青海中圣新材料有限公司纳米复合材料工程项目落户化隆回族自治县加合工业园区,这个项目总投资1.98亿元,由山西康宝集团投资,中国科学院提供专利技术,建设集高纯复合材料产品——新型纳米复合材料,公司用等离子体法生产纳米复合材料产品将填补国内行业空白。 近年来,化隆县根据省委提出“四区、两带、一线”的发展战略和海东“园区引领、产业集中、培育主体、县域有别、提效增量”的总体要求,提出规划建设加合工业园区的设想,主要利用化隆县丰富的电力、矿产等资源优势,集中发展新型硅材料工业。纳米复合材料工程项目分三期建设,其中一期整体项目建成后可实现年产优质新型复合材料6万吨、太阳能单晶硅等切割粉体2万吨,航天、航海军工等科技领域使用的纳米复合材料1000吨,可实现综合产值10亿多元,安置就业岗位600多个,一年可创利税超亿元。(作者:吕锦武 李玉峰) 聚丙烯纳米助剂性能优异 南京淳达科技发展有限公司研制开发的CD-YZPP-22聚丙烯纳米多功能复合助剂日前通过南京市科技局组织的科技成果鉴定。 新产品采用的纳米全硫化粉末丁苯橡胶及其它改性材料优化配方设计,使改性后的聚丙烯专用料冲击强度、低温冲击强度、负荷变形温度、洛氏硬度、断裂应变率、拉伸屈服应力等性能大幅度提高,黄色指数明显下降。科研人员攻克了纳米橡胶弹性粒子不易分散的难题,使产品实现了纳米效应。该产品将多种具有改性功能和性能补充功能的材料同时添加混配,使单一的母料助剂同时具有多种改性功能。各种材料混配及添加至树脂中相容性好。 纳米改性塑料应用范围广 从上个世纪90年代初开始,就有运用将尼龙12与碳纳米管做成内部阻隔层,应用在汽车燃油管组件例如快速连接器和过滤器中。 Hyperion Catalysis 现在则瞄准于将纳米管引入到别的树脂材料中应用到汽车的燃料系统中,比如改性尼龙和一些含氟聚合物。这种新型含氟聚合物/纳米管复合材料可以用来制造车用燃油连接器的O 形圈。 在电子工业上,聚碳酸酯和聚醚酰亚胺(GE 的Ultem)材质的计算机硬件,经由纳米管的增强,可以有更好的传导性,表面更加光滑。 在过去的三年中,欧洲一家非常大的汽车OEM 公司添加碳纳米管到GE 的Noryl GTX 尼龙/PPO 合金中,铸模成型外部挡泥板。这种导电纳米复合物材料可以用静电法上漆。 密歇根大学(MSU)复合物材料与结构中心新近开发出了一种表面处理过的石墨纳米板。石墨的模量是粘土的好几倍,并且具有更佳的电学和热学方面的性能,它与一个环氧树基接合以后,与一般碳光纤和纳米碳黑相比,会有更佳的力学性能以及更高的电导率。MSU 预见到它在回声探测仪(ESD)的保护与电磁干扰(EMI)屏蔽方面具有很大的发展潜能。这种塑料纳米石墨复合物被预计将会卖到每磅五美金,比纳米管或蒸汽生成的碳光纤要来的便宜得多。 碳纳米管能改变的远不只是传导率。美国国家标准与技术研究院(NIST)研究发现碳纳米管添加到PP 里面,不只改善材料的强度及性能,而且可以改变熔融聚合物的流动状况,切实去除模口膨胀。 碳纳米管增强塑料仍面临技术挑战 以色列魏茨曼(Weizmann )科学研究所的研究人员发现,将碳纳米管添加到塑料中,可以大大加强塑料的强度。这些研究人员 目前正在研究如何将碳纳米管注入塑料或其他材料中,从而帮助提高复合材料的性能。 塑料(聚甲基丙烯酸甲酯)常常用来替代玻璃,是一种不易碎的材料,比如,树脂玻璃和透明合成树脂。研究人员用单壁和多壁碳纳米管增强聚甲基丙烯酸甲酯纤维后发现,尽管这两种类型都可有效增强塑料的强度,但多壁纳米管的韧性更强,相当于几个单壁纳米管嵌套在一起。 纳米结构的增强复合材料是未来研究的方向,目前已经逐渐开始取代微型分子复合材料。碳纳米管是一种自然的选择,因为它们异常坚韧,尤其是多壁碳纳米管可嵌套多达50个碳纳米管。虽然碳纳米管在显著提高材料强度上取得了不菲的成就,但目前在利用上还存在技术瓶颈。因为很难避免类似纳米集群的问题---一些碳纳米管随机聚合,而不是平均分布。这样一来,甚至可能降低材料的强度。 项目负责人DanielWagner 解释说:“尽管我们已经投入了大量精力,但是研究结果仍然存在矛盾之处---碳纳米管 虽能作为增强剂,但怎样使碳纳米管(多壁和单壁)有序的分布的问题并没有解决。这已经成为目前发展纳米复合材料的主要挑战。静电纺丝技术是目前最为简单有效的制备有序纳米纤维的手段。”静电纺丝技术通过静电力作为牵引力来制备超细纤维。在静电纺丝工艺过程中,将聚合物熔体或溶液加上高压静电,最终形成无纺布状的纳米纤维。 Wagner 和他的同事SuiXiaomeng 用静电分别提取了单纯

碳纳米管的表面改性 [兼容模式]

碳纳米管的表面改性

1、碳纳米管的简单介绍 碳纳米管是由碳六边形的石墨烯片同轴排列、两端被像富勒烯结构的端帽封口而形成一个微小的管,直径从几个埃到十几个纳米,长度可以到达几个厘米。碳纳米管有单壁碳纳米管和多壁碳纳米管两种主要类型 单壁碳纳米管多壁碳纳米管

CNT的优良性能 ?独特的分子结构:具有显著的电子特性,是构建下一代电子器件和网络颇具吸引力的材料 ?非凡的抗张强度:可用于制造CNT加强纤维和用作聚合物添加剂 ?在分析化学领域的应用包括制作各种特定用途的生物/化学传感器及纳米探针(例如,用作原子力显微镜探针尖,在体检测的生物探针等) 高的比表面积和极强的吸附性碳纳米管作为储?高的比表面积和极强的吸附性:碳纳米管作为储氢、储能材料

CNT 的局限性 ?在电子线路的微型化方面,因为CNT 是极端疏水的,并形成不溶的集合体,很难组装成有用的结构 ?由于CNT 的化学惰性,连接纳米簇之前要首先对其表面进行活化和分散。 ?制备、处理或操作这种纳米工程组分或共聚物时 制备、处理或操作这种纳米程组分或共聚物时,需要先分散和溶解CNT,但CNT 在一般有机溶剂和水中是不溶的。? CNT 的许多潜在应用都需要了解它的光激发态的性能,但CNT 在溶剂中的不溶性限制了对其的定量研究。

2、碳纳米管的表面改性 ?共价功能化:一般采用的手段是用浓酸氧化开口,截成短管,使末端或(和)侧壁的缺陷位 点带上羧基,然后再进行修饰 1)端口功能化 Chen等[1]利用氧化开口的SWNT与SOCl2反应,再与十八胺反应,将长的脂肪链连接到CNT上,实现了CNT在有机溶剂中的溶解。溶解的CNT与卡宾试剂进行溶液反应,实现了管壁卡宾功能化,开辟了碳管管壁的液相化学 Liu等[2]同样是利用氧化开口的SWNT,通过酰化胺化反应将NH2(CH2)11SH接到碳管的端口,进一步实现了金纳米颗粒的固定; 进步实现了金纳米颗粒的固定 Nguyen等[ 3 ]构置垂直排列的CNT阵列纳米电极平台,采用在CNT间隙填充旋压玻璃( spin on glass, SOG)的方法,进行端口选择性氧化、继而采用碳化二亚胺辅助活(spin on glass SOG)进行端口选择性氧化继而采用碳化二亚胺辅助活 化法,实现了CNT阵列的端口核酸功能化

粉体表面改性复习要点(精简版)

第2章 纳米粉体的分散 1.粉体分散的三个阶段(名词解释) 润湿 是将粉体缓慢加入混合体系形成的漩涡,使吸附在粉体表面的空气或其它杂质被液体取代的过程。 ?解团聚 是指通过机械或超声等方法,使较大粒径的聚集体分散为较小颗粒。 ?稳定化 是指保证粉体颗粒在液体中保持长期的均匀分散 2.常用的分散剂种类 (1)表面活性剂 空间位阻效应 (2)小分子量无机电解质或无机聚合物 吸附--提高颗粒表面电势 (3)聚合物类(应用最多) 空间位阻效应、静电效应 (4)偶联剂类 3.聚电解质(名词解释) 是指在高分子链上带有羧基或磺酸基等可离解基团的水溶性高分子 4.对不同pH 值下PAA 在ZrO 2表面的吸附构型进行分析。 图.不同pH 值下PAA 在ZrO 2 表 面的吸附构型 a.当pH<4时,PAA 几乎不解离,以线团方式存在于固液界面上,吸附层很薄,几乎无位阻作用 δ δδ

b.随pH值增加,链节间静电斥力使其伸展开 c.ZrO2表面电荷减小直至由正变负,PAA的负电荷量增加,其间斥力增加, 使得PAA链更加伸展,可在较远范围提供静电位阻作用 5.用聚电解质分散剂分散纳米粉体时,影响浆料稳定性的各种因素有哪些? 1、聚电解质的分子量 当聚电解质分子量过小,在粉体表面的吸附较弱,吸附层也较薄,影响位阻作用的发挥。 分子量过大,易发生桥连或空位絮凝,使团聚加重,粘度增加。 2、分散剂用量 适宜的分散剂用量才可以使分散体系稳定。 用量过低,粉体表面产生不同带电区域,相邻颗粒因静电引力发生吸引,导致絮凝。 用量过高,离子强度过高,压缩双电层,减小静电斥力;同时,还易发生桥连或空缺絮凝,稳定性下降。 3、温度 研究表明,为了获得较好的分散效果(以最低粘度为衡量标准),随温度的升高,所需分散剂的用量随之增加 6.结合下图,分析煅烧为什么能够改善纳米Si3N4粉体的分散性? 煅烧改善纳米Si3N4粉体的可分散性 ?此前提到,球磨可有效降低粉体的粒度。但球磨过程可能造成分散介质与粉体发生化学反应。 ?以乙醇为介质球磨Si3N4粉体时,表面的Si-OH可能与乙醇反应生成酯。 ?酯基的生成对粉体的分散性影响很大: a、酯基是疏水基团 b、屏蔽负电荷,影响分散剂的吸附 ?采取煅烧去除酯基,可改善其分散性 第3章纳米粉体表面改性(功能化) 1.表面改性有哪些重要应用? 改善纳米粉体的润湿和附着特性。 改善纳米粉体在基体中的分散行为,提高其催化性能。 改善粉体与基体的界面结合能等。 2.纳米粉体的表面改性方法? 气相沉积法 机械球磨法 高能量法

碳纳米管的改性

1. 碳纳米管进行酸处理后,碳纳米管表面产生大量的官能团;再将其在sn和Pd溶液中进行敏化活化 处理,使碳纳米管表面形成密集的活化点。结果表明:通过化学沉积方法,金属镍可在活化点沉积并形成包覆层;碳纳米管的改性,高密度的活化点及较低的沉积速率是得到连续包覆层的关键;热处理使得包覆层更加光滑致密。 实验步骤为:1)将碳纳米管在HNO和Hz()按体积比]:2配制的溶液中搅拌、超声波分散,加热煮沸90min,清洗,再在HCI和Ho ()按体积比4:3配制的溶液中进行同样的处理后,即得到纯化的碳纳米管;2)将纯化 过的碳纳米管在10 g / i o SnCl: ? 2Ho O十40 g /1,Hcl溶液中进行敏化处理40 min ; 3)用敏化后的碳纳米管在0,5 g /i,PdC[z+0. 25 mI。HC溶液中活化处理们min。每一步骤后均用去离子水充分洗涤。 2. 碳纳米管因其优异的力学、物理性能, 是一种理想的复合材料增强体,但其与基体金属的润湿性较差. 通 过对镀钴前碳纳米管的微波、氧化、敏化和活化处理, 改善了碳纳米管的表面性能并在碳纳米管表面增加了活化点, 成功地在碳纳米管表面镀上一层较为连续的金属钴,以改善碳纳米管与金属基体的润湿性,增强与金属基体的界面结合力.并用XRD TEM寸镀钻后的碳纳米管进行了表征. 3. 采用微波对碳纳米管进行热处理,消除非晶碳改善碳纳米管结晶度。然后将微波处理过的碳纳米管分别 用4mol/L的NaOl溶液、浓HCI和浓HNO<,3进一步提纯和氧化处理,除去其中的Si、Fe、Al等杂质,进一步 提高碳纳米管的纯度。浓HNO<,3处理碳纳米管时在碳纳米管表面可接枝羰基(>C=O)、羟基(—OH)羧基(一COOH等有机官能团,改善其表面性能,这些有机官能团有利于对碳纳米管进行敏化和活化处理。 4. 通过硝酸和盐酸的纯化,得到了纯度较高的碳纳米管,并使碳纳米管表面产生大量的官能团 5. 通过浓硝酸回流处理以及聚乙烯醇氧化的方法改善碳纳米管的分散性,碳纳米管的顶端被打开,随着时间的增加,弯曲的碳纳米管断裂成较短的碳纳米管,较好的解决了碳纳米管的团聚问题。 5. 首先对碳纳米管的纯化处理进行了研究。采用浓硝酸回流与混合酸(H<,2>SO<,4>/HNO<,3>=5/2)超声处 理相结合的方法对碳纳米管进行纯化处理。由扫描电镜结果可知,碳纳米管表面的非晶碳,催化剂等杂质 都已去除,纯度得到了明显的改善。混酸超声处理使碳纳米管进一步开口,短切,有效地提 高了碳纳米管的芬散性。将纯化处理后的碳纳米管在SnCI<,2>和胶体Pd溶液中进行敏化活化处理 6. 实验中,对碳纳米管、活性炭的纯化处理、氧化处理及敏化、活化处理进行了大量的实验,从而找出了 一种比较理想的预处理方法:即先对碳纳米管进行研磨,接着在NaOl溶液中进行纯化,在浓硝酸溶液、Fenton 试剂中进行氧化,最后采用敏化活化一步法完成化学镀前的预处理。 7. 通过对多壁碳纳米管的改牲研究,寻找提高碳纳米管分散性的途径。采用NaOl对碳纳米管进 行预处理,通过SEM DSC分析表明,该处理过程对去除多壁碳纳米管中杂质和提高其分散性有积极效 果。通过H2S04和HN03勺混酸处理法与HN0馳理法的对比,知前者对碳纳米管的损失要大于后者,且通过对HIR的对比分析,后者对碳纳米管的改性效果好于前者。TG TEM分析表明,聚乙烯醇均匀 包覆在碳纳采管表面,碳纳米管分散幔较酸处理的有所改进。 8. 1.羧基化多壁碳纳米管的制备多壁碳纳米管(MWNT)值径I0nm或40nm)置于1:3混合的HNO3/H2SC溶液 中,60 C下超声3h o倒入大量去离子水中,得到良好分散的黑色溶液。将此溶液用0.22卩m聚碳酸酯微孔滤 膜过滤,用去离子水充分洗涤至滤液pH值为7.0。将滤膜上的碳管真空干燥24h获得羧基化的 多壁碳纳米管(MWNT-COO粉末,产物用傅立叶变换红外光谱(FTIR)检测分析。 9. 利用浓硫酸和浓硝酸组成的混合体系(1:1,v/V) 对全长的碳纳米管进行了表面氧化切割处理,使碳纳米管表面产生一定数量的官能基团,得到具有一定长径比的、两端开口的改性碳纳米管。二、利用改性碳纳米管表面上产生的羟基作为接枝反应点,与丙烯酰氯单体反应,并将所得丙烯酸酯化 的碳纳米管与苯乙烯单体进行原位共聚。实现了碳纳米管在聚苯乙烯中的均匀分散。 10.. 三、同样以碳纳米管表面的羟基为起点,与聚丙烯酰氯发生酯化,将后者共价地接枝到碳纳米管的表面。由于碳纳米管表面上的羟基基团远少于聚丙烯酰氯上的酰氯基,酯化反应后在接枝的聚丙烯酰氯上仍保持大量的酰氯侧基,通过进一步的反应制备了如下碳纳米管与聚合物的复合材料:(1) 将剩余的酰氯基团水解制得了聚丙烯酸接枝的碳纳米管,这种碳纳米管在水中具有很好的分散性能;(2) 将酰氯基团与乙二胺进行酰胺化反应,制得了表面多胺基官能化的碳纳米管,这种碳纳米管能作为环氧树脂的共固化剂来使用; (3) 将酰氯基团与聚乙二醇进行酯化反应,得到了聚乙二醇接枝的碳纳米管,在有机溶剂中具有很好的分散性能;

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

聚己内酯

聚己内酯 聚己内酯简称PCL,国家对此十分重视,聚己内酯作为环境降解塑料先后被列入国家“八五”、“九五”重点科技攻关目及“863”计划。 一、性能特点 形状温控记忆性:有形状记忆性,具有初始形状的制品,经形变固定后, 通过加热等外部条件刺激的处理,又可使其恢复初始 形状的现象。 生物相容性:在体内与生物细胞相容性很好,细胞可在其基架上正常生 长,并可降解成CO2和H2O。 生物降解性:在土壤和水环境中,6-12月可完全分解成CO2和H2O。 良好相容性:可和PE、PP、ABS、AS、PC、PVAC、PVB、PVE、PA、天然橡胶等很好地互容。 良好溶剂溶解性:在芳香化合物、酮类和极性溶剂中很好地溶解。 二、主要应用领域 ·可控释药物载体、细胞、组织培养基架 ·完全可降解塑料手术缝合线 ·高强度的薄膜丝状成型物 ·塑料低温冲击性能改性剂和增塑剂 ·医用造型材料、工业、美术造型材料、玩具、有机着色剂、热复写墨水附着剂、热熔胶合剂。 三、技术情况 高分子量的PCL几乎都是由ε-己内酯单体开环聚合而成的,一般的方法为:单体ε-己内酯在钛酸丁酯,辛酸亚锡,其它双金属阴离子或络合配位催化剂的存在下,140-170℃下,熔融本体聚合。随着聚合条件的变化,聚合物的分子量可从几万到几十万。其中采用钛酸丁酯为引发剂的合成生物高分子材料PCL制备技术、反应条件及生产、纯化工艺和PCL晶胞参数的测定技术,已被列人中国禁止出口限制出口技术目录。

聚己内酯的合成研究:武汉大学、上海交通大学 医药方面的应用:中国协和医科大学、中国医学科学院生物医学工 程研究所 改性方面研究:国防科技大学、四川大学 四、主要生产厂家 国外:日本的大赛璐公司,:美国UCC公司、美国Union Carbide(其产品商品名为Tone)、日本JSP公司、比利时InterRock公司、英国Lapott公司、瑞士柏斯托公司 国内:中石化巴陵石化环己酮事业部利用把环己酮与双氧水作为主要原料于2009年建成2000吨每年的己内酯生产装置 五、市场情况 聚己内酯由于其生物可降解性,以及形状记忆功能,近几年多用于医疗卫生、环保改性材料,每年的需求增长率超过50%,但生产采用以双氧水氧化环己酮生产己内酯,氧化反应复杂剧烈,易发生爆炸,所以国内外供不应求。南通醋酸化工厂就因这种工艺工厂爆炸而停产。 现在市场上供应的聚己内酯价格都在5-6万/吨,基本依靠进口。

碳纳米管的改性

1.碳纳米管进行酸处理后,碳纳米管表面产生大量的官能团;再将其在sn和Pd溶液中进行敏化活化 处理,使碳纳米管表面形成密集的活化点。结果表明:通过化学沉积方法,金属镍可在活化点沉积并形成包覆层; 碳纳米管的改性,高密度的活化点及较低的沉积速率是得到连续包覆层的关键;热处理使得包覆层更加光滑致密。 实验步骤为:1)将碳纳米管在HNO。和Hz()按体积比]:2配制的溶液中搅拌、超声波分散,加热煮沸90min,清洗,再在HCI和H。()按体积比4:3配制的溶液中进行同样的处理后,即得到纯化的碳纳米管;2)将纯化过的碳纳米管在10 g/i。SnCl:·2H。O十40 g/I,Hcl溶液中进行敏化处理40 min;3)用敏化后的碳纳米管在0,5 g/i,PdC[z+0.25 mI。HCI溶液中活化处理们min。每一步骤后均用去离子水充分洗涤。 2.碳纳米管因其优异的力学、物理性能,是一种理想的复合材料增强体,但其与基体金属的润湿性较差.通过对镀钴前碳纳米管的微波、氧化、敏化和活化处理,改善了碳纳米管的表面性能并在碳纳米管表面增加了活化点,成功地在碳纳米管表面镀上一层较为连续的金属钴,以改善碳纳米管与金属基体的润湿性,增强与 金属基体的界面结合力.并用XRD、TEM对镀钴后的碳纳米管进行了表征. 3. 采用微波对碳纳米管进行热处理,消除非晶碳改善碳纳米管结晶度。然后将微波处理过的碳纳米管分别用4mol/L的NaOH溶液、浓HCl和浓HNO<,3>进一步提纯和氧化处理,除去其中的Si、Fe、Al等杂质,进一步提高碳纳米管的纯度。浓HNO<,3>处理碳纳米管时在碳纳米管表面可接枝羰基(>C=O)、羟基(—OH)、羧基(—COOH)等有机官能团,改善其表面性能,这些有机官能团有利于对碳纳米管进行敏化和活化处理。 4. 通过硝酸和盐酸的纯化,得到了纯度较高的碳纳米管,并使碳纳米管表面产生大量的官能团 5. 通过浓硝酸回流处理以及聚乙烯醇氧化的方法改善碳纳米管的分散性,碳纳米管的顶端被打开,随着时间的增加,弯曲的碳纳米管断裂成较短的碳纳米管,较好的解决了碳纳米管的团聚问题。 5. 首先对碳纳米管的纯化处理进行了研究。采用浓硝酸回流与混合酸(H<,2>SO<,4>/HNO<,3>=5/2)超声处理相结合的方法对碳纳米管进行纯化处理。由扫描电镜结果可知,碳纳米管表面的非晶碳,催化剂等杂质都已去除,纯度得到了明显的改善。混酸超声处理使碳纳米管进一步开口,短切,有效地提 高了碳纳米管的芬散性。将纯化处理后的碳纳米管在SnCl<,2>和胶体Pd溶液中进行敏化活化处理 6. 实验中,对碳纳米管、活性炭的纯化处理、氧化处理及敏化、活化处理进行了大量的实验,从而找出了一种比较理想的预处理方法:即先对碳纳米管进行研磨,接着在NaOH溶液中进行纯化,在浓硝酸溶液、Fenton 试剂中进行氧化,最后采用敏化活化一步法完成化学镀前的预处理。 7.通过对多壁碳纳米管的改牲研究,寻找提高碳纳米管分散性的途径。采用NaOH对碳纳米管进 行预处理,通过SEM、DSC分析表明,该处理过程对去除多壁碳纳米管中杂质和提高其分散性有积极效 果。通过H2S04和HN03的混酸处理法与HN03处理法的对比,知前者对碳纳米管的损失要大于后者,且通过对HlR的对比分析,后者对碳纳米管的改性效果好于前者。TG、TEM分析表明,聚乙烯醇均匀 包覆在碳纳采管表面,碳纳米管分散幔较酸处理的有所改进。 8. 1.羧基化多壁碳纳米管的制备多壁碳纳米管(MWNT) (直径l0nm或40nm)置于1:3混合的HNO3/H2SO4溶液中,60℃下超声3h。倒入大量去离子水中,得到良好分散的黑色溶液。将此溶液用0.22μm聚碳酸酯微孔滤膜过滤,用去离子水充分洗涤至滤液pH值为7.0。将滤膜上的碳管真空干燥24h获得羧基化的 多壁碳纳米管(MWNT-COOH)粉末,产物用傅立叶变换红外光谱(FTIR)检测分析。 9. 利用浓硫酸和浓硝酸组成的混合体系(1:1,v/V)对全长的碳纳米管进行了表面氧化切割处理,使碳纳米管表面产生一定数量的官能基团,得到具有一定长径比的、两端开口的改性碳纳米管。二、利用改性碳纳米管表面上产生的羟基作为接枝反应点,与丙烯酰氯单体反应,并将所得丙烯酸酯化 的碳纳米管与苯乙烯单体进行原位共聚。实现了碳纳米管在聚苯乙烯中的均匀分散。 10.. 三、同样以碳纳米管表面的羟基为起点,与聚丙烯酰氯发生酯化,将后者共价地接枝到碳纳米管的表面。由于碳纳米管表面上的羟基基团远少于聚丙烯酰氯上的酰氯基,酯化反应后在接枝的聚丙烯酰氯上仍保持大量的酰氯侧基,通过进一步的反应制备了如下碳纳米管与聚合物的复合材料:(1)将剩余的酰氯基团水解制得了聚丙烯酸接枝的碳纳米管,这种碳纳米管在水中具有很好的分散性能;(2)将酰氯基团与乙二胺

添加碳纳米管聚酯母粒的制备及性能

第26卷第3期2005年6月纺 织 学 报Journal of Textile Research Vol.26,No.3Jun.,2005 添加碳纳米管聚酯母粒的制备及性能 钱建华,凌荣根,黄志超,程贞娟 (浙江理工大学材料与纺织学院,浙江杭州 310033) 摘 要 采用扫描电镜及X 射线衍射仪对碳纳米管进行了表征。经表面改性后,与聚酯粉体共混造粒、挤出。应用近代测试方法对母粒的结构和性能进行了测试分析,给出了碳纳米管的含量与导电性能及可纺性之间的关系。关键词 碳纳米管;聚酯;导电性;可纺性 中图分类号:TQ 340.42 文献标识码:A 文章编号:0253-9721(2005)03-0021-03 Preparation and property of carbon -nanotubes P PET QI AN Jian -hua,LING Rong -gen,HUANG Zh-i chao,CHENG Zhen -juan (Colle ge o f Material an d Textile ,Zhejian g Unive rsity o f Science an d T echnology ,H angzhou ,Zhe j iang 310033,China )Abstract T he microstructure of carbon -nanotubes was charaterized by SEM and X diffration.After the surface modi fication,CNTs was mi xed with polyester powder and then been extruded and https://www.wendangku.net/doc/6e16263536.html,Ts P polyester property and the structure were tested with DSC,conductibility and viscometer.The relation between CNTs content in PE T and conductibility,spinnability was g i ven.Key words carbon -nanotubes;polyester;conductibility;spinnabili ty 基金项目:浙江省教育厅资助项目(0301079-F) 作者简介:钱建华(1973-),男,讲师,硕士。主要从事化纤新材料的研究与开发。 碳纳米管(CNTs)是1991年日本NEC 公司的Iijima 教授用电弧法制备C60时在阴极沉淀物中发现的,这种中空管状物的直径只有017~30nm,被称作碳纳米管。它具有优良的电学和力学性能,其导电性能优于铜,它的模量是钢的100倍[1] 。同时,碳纳米管还具有微波吸收性能,在工程材料的纳米增强相、半导体材料、超导电性、微波吸收性能等方面得到广泛的应用研究 [2] 。碳纳米管作为超导电性材 料,具有优异的导电性,能显著地提高聚合物的抗静电能力并强化抗静电载体周围的电场。有实验表明,将少量的碳纳米管加入到其它材料中,可明显地提高导电性。在高分子材料中加入约3%的碳纳米管,可使其导电性能提高3~5个数量级。随着碳纳米管制备技术的成熟和大批量生产(成本逐步下降),其应用研究引起了人们的兴趣。因碳纳米管有一维尺寸小于100nm,极易发生团聚,故碳纳米管的分散技术和含碳纳米管聚合物的结构和性能研究是碳纳米管应用基础研究的一个重要领域。 聚酯纤维具有弹性好、耐磨损、不怕虫蛀、挺括等优点,但吸湿性差及静电现象都严重地影响了聚酯纤维的穿着舒适性。本文采用与CNTs 共混的方 法研制成导电性及可纺性优良的聚酯母粒。 1 实验部分 1.1 原 料 C NTs:清华大学化工系生产,直径30~40nm, 长度2~3L m;PET:上海金山石化生产,G 为0167dL P g;钛酸丁酯偶联剂:化学纯,上海试剂三厂生产;硬脂酸钙、抗氧剂1010、PE 蜡:市售;C T -828偶联剂:南京曙光化工总厂生产;无水乙醇、苯酚、四氯乙烷等其它试剂均为实验室常用。 112 主要测试及实验仪器 JSM -5610扫描电镜;Thormo ARL X .TRA 多晶粉末衍射仪,铜靶衍射波波长为01155nm;Perkin -Elmer DSC 7型差示扫描量热仪;RL -1113熔体流动速率仪,上海思雨仪器有限公司;SFM -350型塑料粉碎机,浙江丰利粉碎设备有限公司;SHR -10A 型高速混合机(可加热),张家港亿利机械厂;SJSH -30型双螺杆挤出机,南京橡塑机械厂。113 实验过程 将C NTs 放入浓H 2SO 4和HNO 3的混合液(V (H 2SO 4)B V (HNO 3)=3B 1)中浸泡24h,过滤后再

相关文档