文档库 最新最全的文档下载
当前位置:文档库 › 运算放大器电压范围—输入和输出之解疑释惑

运算放大器电压范围—输入和输出之解疑释惑

运算放大器电压范围—输入和输出之解疑释惑
运算放大器电压范围—输入和输出之解疑释惑

运算放大器电压范围—输入和输出之解疑释惑

排行榜收藏打印发给朋友举报来源:德州仪器(TI) 发布者:Bruce Trump

热度317票浏览3277次【共1条评论】【我要评论】时间:2012年12月06日21:55 作者:TI专家Bruce Trump

我们常常会收到一些与电源有关的应用问题,询问我们运算放大器的输入和输出电压范围到底有多大。既然大家存在这方面的疑惑,那么我们就利用这篇文章来为大家解疑释惑:

首先,常见运算放大器并没有接地端。标准运算放大器“不知道”接地的位置,因此它也就无从知道其工作电源是一个双电源(±)还是一个单电源。只要电源输入和输出电压在其工作范围以内,就不会出问题。

下面是我们需要考虑的三个重要电压范围:

1、总电源电压范围。它是两个电源端之间的总电压。例如,30 V 的总电压范围为±15V。再如,某个运算放大器的工作电压范围可能为6V 到36V。在低压极端条件下,它可能为±3V 或者+6 V。在高压极端条件下,它可能为±18V 或者+36V,甚至是-6 V/+30V。没错,如果您留心阅读下面的第2 点和第3 点,会发现使用非平衡电源也是可以的。

2、输入共模电压范围(C-M 范围)一般是相对于正负电源电压而言的,如图1 所示。使用类似于方程式的方法表示时,假设运算放大器的C-M 范围可以描述为负轨以上2V 到正轨以下2.5V,表示方法为:(V-)+2V 到(V+)–2.5V。

3、同样,输出电压范围(即输出动态范围性能)是相对于轨电压而言的。这时,它可以表示为(V-)+1V 到(V+)–1.5V。

这些例子(图1、2和3)可以运用一个G=1 缓冲器配置结构进行说明。重点是,图1 所示例子的输出范围大小被限定为负轨2 V 和正轨2.5V,原因是输入C-M 范围受限。在高增益条件下,可能会需要配置这种运算放大器,以达到其最大输出电压范围。

图1 所示的例子是双±电源常用的运算放大器典型结构。虽然我们不把它称作“单电源”,但是它的确可以通过将电源保持在规定范围内实现单电源工作。图2 显示了一种所谓的单电源运算放大器。它拥有一个C-M 范围,该范围可以扩展至负轨,但通常会稍低于负轨。这样,它便可以应用于更多电压接近零的电路中。因此,尽管不被称为“单电源”的运算放大器可以用于某些单电源电路中,但真正的单电源型运算放大器在这些应用中则更加常见。

在这种G=1 缓冲器电路中,这种运算放大器可从V-轨(受限于输出大小)得到0.5V 的输出动态范围,并从V-轨(受限于输入C-M 范围)得到2.2V 的输出动态范围。图3 显示了一个轨至轨运算放大器。它工作时,输入电压可以等于甚至略微大于两个电源电压轨,如图3 所示。轨至轨输出意味着,输出电压可以非常接近于轨,但通常在电源轨的10mV 到100mV 范围内。一些运算放大器标声称只有一个轨至轨输出,缺少图3 所示输入特性。轨至轨运算放大器用于单5V 电源和单5V 以下电源的情况非常普遍,因为它们可在有限电源电压范围下最大化信号电压输出的性能。

轨至轨运算放大器非常诱人,因为它们放宽了信号电压限制,但是,它们并非总是我们的最佳选择。同我们生活中的其他选择一样,它在其他性能方面通常会有一些折扣。但是,这同时就是你作为一名模拟设计人员的价值所在。我们的生活充满了各种复杂的问题和选择,但我们仍然对它充满热爱。

电阻器的识别与检测

任务一电阻器的识别与检测 【任务描述】 作为电路中最常用的器件,电阻器,通常简称为电阻。电阻几乎是任何一个电子线路中不可缺少的一种器件,在电路中主要的作用是:缓冲、负载、分压分流、保护等作用。那么如何识别电阻器?如何检测电阻器?下面让我们通过本任务的学习,掌握电阻器的基本知识。 【知识目标】 1、掌握各种电阻器、电位器的种类、作用与标识方法。 2、掌握各种电阻器、电位器的主要参数。 【技能目标】 1、能用目视法判断、识别常见电阻器、电位器的种类,能正确说出各种电阻器、电位器的名称。 2、对电阻器、电位器上标识的主要参数能正确识读,了解该电阻器、电位器的作用和用途。 3、会使用万用表对各种电阻器和电位器进行正确测量并对其质量做出评价。 【技能知识】 电阻器通常简称为电阻,电阻是电子元器件应用最广泛的一种,其质量的好坏对电路的性能有较大影响。电阻的主要用途是稳定和调节电路中的电压和电流,其次还可以作为分流器、分压器和消耗电能的负载等。 一、电阻的分类 在电子电路中常用的电阻分三大类:阻值固定的电阻称为固定电阻或普通电阻;阻值连续可变的电阻称为可变电阻(电位器和微调电阻);具有特殊作用的电阻器称为敏感电阻(如热敏电阻、

光敏电阻、气敏电阻等)。 按制作材料分类电阻器又可分为:膜式电阻(碳膜RT、金属膜RJ、合成膜RH和氧化膜RY)、实芯电阻(有机RS和无机RN)、金属线绕电阻(RX)、特殊电阻(MG型光敏电阻、MF型热敏电阻)四种。 按制作工艺分类电阻器又可分为:通孔式电阻器和贴片式电阻器两大类。 1、固定电阻的外形及特点(如表1.1.1所示) 表1.1.1 普通电阻的外形及特点 名称 实物图 结构和特点 碳膜电阻 碳膜电阻是以碳膜作为基本材料,利用浸渍或真空蒸发形成结晶的电阻膜(碳膜),属于通用性电阻。 金属氧化膜电阻 金属氧化膜电阻是在陶瓷机体上蒸发一层金属氧化膜,然后再涂一层硅树脂胶,使电阻的表面坚硬而不易碎坏。 金属膜电阻金属膜电阻以特种稀有金属作为电阻材料,在陶瓷基体上,利用厚膜技术进行涂层和焙烧的方法形成电阻膜。 线绕电阻 线绕电阻是将电阻线绕在耐热瓷体上,表面涂以耐热、耐湿、耐腐蚀的不燃性涂料保护而成。线绕电阻与额定功率相同的薄膜电阻相比,具有体积小的优点,它的缺点是分布电感大。 水泥电阻 水泥电阻也是一种线绕电阻,它是将电阻线绕与无碱性耐热瓷体上,外面加上耐热、耐湿及耐腐蚀材料保护固定而成的。 贴片式电阻 贴片式电阻又称表面安装电阻,是小型电子线路的理想元件。它是把很薄的碳膜或金属合金涂覆到陶瓷基底上,电子元件和电路板的连接直接通过金属封装端面,不需引脚,主要有矩形和圆柱型两种。

输入输出阻抗以及阻抗匹配

输入、输出阻抗以及阻抗匹配 在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。输入阻抗是用来衡量放大器对信号源的影响的一个性能指标: 对于电压驱动的电路,输入阻抗越大,表明放大器从信号源取的电流越小,放大器输入端得到的信号电压也越大,即信号源电压衰减的少,对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响。理论基础:Us=(Rs+Ri)×I。Rs为信号源内阻,Ri为放大器输入电阻。因此作为测量信号电压的示波器、电压表等仪器的放大电路应当具有较大的输入电阻。对于一般的放大电路来说,输入电阻当然是越大越好。如果想从信号源取得较大的电流,则应该使放大器具有较小的输入电阻 而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

第5章 含有运算放大器的电阻电路总结

第五章 含有运算放大器的电阻电路 ◆ 重点: 1、运放的传输特性 2、比例器、加法器、减法器、跟随器等运算电路 3、含理想运放的运算电路的分析计算 ◆ 难点: 熟练计算含理想运放的电路 5.1 运放的电路模型 5.1.1 运放的符号 运放是具有高放大倍数的直接耦合放大电路组成的半导体多端实际元件。而在本章中,所讲到“运放”,是指实际运放的电路模型——一种四端元件。其符号为 + u- _ o + _ 图5-1 运放的符号 在新国标中,运放及理想运放的符号分别为 图5-2 运放的新国标符号 5.1.2 运放的简介 一、同相与反相输入端 运放符号中的“+”、“-”表示运放的同相输入端和反相输入端,即当输入电压加在同相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相同;反之,当输入电压加在反相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相反。其意义并不是电压的参考方向。 二、公共端 在运放中,公共端往往取定为接地端——电位为零,实际中,电子线路中的接地端常常取多条支路的汇合点、仪器的底座或机壳等,输入电压、输出电压都以之为参考点。有时,电路中并不画出该接地端,但计算时要注意它始终存在。

5.1.3 运放的输入输出关系 一、运放输入输出关系曲线 在运放的输入端分别同时加上输入电压+ u 和- u (即差动输入电压为d u )时,则其输 出电压u o 为 d u u o u A u u A u =-=-+)( d 图5-3 运放输入输出关系曲线 实际上,运放是一种单向器件,即输出电压受输入电压的控制,而输入电压并不受输出电压的控制。由其输入输出关系可以看出,运放的线性放大部分很窄,当输入电压很小时,运放的工作状态就已经进入了饱和区,输出值开始保持不变。 二、运放的模型 a u - u o u 图5-4 运放的电路模型 由运放的这一模型,我们可以通过将运放等效为一个含有受控源的电路,从而进行分析计算。 例:参见书中P140所示的反相比例器。(学生自学) 5.1.4 有关的说明 在电子技术中,运放可以用于 1.信号的运算——如比例、加法、减法、积分、微分等 2.信号的处理——如有源滤波、采样保持、电压比较等 3.波形的产生——矩形波、锯齿波、三角波等 4.信号的测量——主要用于测量信号的放大 5.2 具理想运放的电路分析 5.2.1 含理想运放的电路分析基础 所谓“理想运放”,是指图中模型的电阻R in 、R 0为零,A 为无穷大的情况。由此我们可以得出含有理想运放的电路的分析方法。根据输入输出特性,我们可以得出含有理想运放器件的电路的分析原则:

输入电阻和输出电阻的意义&定量测量

输入电阻是用来衡量放大器对信号源的影响的一个性能指标。输入电阻越大,表明放大器从信号源取的电流越小,放大器输入端得到的信号电压也越大,即信号源电压衰减的少。理论基础:Us=(Rs+Ri)×I。Rs 为信号源内阻,Ri为放大器输入电阻。因此作为测量信号电压的示波器、电压表等仪器的放大电路应当具有较大的输入电阻。对于一般的放大电路来说,输入电阻当然是越大越好。如果想从信号源取得较大的电流,则应该使放大器具有较小的输入电阻。 输出电阻用来衡量放大器在不同负载条件下维持输出信号电压(或电流)恒定能力的强弱,称为其带负载能力。当放大器将放大了的信号输出给负载电阻RL时,对负载RL来说,放大器可以等效为具有内阻Ro的信号源,由这个信号源向RL提供输出信号电压和输出信号电流。Ro称为放大器的输出电阻,它是从放大器输出端向放大器本身看入的交流等效电阻。如果输出电阻Ro很小,满足Ro<>RL条件,则当RL在较大范围内变化时,就可维持输出信号电流的恒定。如手机电池,它的内阻可以等效看作输出电阻,用了几年后,内阻高了,也就要报废了,因为带不动外面的东西了。 电压放大和互阻放大电路,即输出为电压信号的放大电路,Ro 越小,负载RL对的变化对输出信号Vo的影响越小。而且只要负载RL 足够大,信号输出功率一般较低,能耗也较低。多用于信号的前置放大和中间级放大。对于一般的放大电路来说,输出电阻当然越小越好。 电流放大和互导放大电路,即输出为电流信号的放大电路,与

受控电流源并联的Ro越大,负载RL的变化对输出电流Io的影响越小。则与前两种相比当供电电源相同时,可得到较大输出电流信号,所以功率可能到达较大的值,对供电电源的能耗较大。通常用于电子系统的输出级,可作为各种输出物理变量变换器(如音响系统的扬声器,动力系统的电动机等)的驱动电路。

实验二放大器输入、输出电阻和频响特性的测量

实验二 放大器输入、输出电阻和频响特性的测量 一、实验目的 掌握放大器输入电阻、输出电阻和频率特性的测量原理和方法。 二、实验原理 1.放大器输入电阻R i 的测试 最简单的测试方法是“串联电阻法”。其原理如图2-1所示,在被测放大器与信号源之间串入一个已知标准电阻R i ,只要分别测出放大器的输入电压U i 和输入电流I i ,就可以求出: R i =V i /I i = n R i R U U /=R i U U ?Rn 但是,要直接用交流毫伏表或示波器测试Rn 两端的电压U R 是有困难的,因U R 两端不接地。使得测试仪器和放大器没有公共地线,干扰太大,不能准确测试。为此,通常是直接测出U S 和U i 来计算R i ,由图不难求出: R i = i S i U U U -? Rn 注:测R i 时输出端应该接上R L ,并监视输出波形,保证在波形不失真的条件下进行上述测量。 S U 图2-1放大电路输入端模型 2.放大器输出电阻R o 的测试 放大器输出端可以等效成一个理想电压源U o 和R o 相串联,如图2-3所示。 在放大器输入端加入U S 电压,分别测出未接和接入R L 时放大器的输出电压U o 和U L 值,则 L L R U U R )1( 0-= 注意:要求在接入负载R L (或R W )的前后,放大器的输出波形都无失真。

501mA β==CQ ,I , 212*c B b p E R V R R R = ++12*5.1 1.7,10 5.1 p V R ==++ 20.9p R K =Ω 2626200(1) 200(1) 1.526,1be EQ mv mv r K I mA ββ=++=++=Ω 12()//// 1.13,i b p b be R R R R r K =+=Ω 3o c R R K ==Ω

运放参数解释

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。 在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。 也就是在设计电路时要同时满足增益带宽和功率带宽。 运放关于带宽和增益的主要指标以及定义 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽

输入电阻和输出电阻(纠结了好长时间,看完就懂了)

输入电阻和输出电阻(纠结了好长时间,看完就懂了) 关于输入电阻和输出电阻,纠结了好长时间,现在终于明白了,拿出来给大家看一下,呵呵输入电阻是用来衡量放大器对信号源的影响的一个性能指标。输入电阻越大,表明放大器从信号源取的电流越小,放大器输入端得到的信号电压也越大,即信号源电压衰减的少。理论基础:Us=(Rs Ri)×I。Rs为信号源内阻,Ri为放大器输入电阻。因此作为测量信号电压的示波器、电压表等仪器的放大电路应当具有较大的输入电阻。对于一般的放大电路来说,输入电阻当然是越大越好。如果想从信号源取得较大的电流,则应该使放大器具有较小的输入电阻。输出电阻用来衡量放大器在不同负载条件下维持输出信号电压(或电流)恒定能力的强弱,称为其带负载能力。当放大器将放大了的信号输出给负载电阻RL时,对负载RL来说,放大器可以等效为具有内阻Ro的信号源,由这个信号源向RL提供输出信号电压和输出信号电流。Ro称为放大器的输出电阻,它是从放大器输出端向放大器本身看入的交流等效电阻。如果输出电阻Ro很小,满足Ro<条件,则当RL在较大范围内变化时,就可基本维持输出信号电压的恒定。反之,如果输出电阻Ro很大,满足Ro>>RL条件,则当RL在较大范围内变化时,就可维持输出信号电流的恒定。如手机电池,它的内阻可以等效

看作输出电阻,用了几年后,内阻高了,也就要报废了,因为带不动外面的东西了。电压放大和互阻放大电路,即输出为电压信号的放大电路,Ro越小,负载RL对的变化对输出信号V o的影响越小。而且只要负载RL足够大,信号输出功率一般较低,能耗也较低。多用于信号的前置放大和中间级放大。对于一般的放大电路来说,输出电阻当然越小越好。电流放大和互导放大电路,即输出为电流信号的放大电路,与受控电流源并联的Ro越大,负载RL的变化对输出电流Io的影响越小。则与前两种相比当供电电源相同时,可得到较大输出电流信号,所以功率可能到达较大的值,对供电电源的能耗较大。通常用于电子系统的输出级,可作为各种输出物理变量变换器(如音响系统的扬声器,动力系统的电动机等)的驱动电路。

运算放大器地全参数选择

运算放大器的参数指标 1.开环电压增益Avd 开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz的交流输入信号的放大倍数,即输出电压与输入差模电压之比。它一般为104~106,因此它在电路分析时可以认为无穷大。 2.闭环增益A F 闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。 反相比例放大器,其增益为 A F=- RI RF 3.共模增益Avc和共模抑制比 当两个输入端同时加上频率小于200Hz的电压信号Vic时,在理想情况下,其输出电压应为零。但由于实际上内部电路失配而输出电压不为零。此时输出电压和输入电压之比成为共模增益Avc。 共模抑制比Kcmr= Avc Avd 共模增益 运算放大器的差模增益, 通常以对数关系表示:Kcmr=20log Avc Avd 共模增益 运算放大器的差模增益 共模抑制比一般在80~120Db范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。

在常温(25℃)下当输入电压为零时,其输出电压不为零。此时将其折算到输入端的电压称为输入失调电压。它一般为±(0.2~15)mV 。这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio 的差值输入电压。 5. 输入偏置电流 在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即 I IB =2 1( I IB -+ I IB+) 它一般在10nA~1uA 的范围内,随温度的升高而下降,是反映放大器动态输入电阻大小的重要参数。 6. 输入失调电流I IO 输入失调电流可表示为 I IO =︱I IB -- I IB+∣ 在双极晶体管输入级运算放大器中,I IO 约为(0.2~0.1)I IB -或(0.2~0.1)I IB+。当I IO 流过信号源内阻时,产生输入失调电压。而且它也是温度的函数。 7. 差模输入电阻R ID 在一般应用电路中,输入阻抗是指差模输入电阻R ID 。它一般为100K Ω~1M Ω,高输入阻抗运算放大器的差模输入电阻可达1013Ω。 8. 温度漂移 输入失调电压、输入失调电流和输入偏置电流等参数均随温度、时间和电源等外界条件的变化而变化。其中输入偏置电流的变化是造成放大器温度漂移的主要原因。对于双极晶体管输入级运算放大器,输入偏置电流随温度上升而变小,数量级为nA 级。

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

常用运算放大器电路 (全集)

常用运算放大器电路(全集) 下面是[常用运算放大器电路(全集)]的电路图 常用OP电路类型如下: 1. Inverter Amp. 反相位放大电路: 放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。R3 = R4 提供1 / 2 电源偏压 C3 为电源去耦合滤波 C1, C2 输入及输出端隔直流 此时输出端信号相位与输入端相反 2. Non-inverter Amp. 同相位放大电路: 放大倍数为Av=R2 / R1 R3 = R4提供1 / 2电源偏压 C1, C2, C3 为隔直流

此时输出端信号相位与输入端相同 3. Voltage follower 缓冲放大电路: O/P输出端电位与I/P输入端电位相同 单双电源皆可工作 4. Comparator比较器电路: I/P 电压高于Ref时O/P输出端为Logic低电位 I/P 电压低于Ref时O/P输出端为Logic高电位 R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M) 单双电源皆可工作 5. Square-wave oscillator 方块波震荡电路: R2 = R3 = R4 = 100 K R1 = 100 K, C1 = 0.01 uF

Freq = 1 /(2π* R1 * C1) 6. Pulse generator脉波产生器电路: R2 = R3 = R4 = 100 K R1 = 30 K, C1 = 0.01 uF, R5 = 150 K O/P输出端On Cycle = 1 /(2π* R5 * C1) O/P输出端Off Cycle =1 /(2π* R1 * C1) 7. Active low-pass filter 主动低通滤波器电路: R1 = R2 = 16 K R3 = R4 = 100 K C1 = C2 = 0.01 uF 放大倍数Av = R4 / (R3+R4) Freq = 1 KHz 8. Active band-pass filter 主动带通滤波器电路:

放大器的输出入阻抗

放大器的输出入阻抗 一般我们常耳闻的说法是:扩大机的输入阻抗是愈高愈好,而输出阻抗是愈低愈好。为什么呢? 因为输入阻抗高了,从讯号源来的讯号功率强度就可以不必那么大。 这么说也许还有读者不甚了解,让我们再回想一下欧姆定律;假设讯源输出不甚了解,让我们再回想一下欧姆定律;假设讯源输出一个固定电压,传送往下一级,如果这一级的输入阻抗高,是不是由讯源所提供的讯号电流就可以降低? 如果输入阻抗非常非常的高,则几乎不会消耗讯号电流(当然还是会有)就可以驱动这一级电路工作,换句话说就是几乎只要有讯号电压,电路就可以正常工作;但是对于低输入阻抗的电路呢?就正好相反了,它必须要求讯号能源能提供较为大量的讯号电流,因为在同一个电压下,低输入阻抗会流进较大的讯号电流,如果讯源提供的电流强度不足以满足下一级电路的需求,它就不能完美地驱动下一级电路。而讯源的电压和电流的乘积就是讯源的功率了。 何谓低输出阻抗呢?它有什么好处呢? 通常低输出阻抗被提到地方大半是指前级扩大机的输出阻抗,后级通常是称作输出内阻的。前级的低输出阻抗有几个好处:

一.通常会强调低输出阻抗即表示了它有较大的电流输出能力,容易搭配一些低输入阻抗的器材(后级); 二.低输出阻抗可以驱动长的讯号线及电容量较大的负载,以音响用前级为例;前级的输出阻抗在与讯号线结合后,输出阻抗加上讯号线本身固有的电阻与电容会形成一个R C滤波的网路,当输出阻抗愈高时,则经过讯号线后的讯号,其高频端的滚降点就会越低,反之则愈高。 你应该不会希望高频滚降点移进耳朵听得到的音频范围吧? 所以遇上电容量大的讯号线,你还是选一部输出阻抗低一点的前级较为保险。这也是为什么每一种讯号线会有不同声音部份原因。 有了以上大略的说明,你应该可以明白;所谓扩大机输入阻抗愈高愈好,输出阻抗愈低愈好,其主要理由即在此一在与其它器材互相搭配时,其匹配性比较高。 那么照此说来,我们就把每一部扩大机不论是前级或是后级的输入阻抗都设计得很高,输出阻抗都设计得很低,不是就完美无缺了吗? 让我们再从输入阻抗看起,由于高输入阻抗所需的讯号电流较少,可知连接其上的讯号线中流动的电流必较小,因此对于讯号线品质的要求就可以不必那么高,因为少了一个电流的干扰因素在内,这也是高输入阻抗带来的另一个优点。但是高输入阻抗的优点

集成运算放大器IC的主要参数【经典】

集成运算放大器IC的主要参数 本节以《中国集成电路大全》集成运算放大器为主要参考资料,同时参考了其它相关资料。 集成运放的参数较多,其中主要参数分为直流指标和交流指标。 其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。 主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。 这里重点描述——直流指标 输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。 输入失调电流IIO:输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏置电流的差值。输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电流大约是输入偏置电流的百分之一到十分之一。输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k?或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电流的温度漂移(简称输入失调电流温漂):输入偏置电流的温度漂移定义为在给定的温度范围内,输入失调电流的变化与温度变化的比值。这个参数实际是输入失调电流的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。输入失调电流温漂一般只是在精密运放参数中给出,而且是在用以直流信号处理或是小信号处理时才需要关注。

实验二放大器输入输出电阻和频响特性的测量

实验二放大器输入、输出电阻和频响特性的测量 一、实验目的 掌握放大器输入电阻、输出电阻和频率特性的测量原理和方法。 二、实验原理 1. 放大器输入电阻R的测试 最简单的测试方法是串联电阻法”其原理如图2-1所示,在被测放大器与信号源之间串入一个已知标准电阻R i,只要分别测出放大器的输入电压U和输入电流I i,就可以求出:R i=V i/|i= Ui=U L ?Rn U R/R n U R 但是,要直接用交流毫伏表或示波器测试Rn两端的电压U R是有困难的,因U R两端不接地。使得测试仪器和放大器没有公共地线,干扰太大,不能准确测试。为此,通常是直接测出U S和U来计算R i,由图不难求出: U S U i 对阻容耦合放大器,由于耦合电容及射极电容的存在,使A V随信号频率的降低而降低;又因分布电容的存在及受晶体管截止频率的限制,使A V随信号频率的升高而降低。 仅中频段,这些电容的影响才可忽略。描述A V与f关系的曲线称为RC耦合放大器的幅频特性曲线,如图2-4所示。 图中,A V=0.707A V时所对应的f H和f L分别称为上限频率和下限频率,B称为放大器的通频带,其值为B=f H-f L。 -B ----------- ---------------------- 图2-4幅频特性曲线 R i= U i Rn 注:测R i时输出端应该接上R L,并监视输出波形,保证在波形不失真的条件下进行 上述测量。 3?放大器幅频特性的测试

、实验内容分析: _____ 1 _____ f _______ 1— 2 2 (R c R L )C 2 2 r be C 1 图2-4高频等效电路 四、实验内容、方法及结果: 1. 调整静态工作点 (1) 按图2-5所示电路,接好并检查无误后,接通直流电源 +12V ,在无信号输入情 况下,调整偏置可变电阻 R P ,使I C 1mA,(即U RC =3V ) (2) 测量 U CQ 、U CEQ 、U EQ 、U BEQ 和 U BQ 的值。 图2-5共射极放大电路 2 ?测量输入电阻 在静态工作点不变的情况下,将开关 K 打开,用函数信号发生器在输入端加入 Us=10mV 、f=1KHZ 的正弦信号,用毫伏表测量出此时的U S , U i 值。测量结果记入表1-2 中,按“串联电阻法”测量原理,计算出输入电阻的大小。 开关K 闭合保持静态工作点不变,输入信号的频率、电压不变,分别测出不接和接 时的输出电压U 。、U L ,测量结果记入表2-2中,计算出输出电阻的大小 表2-1 开关K 闭合,保持输入信号幅度不变,在输出信号不失真的前提下,改变输入信号 的频率, 测出输出电压的大小,找出 f L ,f H 计算出B 值,结果记入表2-3中。 表 2-3 五、 实验结果分析、小结: f l2 1 2 r be C i 3 2 *1.526*10 *0.84*10 12 4 Hz ,

最新电阻器的识别与测量一体化教案

电阻器的识别与测量一体化教案 一、电阻器的基础知识 引入新课:(和学生互动,复习和讲解相结合) 请同学们回顾电工基础课和电子技术课中都学了哪些电阻器的内容?(让学生分组讨论,然后选第二组一名同学起立说明,其他组补充,然后老师讲评并由此引出本次课程的学习内容) 1、电阻器的用途: 稳定和调节电路中的电流和电压,电阻在电子产品中使用最多的是分压、降压、分流、限流、滤波(与电容组合)和阻抗匹配。 2、电阻器的分类、性能与特点 常见固定电阻器的外形如图2—1(讲课时用实物和PPT结合演示): 图2—1 固定电阻器实物图 可变电阻器的外形图(讲课时用结合实物和PPT结合演示): 必备知识

图2—2 可变电阻器实物图 敏感电阻的外形图(讲课时用结合实物和PPT结合演示) 图2—3 敏感电阻器实物图 常用电阻的性能与特点见表2—1 电阻名称性能与特点 碳膜电阻稳定性高,噪声小,应用广泛。阻值范围:1Ω-10MΩ 金属膜电阻体积小,噪声小,稳定性高,温度系数小,耐高温,精度高,但脉冲负载稳定性差。阻值范围:0.1Ω-620MΩ 线绕电阻体积小,噪声小,稳定性高,温度系数小,耐高温,精度很高,功率大(可达500W)。但高频性能差,体积大,成本高。阻值范围:0.1Ω-5MΩ

【记忆窍门】 用背景颜色可以区别电阻器的种类:浅色(淡绿、浅兰、浅棕)表示碳膜电阻器,红色、棕色表示金属膜电阻器,深绿、灰色表示线绕电阻器。 3、电阻器的主要性能参数,见表2—2

4、电阻器的命名方法 根据国家标准GB/T2470—1995《电子设备用固定电阻器、固定电容器型号命名方法》的规定,电阻器的型号由以下4部分组成:第一部分表示主称;第二部分表示材料;第三部分表示分类特征;第四部分表示序号,如图2—4所示,详细内容见下表。 图2—4 电阻命名方法 表2—3 电阻器的型号命名方法 第一部分第二部分第三部分第四部分用字母表示主称用字母表示材料用数字或字母表示类别或额定功率序号 字母含义字母含义数字或字母含义数字额定功率用数字表示 R RP 电阻器 电位器 C 沉积膜 或高频瓷 1 普通 0.125 1/8W 用个位数或无数字 表示 2 普通或 阻燃 F复合膜 3 或C 超高频 0.25 1/4W H合成碳膜 4 高阻 I玻璃釉膜 5 高温 0.5 1/2W J金属膜7或J 精密 N无机实心8 高压 1 1W S有机实心9 特殊 T碳膜G 高功率 2 2W U硅碳膜L 测量 X线绕T 可调 3 3W Y氧化膜 X 小型 C 防潮 5 5W O玻璃膜Y 被釉 B 不燃性10 10W 例如RJ71-0.125-5.1kⅠ型的命名含义:R表示电阻器;J表示金属膜;7表示精密;1表示序号;0.125表示额定功率;5.1k表示标称阻值;Ⅰ表示误差5%。

了解运放的输入输出阻抗

了解运放的输入输出阻抗 一、概念 1.1输入阻抗(Input Resistance)也被称为差模输入阻抗:Z ID。差模输入阻抗的定义为:运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。 差模输入阻抗中包含输入电阻和输入电容。在低频时它仅指输入电阻。一般产品的数据手册也仅仅给出输入电阻。采用双极型晶体管做输入级的运放的输入电阻不大于10兆欧;场效应管做输入级的运放的输入电阻一般大于109欧。Z ID愈大,从信号源索取的电流愈小,放大电路所得到的输入电压Ui就越接近信号源电压Us。 在TI的数据手册中,运放TLC27L4的输入电阻为:“”,但并未给出输入电容的值。 1.2输出阻抗定义为,运放工作在线性区时,在运放的输出端加信号电压,这个电压变化量与对应的电流变化量的比值。在低频时仅指运放的输出电阻。 二、仿真 2.1输入电阻的仿真 图一输入电阻的仿真 根据:R=U/I,可得:Ri≈1×109Ω。较手册给出的典型值(1012Ω)差了好多。

首先测试100Hz时运放的输出值,Vo1=42.426mV。如图二示: 图二输入电容的仿真1 然后测试输出-3dB(0.707Vo1=29.995182mV)时的频率值:119.4608kHz。 图三输入电容的仿真2 根据:C=(2πRf)-1,将R=2MΩ、f=119.4608kHz代入,则得Ci≈0.666pF。

图四输出电阻的仿真 在图四中,运放不接负载电阻R2时的输出电压为:V1=141.419mV,接上负载电阻后的输出为:V2=141.413mV。则:Ro=(V1-V2)×R2÷V2≈4.6mΩ。 三、实测 3.1输入电阻的测试 根据图一电路原理,对TLC27L4CN进行输入电阻的实测。其输入、输出波形如下图:

运算放大器常见问题

1.一般反相/同相放大电路中都会有一个平衡电阻,这个平衡电阻的作用是什么呢? (1) 为芯片内部的晶体管提供一个合适的静态偏置。 芯片内部的电路通常都是直接耦合的,它能够自动调节静态工作点,但是,如果某个输入引脚被直接接到了电源或者地,它的自动调节功能就不正常了,因为芯片内部的晶体管无法抬高地 线的电压,也无法拉低电源的电压,这就导致芯片不能满足虚短、虚断的条件,电路需要另外分 析。 (2)消除静态基极电流对输出电压的影响,大小应与两输入端外界直流通路的等效电阻值平衡, 这也是其得名的原因。 2.同相比例运算放大器,在反馈电阻上并一个电容的作用是什么?? (1)反馈电阻并电容形成一个高通滤波器, 局部高频率放大特别厉害。 (2)防止自激。 3.运算放大器同相放大电路如果不接平衡电阻有什么后果? (1)烧毁运算放大器,有可能损坏运放,电阻能起到分压的作用。 4.在运算放大器输入端上拉电容,下拉电阻能起到什么作用?? (1)是为了获得正反馈和负反馈的问题,这要看具体连接。比如我把现在输入电压信号,输出电 压信号,再在输出端取出一根线连到输入段,那么由于上面的那个电阻,部分输出信号通过该电 阻后获得一个电压值,对输入的电压进行分流,使得输入电压变小,这就是一个负反馈。因为信 号源输出的信号总是不变的,通过负反馈可以对输出的信号进行矫正。 5.运算放大器接成积分器,在积分电容的两端并联电阻RF 的作用是什么? (1) 泄放电阻,用于防止输出电压失控。 6.为什么一般都在运算放大器输入端串联电阻和电容? (1)如果你熟悉运算放大器的内部电路的话,你会知道,不论什么运算放大器都是由几个几个晶 体管或是MOS 管组成。在没有外接元件的情况下,运算放大器就是个比较器,同相端电压高的时 候,会输出近似于正电压的电平,反之也一样……但这样运放似乎没有什么太大的用处,只有在 外接电路的时候,构成反馈形式,才会使运放有放大,翻转等功能…… 7.运算放大器同相放大电路如果平衡电阻不对有什么后果? (1)同相反相端不平衡,输入为0 时也会有输出,输入信号时输出值总比理论输出值大(或小) 一个固定的数。 (2)输入偏置电流引起的误差不能被消除。 8.理想集成运算放大器的放大倍数是多少输入阻抗是多少其同相输入端和反相输入端之间的电 压是多少? (1) 放大倍数是无穷大,输入阻抗是无穷小,同向输入和反向输入之间电压几乎相同(不是0

常见电子元器件的识别(图片)

常见电子元器件的识别(单位,标识方法等) 电阻的识别(电阻的单位,标识方法等)一、电阻 电阻在电路中用“R”加数字表示,如:R15表示编号为15的电阻。电阻在电路中的主要作用为分流、限流、分压、偏置、滤波(与电容器组合使用)和阻抗匹配等。 1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。换算方法是:1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。 a、数标法主要用于贴片等小体积的电路,如:472 表示47×102Ω(即4.7K);104则表示100K b、色环标注法使用最多,现举例如下: 四色环电阻五色环电阻(精密电阻) 2、电阻的色标位置和倍率关系如下表所示: 颜色有效数字倍率允许偏差(%) 银色/ 10-2 ±10 金色/ 10-1 ±5 黑色0 100 / 棕色1 101 ±1 红色2 102 ±2 橙色3 103 / 黄色4 104 / 绿色5 105 ±0.5 蓝色6 106 ±0.2 紫色7 107 ±0.1 灰色8 108 / 白色9 109 +5至-20 无色/ / ±20

4 常见电阻器的外形及电路符号 金属膜电阻光敏电阻热敏电阻 可变电阻(电位器)

12 五环电阻器色环颜色与数值对照表 ×100 黑 ×109 9 9 9 白 ±0.05% ×108 8 8 8 灰 ±0.1% ×107 7 7 7 紫 ±0.25% ×106 6 6 6 蓝 ±0.5% ×105 5 5 5 绿 ×104 4 4 4 黄 ±2% ×102 2 2 2 红 ±1% ×101 1 1 1 棕 误差 倍率 第3位数 第2位数 第1位数 第5色环 第4色环 第3色环 第2色环 第1色环 色环 颜色 电位器: 16一种阻值可以连续调节的电阻器,用来进行阻值、电位的调节。 收录机→控制音调、音量电视机→调节亮度、对比度等 8.1.2 电位器 带开关的电位器电位器的外形和电路图形符号

相关文档
相关文档 最新文档