文档库 最新最全的文档下载
当前位置:文档库 › 运算放大器电压范围—输入和输出之解疑释惑

运算放大器电压范围—输入和输出之解疑释惑

运算放大器电压范围—输入和输出之解疑释惑
运算放大器电压范围—输入和输出之解疑释惑

运算放大器电压范围—输入和输出之解疑释惑

排行榜收藏打印发给朋友举报来源:德州仪器(TI) 发布者:Bruce Trump

热度317票浏览3277次【共1条评论】【我要评论】时间:2012年12月06日21:55 作者:TI专家Bruce Trump

我们常常会收到一些与电源有关的应用问题,询问我们运算放大器的输入和输出电压范围到底有多大。既然大家存在这方面的疑惑,那么我们就利用这篇文章来为大家解疑释惑:

首先,常见运算放大器并没有接地端。标准运算放大器“不知道”接地的位置,因此它也就无从知道其工作电源是一个双电源(±)还是一个单电源。只要电源输入和输出电压在其工作范围以内,就不会出问题。

下面是我们需要考虑的三个重要电压范围:

1、总电源电压范围。它是两个电源端之间的总电压。例如,30 V 的总电压范围为±15V。再如,某个运算放大器的工作电压范围可能为6V 到36V。在低压极端条件下,它可能为±3V 或者+6 V。在高压极端条件下,它可能为±18V 或者+36V,甚至是-6 V/+30V。没错,如果您留心阅读下面的第2 点和第3 点,会发现使用非平衡电源也是可以的。

2、输入共模电压范围(C-M 范围)一般是相对于正负电源电压而言的,如图1 所示。使用类似于方程式的方法表示时,假设运算放大器的C-M 范围可以描述为负轨以上2V 到正轨以下2.5V,表示方法为:(V-)+2V 到(V+)–2.5V。

3、同样,输出电压范围(即输出动态范围性能)是相对于轨电压而言的。这时,它可以表示为(V-)+1V 到(V+)–1.5V。

这些例子(图1、2和3)可以运用一个G=1 缓冲器配置结构进行说明。重点是,图1 所示例子的输出范围大小被限定为负轨2 V 和正轨2.5V,原因是输入C-M 范围受限。在高增益条件下,可能会需要配置这种运算放大器,以达到其最大输出电压范围。

图1 所示的例子是双±电源常用的运算放大器典型结构。虽然我们不把它称作“单电源”,但是它的确可以通过将电源保持在规定范围内实现单电源工作。图2 显示了一种所谓的单电源运算放大器。它拥有一个C-M 范围,该范围可以扩展至负轨,但通常会稍低于负轨。这样,它便可以应用于更多电压接近零的电路中。因此,尽管不被称为“单电源”的运算放大器可以用于某些单电源电路中,但真正的单电源型运算放大器在这些应用中则更加常见。

在这种G=1 缓冲器电路中,这种运算放大器可从V-轨(受限于输出大小)得到0.5V 的输出动态范围,并从V-轨(受限于输入C-M 范围)得到2.2V 的输出动态范围。图3 显示了一个轨至轨运算放大器。它工作时,输入电压可以等于甚至略微大于两个电源电压轨,如图3 所示。轨至轨输出意味着,输出电压可以非常接近于轨,但通常在电源轨的10mV 到100mV 范围内。一些运算放大器标声称只有一个轨至轨输出,缺少图 3 所示输入特性。轨至轨运算放大器用于单5V 电源和单5V 以下电源的情况非常普遍,因为它们可在有限电源电压范围下最大化信号电压输出的性能。

轨至轨运算放大器非常诱人,因为它们放宽了信号电压限制,但是,它们并非总是我们的最佳选择。同我们生活中的其他选择一样,它在其他性能方面通常会有一些折扣。但是,这同时就是你作为一名模拟设计人员的价值所在。我们的生活充满了各种复杂的问题和选择,但我们仍然对它充满热爱。

输入输出阻抗以及阻抗匹配

输入、输出阻抗以及阻抗匹配 在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。输入阻抗是用来衡量放大器对信号源的影响的一个性能指标: 对于电压驱动的电路,输入阻抗越大,表明放大器从信号源取的电流越小,放大器输入端得到的信号电压也越大,即信号源电压衰减的少,对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响。理论基础:Us=(Rs+Ri)×I。Rs为信号源内阻,Ri为放大器输入电阻。因此作为测量信号电压的示波器、电压表等仪器的放大电路应当具有较大的输入电阻。对于一般的放大电路来说,输入电阻当然是越大越好。如果想从信号源取得较大的电流,则应该使放大器具有较小的输入电阻 而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要

运算放大器构造及原理

万联芯城销售TI,ADI,ST等原装品牌运算放大器IC。全现货库存,提供一站式配套服务,万联芯城,三十年电子元器件销售经验,是您的BOM配单专家,为您节省采购成本。点击进入万联芯城 点击进入万联芯城

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同,运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等

运算放大器容性负载驱动分析

运算放大器容性负载驱动分析 运算放大器容性负载驱动分析 问:为什么我要考虑驱动容性负载问题? 答:通常这是无法选择的。在大多数情况下,负载电容并非人为地所加电容。它常常是人们不希望的一种客观存在,例如一段同轴电缆所表现出的电容效应。但是在有些情况下,要求对运算放大器的输出端的直流电压进行去耦。例如,当运放被用作基准电压的倒相或驱动一个动态负载时。在这种情况下,你也许在运放的输出端直接连接旁路电容。不论哪种情况,容性负载都要对运放的性能有影响。 问:容性负载如何影响运放的性能?答:为简单起见,可将放大器看成一个振荡器。每个运放都有一个内部输出电阻RO,当它与容性负载相接时,在运放传递函数上产生一个附加的极点。正。在图2(a)中,在运放的两个输入端之间接电阻RD。此时电路的增益可由给定公式计算。因为是噪声增益而不是信号增益支配稳定性,所以 图2提高效大器噪声增益电路电路稳定性的提高不影响信号增益。为保证电路稳定,最简单的方法是使噪声带宽至少应比容性负载极点频率低10倍频程。 图3环路增益波特图这种方法的缺点是输入端电压噪声和输入失调电压被放大产生附加的输出电压噪声和输出失调电压增加。用一个电容CD与电阻RD串联可以消除附加的直流失调电压,但增加的电压

噪声是器件固有的,不能消除。当选用CD时,其电容值应尽可能大。为保证噪声极点至少低于“噪声带宽”10倍,CD最小应取10A NOISE/2πRDGBP。 (2)环路外补偿法这种方法是在运放的输出端和负载电容之间串入一个电阻RX,。虽然RX加在反馈环路的外部,但它可将负载电容产生的附加零点频率fZ作用到反馈网络的传递函数,从而可以减小高频环路相移。为了保证电路稳定,RX的取值应该使附加零点频率至少比运放电路闭环带宽低10倍。电路加入RX使电路性能不会像方法1那样增加输出噪声,但是从负载端看进去的输出阻抗要增加。由于RX和RL构成分压器,从而会使信号增益降低。如果RL已知并且适当地恒定,那么增益降低值可通提高运放电路的增益来补偿。这种方法用于驱动传输线路非常有用。RL和RX值必须等于电缆的特征阻抗(通常为50Ω和75Ω),以免产生驻波。因此,先确定RX值,其余其它电阻值要使放大器的增益加倍,用来补偿由电阻分压作用降低的信号增益,从而解决问题。 (3)环路内补偿法如果RL值未知,或者是动态值,那么增益级的有图4环路外补偿法效输出电阻必须很低。在这种情况下,在整个反馈环路内接一个电阻RX是很有用的,。在这个电路中,由于直流和低频反馈都是来自负载电阻RL,所以从输入端到负载的信号增益不受分压器RX和RL的影响。 图5环路内补偿法RX=RORGRFCF=RO+RXRF·CL在这个电路中外接的电容CF是用来抵消CL产生的附加极点和零点。为

求解输入输出电阻

戴维宁定理指出:“一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电压源和电阻的串联组合等效置换,此电压源的激励电压等于一端口的开路电压,电阻等于一端口内全部独立源置零后的输入电阻。 Req=0 无伴电压源只存在戴维南等效电路 Req=∞无伴电流源只存在诺顿等效电路 2.1 等效变换化法: 不含受控源的二端网络除源后,其电路可以看成由电阻按不同方式连接而成的纯电阻电路。求解该二端网络的等效电阻可采用电阻的串并联等效变化或△一Y 变化法直接求取。 例l:求图1所示电路的戴维南等效电阻,其中:Us1=Us2=40V, R1=R2= R4=4ΩR3= 2Ω,R5=8Ω 解:分析图l电路知:不含受控源,将所有电源置零后,电路变成纯电阻电路,可以直接通过串并联等效变化求端口等效电阻。 Req=[(R1∥R2 )+R3)]∥R4+ R5=10Ω a. 等效变换法适用于不含控制源且结构比较简单的二端网络,对于结构复杂的网络也适用,只是计算过程步骤繁琐. 2.2开路短路法: 开路短路法指二端网络的等效电阻等于该端口的开路电压u oc与该端口的短路电流i sc之比。注意:短路电流由开路电压正极流向负极。 开路电压: u oc=10V 短路电流: i+0.5i=10

i sc=20/3A Req= u oc / i sc=1.5Ω a.(受控)独立源处理方法: (受控)电流源不等于短路。其有压降。 (受控)电压源不等于开路。其有电流。 处理方法有2中: 1.避开 如:回路电流法和节点电压法中让(受控)电流源,(受控)电压源做单独回路。 2.设出(受控)电流源上压降。(受控)电压源上电流。 b.开路短路法是依据戴维南和诺顿定理。当二端网络的开路电压为零时(不含独立源是其中一种情况),不能利用此法。因为开路电压为零,等效电阻不能够确定。 2.1输入电阻法: 戴维南定理指出一个含独立电源、线性电阻和受控源的一端口对外电路,其等效电阻等于一端口的全部独立电源置零后的输入电阻。输入电阻等于端口外加电压源与端口的输入电流之比。 例3:利用输入电阻法求解例2所示戴维南等效电阻。 解:根据输入电阻法原则,端口内电源置零,外加电压源,可以得出电路图3。 u=i+0.5i Req= u/ i=1.5Ω 2.4外特性法: 线性二端网络外特性指其端口电压和端口电流之间的关系。(不需将独立源置零)由戴维南定理知,线性二端网络等效电路如图4、图5所示。在不同端口电压和电流参考方下, 其端口外特性可由公式(1)和(2)分别来描述。

第5章 含有运算放大器的电阻电路总结

第五章 含有运算放大器的电阻电路 ◆ 重点: 1、运放的传输特性 2、比例器、加法器、减法器、跟随器等运算电路 3、含理想运放的运算电路的分析计算 ◆ 难点: 熟练计算含理想运放的电路 5.1 运放的电路模型 5.1.1 运放的符号 运放是具有高放大倍数的直接耦合放大电路组成的半导体多端实际元件。而在本章中,所讲到“运放”,是指实际运放的电路模型——一种四端元件。其符号为 + u- _ o + _ 图5-1 运放的符号 在新国标中,运放及理想运放的符号分别为 图5-2 运放的新国标符号 5.1.2 运放的简介 一、同相与反相输入端 运放符号中的“+”、“-”表示运放的同相输入端和反相输入端,即当输入电压加在同相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相同;反之,当输入电压加在反相输入端和公共端之间时,输出电压和输入电压两者的实际方向相对于公共端来说相反。其意义并不是电压的参考方向。 二、公共端 在运放中,公共端往往取定为接地端——电位为零,实际中,电子线路中的接地端常常取多条支路的汇合点、仪器的底座或机壳等,输入电压、输出电压都以之为参考点。有时,电路中并不画出该接地端,但计算时要注意它始终存在。

5.1.3 运放的输入输出关系 一、运放输入输出关系曲线 在运放的输入端分别同时加上输入电压+ u 和- u (即差动输入电压为d u )时,则其输 出电压u o 为 d u u o u A u u A u =-=-+)( d 图5-3 运放输入输出关系曲线 实际上,运放是一种单向器件,即输出电压受输入电压的控制,而输入电压并不受输出电压的控制。由其输入输出关系可以看出,运放的线性放大部分很窄,当输入电压很小时,运放的工作状态就已经进入了饱和区,输出值开始保持不变。 二、运放的模型 a u - u o u 图5-4 运放的电路模型 由运放的这一模型,我们可以通过将运放等效为一个含有受控源的电路,从而进行分析计算。 例:参见书中P140所示的反相比例器。(学生自学) 5.1.4 有关的说明 在电子技术中,运放可以用于 1.信号的运算——如比例、加法、减法、积分、微分等 2.信号的处理——如有源滤波、采样保持、电压比较等 3.波形的产生——矩形波、锯齿波、三角波等 4.信号的测量——主要用于测量信号的放大 5.2 具理想运放的电路分析 5.2.1 含理想运放的电路分析基础 所谓“理想运放”,是指图中模型的电阻R in 、R 0为零,A 为无穷大的情况。由此我们可以得出含有理想运放的电路的分析方法。根据输入输出特性,我们可以得出含有理想运放器件的电路的分析原则:

10种运算放大器

10种运算放大器

各种不同类型的运算放大器介绍 董婷 076112班 一.uA741M ,uA741I ,uA741C (单运放)高增益运算放大器 用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。 这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。目前价格1元/个。 Package 封装 Part Number 零件型号 Temperature Range 工作温 度范围 N D UA741C 0℃ - +70℃ ? ? UA741I -40℃ - +105℃ ? ? UA741M -55℃ - +125℃ ? ? 例如 : UA741CN uA741主要参数 ABSOLUTE MAXIMUM RATINGS 最大额定值 Symbo l 符号 Parameter 参数 UA741M UA741I UA741C Uni t 单位 VCC Supply voltage 电源电压 ±22 V Vid Differential Input Voltage 差分输入电压 ±30 V Vi Input Voltage 输入电压 ±15 V Ptot Power Dissipation 功耗 500 mW Toper Output Short-circuit Duration 输出 短路持续时间 Infinite 无限制 Operating Free-air Temperature Range 工作温度 -55 to +125 -40 to +105 0 to +70 ℃ Tstg Storage Temperature Range 储存温度范围 -65 to +150

放大器的精度和稳定性

电路结构建议采用典型电路形式和厂商提供的电路,许多电路结构都是经过很多工程师们反复实验和验证过的。采用OP构成的放大器电路的精度主要与外部元器件参数有关,例如放大倍数与外接的电阻有关。 解决放大器的稳定性就比较复杂了,涉及到放大器的电路结构、PCB布局、电源供给、以及放大器所在的系统环境等等、等等。 一些建议如下: 与分立器件相比,现代集成运算放大器(op amp)和仪表放大器(in-amp)为设计工程师带来了许多好处。虽然提供了许多巧妙、有用并且吸引人的电路。往往都是这样,由于仓促地组装电路而会忽视了一些非常基本的问题,从而导致电路不能实现预期功能——或者可能根本不工作放大器电路设计:如何避免常见问题。 (1)最常遇到的一个应用问题是在交流(AC)耦合运算放大器或仪表放大器电路中没有提供偏置电流的直流(DC)回路。在图1中,一只电容器与运算放大器的同相输入端串联以实现AC耦合,这是一种隔离输入电压(VIN)的DC分量的简单方法。这在高增益应用中尤其有用,在那些应用中哪怕运算放大器输入端很小的直流电压都会限制动态范围,甚至导致输出饱和。然而,在高阻抗输入端加电容耦合,而不为同相输入端的电流提供DC通路,会出现问题。 图1 运算放大器AC耦合输入错误的连接形式 (2)在仪表放大器的输出端和ADC的输入端之间通常接一个简单的RC低通抗混叠滤波器以减少带外噪声。RC低通滤波器的典型值:R = 50Ω~ 200Ω,C = 1/(2πR F),按电路的-3 dB带宽设置C的取值。 (3)当从电源电压利用分压器为放大器提供参考电压时应保证PSR性能 一个经常忽视的问题是电源电压VS的任何噪声、瞬变或漂移都会通过参考输入按照分压比经过衰减后直接加在输出端。实际的解决方案包括旁路滤波以及甚至使用精密参考电压IC 产生的参考电压,例如ADR121,代替Vs分压。

运算放大器11种经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

什么是输入阻抗和输出阻抗

什么是输入阻抗和输出阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意。 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限

制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问)。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的 三、阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有

实验二放大器输入、输出电阻和频响特性的测量

实验二 放大器输入、输出电阻和频响特性的测量 一、实验目的 掌握放大器输入电阻、输出电阻和频率特性的测量原理和方法。 二、实验原理 1.放大器输入电阻R i 的测试 最简单的测试方法是“串联电阻法”。其原理如图2-1所示,在被测放大器与信号源之间串入一个已知标准电阻R i ,只要分别测出放大器的输入电压U i 和输入电流I i ,就可以求出: R i =V i /I i = n R i R U U /=R i U U ?Rn 但是,要直接用交流毫伏表或示波器测试Rn 两端的电压U R 是有困难的,因U R 两端不接地。使得测试仪器和放大器没有公共地线,干扰太大,不能准确测试。为此,通常是直接测出U S 和U i 来计算R i ,由图不难求出: R i = i S i U U U -? Rn 注:测R i 时输出端应该接上R L ,并监视输出波形,保证在波形不失真的条件下进行上述测量。 S U 图2-1放大电路输入端模型 2.放大器输出电阻R o 的测试 放大器输出端可以等效成一个理想电压源U o 和R o 相串联,如图2-3所示。 在放大器输入端加入U S 电压,分别测出未接和接入R L 时放大器的输出电压U o 和U L 值,则 L L R U U R )1( 0-= 注意:要求在接入负载R L (或R W )的前后,放大器的输出波形都无失真。

501mA β==CQ ,I , 212*c B b p E R V R R R = ++12*5.1 1.7,10 5.1 p V R ==++ 20.9p R K =Ω 2626200(1) 200(1) 1.526,1be EQ mv mv r K I mA ββ=++=++=Ω 12()//// 1.13,i b p b be R R R R r K =+=Ω 3o c R R K ==Ω

“可恶”的运算放大器电容负载

“可恶”的运算放大器电容负载 他们说如果使用放大器驱动电容负载(图 1、C<**>LOAD),一个不错的经验是采用一个50 或100 欧的电阻器(R<**>ISO) 将放大器与电容器隔开。这个附加电阻器可能会阻止运算放大器振荡。 图 1.支持电容负载的放大器可能需要在放大器输出与负载电容器之间连接一个电阻器。 使用50 或100 欧姆(R<**>ISO) 电阻不一定每次都管用。问题是,“如果C<**>LOAD 超过产品说明书中推荐的运算放大器电容负载值时该怎么办?” 如果您无法找到任何说明书指导,或您的负载电容(C<**>LOAD)确实超过了产品说明书推荐值,那问题的答案就要取决于:

?放大器增益带宽积(GBWP 或f<**>U) ?放大器的开环输出电阻(R<**>O) ?电容器负载值(C<**>LOAD) 图 1 中的频率与增益图显示了当R<**>ISO 和C<**>LOAD 加到放大器输出端时放大器开环增益曲线的情况。如果使用这三个变量,您就可以计算出适当的R<**>ISO 值。 下面是确定R<**>ISO 值时的规则: (公式1) (公式2) 这两个规则可确保电路的稳定。 适合这一概念的应用是将输入驱动至SAR-ADC。在这种情况下,需要该信号在转换器的采集时间内(t<**>ACQ) 内稳定。公式 3 中的K 是ADC 时间常数乘法器,其可提供半L** 的高精度。 对于ADS7886等16 位转换器而言,K 等于11.78。 (公式3) 我们来应用这些公式,采用以下参数进行计算: ?对于OPA365 ?f<**>U = 50 MHz

?R<**>0 = 30 欧姆 ?增益= 1 V/V ?对于ADS7886 ?t<**>ACQ = 300 ns ?C<**>IN = 21 pF ?C<**>LOAD = 390 pF OPA365产品说明书显示,100 pF 的负载会产生30% 的过冲(图2)。 图 2. OPA365过冲与电容负载 公式1、2 和3 可帮助解决该过冲问题。 ?公式1,R<**>ISO => 3.33 欧姆

运算放大器

运算放大器 绪论 运算放大器是电压控制型电压源模型,其增益(放大倍数)非常大。运算放大器有5个端子、4个端口的有源器件。其符号和内部结构如图1所示: 图1 运算放大器模型和内部结构图 图中电压VCC和VEE是由外部电源提供,通常决定运算放大器的输出电压等级。符号“+”和“—”分别表示同相和反相。输入电压Vp和Vn以及输出电压Vo都是对地电压。 运算放大器的五个接线端构成了一个广义节点,如果电流按照图1所示定义,根据KCL (基尔霍夫电流定律)有如下公式: 因此,为了保持电流平衡,我们必须将所有电流都包括进来,这是根据有源器件的定义得出的。如果我们仅仅考虑输入和输出电流来列出KCL,则等式不成立,即: 运算放大器的等效电路模型如图2所示。电压Vi是输入电压Vp和Vn的差值即Vi=Vp -Vn。Ri是放大器的输入电阻,Ro是输出电阻。放大参数A称为开环增益。

运算放大器的开环结构定义为:运算放大器的结构中不包括将输入和输出端连接起来的回路。 图2 运算放大器的等效电路模型 如果输出端不接任何负载,输出电压为: 该公式说明,输出电压Vo是与输入电压Vp和Vn之差的函数。因此可以说该运算放大器是差值放大器。 大多数实际的运算放大器的开环放大倍数是非常大的。例如,比较常用的741型运算放大器,它的放大倍数为200000Vo/Vi,甚至一些运算放大器的放大倍数达到108 Vo/Vi。 反映输入电压和输出电压关系的曲线称为电压传输特性,而且该曲线是放大器电路设计和分析的基础。运算放大器的电压传输曲线如图3所示: 图3 电压传输特性曲线

注意:该曲线有2个变化区域,一个为在Vi=0V附近时,输出电压和输入电压成正比例放大,称之为线性区域;另一个为Vo随Vi改变而不变的区域,称之为饱和区(或非线性区)。 可以通过设计让运算放大电路工作在上述的2个区域。在线性区域Vo和Vi直线的斜率是非常大的,实际上,它与开环放大倍数A相等。例如,741运算放大器正负电源电压为VCC=+10V,VEE=-10V,Vo的饱和值(最大输出电压)一般在±10 V,而当A=200000 Vo/Vi 时,可以算出输入的电压非常小:10/200,000 = 50μV。

输入电阻和输出电阻(纠结了好长时间,看完就懂了)

输入电阻和输出电阻(纠结了好长时间,看完就懂了) 关于输入电阻和输出电阻,纠结了好长时间,现在终于明白了,拿出来给大家看一下,呵呵输入电阻是用来衡量放大器对信号源的影响的一个性能指标。输入电阻越大,表明放大器从信号源取的电流越小,放大器输入端得到的信号电压也越大,即信号源电压衰减的少。理论基础:Us=(Rs Ri)×I。Rs为信号源内阻,Ri为放大器输入电阻。因此作为测量信号电压的示波器、电压表等仪器的放大电路应当具有较大的输入电阻。对于一般的放大电路来说,输入电阻当然是越大越好。如果想从信号源取得较大的电流,则应该使放大器具有较小的输入电阻。输出电阻用来衡量放大器在不同负载条件下维持输出信号电压(或电流)恒定能力的强弱,称为其带负载能力。当放大器将放大了的信号输出给负载电阻RL时,对负载RL来说,放大器可以等效为具有内阻Ro的信号源,由这个信号源向RL提供输出信号电压和输出信号电流。Ro称为放大器的输出电阻,它是从放大器输出端向放大器本身看入的交流等效电阻。如果输出电阻Ro很小,满足Ro<条件,则当RL在较大范围内变化时,就可基本维持输出信号电压的恒定。反之,如果输出电阻Ro很大,满足Ro>>RL条件,则当RL在较大范围内变化时,就可维持输出信号电流的恒定。如手机电池,它的内阻可以等效

看作输出电阻,用了几年后,内阻高了,也就要报废了,因为带不动外面的东西了。电压放大和互阻放大电路,即输出为电压信号的放大电路,Ro越小,负载RL对的变化对输出信号V o的影响越小。而且只要负载RL足够大,信号输出功率一般较低,能耗也较低。多用于信号的前置放大和中间级放大。对于一般的放大电路来说,输出电阻当然越小越好。电流放大和互导放大电路,即输出为电流信号的放大电路,与受控电流源并联的Ro越大,负载RL的变化对输出电流Io的影响越小。则与前两种相比当供电电源相同时,可得到较大输出电流信号,所以功率可能到达较大的值,对供电电源的能耗较大。通常用于电子系统的输出级,可作为各种输出物理变量变换器(如音响系统的扬声器,动力系统的电动机等)的驱动电路。

运算放大器的稳定性6―电容性负载稳定性

运算放大器稳定性 第 6 部分(共 15 部分)电容性负载稳定性:R ISO 、高增益及 CF 、噪声增益 作者:Tim Green ,德州仪器 本系列的第六部分是新《电气工程》杂志 (Electrical Engineering ) 中“保持容性负载稳定的六种方法”栏目的开篇。这六种方法是 R ISO 、高增益及 CF 、噪声增益、噪声增益及 CF 、输出引脚补偿 (Output Pin Compensation ),以及具有双通道反馈的 R ISO 。本部分将侧重于讨论保持运算放大器输出端容性负载稳定性的前三种方法。第 7 和第 8 部分将详细探讨其余三种方法。我们将采用稳定性分析工具套件中大家都非常熟悉的工具来分析每种方法,并使用一阶分析法来进行描述。该描述方法是:通过 Tina SPICE 环路稳定仿真进行相关确认;通过 Tina SPICE 中的 V OUT /V IN AC 传递函数分析来进行检验;最后采用 Tina SPICE 进行全面的实际瞬态稳定性测试 (Transient Real World Stability Test)。在过去长达 23 年中,我们在真实环境以及实际电路情况下进行了大量测算,充分验证了这些方法的有效性。然而,由于资源的限制,本文所述电路并未进行实际制作,在此仅供读者练习或在自己的特定应用(如分析、合成、仿真、制作以及测试等)中使用。 运算放大器示例与 R O 计算 在本部分中,用于稳定性示例的器件将是一种高达 +/40V 的高电压运算放大器 OPA452。这种“功能强大的运算放大器”通常用于驱动压电致动器 (piezo actuator),正如您可能已经猜到的那样,该致动器大多为纯容性的。该放大器的主要参数如图 6.1 所示。图中未包含小信号 AC 开环输出阻抗 R O 这一关键参数,在驱动容性负载时,该参数对于简化稳定性分析极其重要。由于参数表中不含该参数,因而我们需要通过测量得出 R O 。由于 Analog & RF Models 公司 (https://www.wendangku.net/doc/c74080537.html,/%7Ewksands/) 的 W. K. Sands 为该放大器构建了 SPICE 模型,因而我们可用 Tina SPICE 来测量 R O 。对于数据表参数而言,W. K. Sands SPICE 模型已经过长期而反复的考证具有极高的精确性,更重要的是,它是真正的硅芯片部件! 运算放大器稳定性   OPA452 Supply: +/-10V to +/-40V Slew Rate: +7.2V/us, -10V/us Vout Saturation: Io=50mA, (V-)+5V, (V+)-5.5V Io=10mA, (V-)+2V, (V+)-2V 图 6.1:OPA542 重要参数 为了测试 R O ,我们在图 6.2 的开环增益和相位与OPA452 频率关系图上标注“工作点 (operating point )”。通过测试此“工作点”(无环路增益的频率与增益点)的 R OUT ,R OUT = R O (如欲了解R O 及 R OUT 的详细探讨,敬请参见本系列的第 3 部分)。 R O Test Point

常见运算放大电路

运算放大器分类总结

一、通用型运算放大器通用型运算放大器 通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。下面就实验室里也常用的LM358来做一下介绍: LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。: 外观管脚图 它的特点如下: ·内部频率补偿 ·直流电压增益高(约100dB) ·单位增益频带宽(约1MHz) ·电源电压范围宽:单电源(3—30V)双电源(±1.5 一±15V) ·低功耗电流,适合于电池供电 ·低输入偏流 ·低输入失调电压和失调电流 ·共模输入电压范围宽,包括接地 ·差模输入电压范围宽,等于电源电压范围 ·输出电压摆幅大(0 至Vcc-1.5V)

大信号频率响应大信号电压开环增益 电压跟随器对小信号脉冲的响应 电压跟随器对小信号脉冲的响应 常用电路: (1)、正向放大器 根据虚短路,虚开路,易知:

(2)、高阻抗差分放大器 电路左半部分可以看作两个同向放大器,分别对e1,e2放大(a+b+1)倍,右半部分为一个差分放大器放大系数为C,因此得到结果: 0 (21)(1) eCeea b (3)、迟滞比较器 将输入电平与参考电平作比较,根据虚短路,虚开路有: 将输入电平与参考电平作比较,根据虚短路,虚开路有: 二、高精度运算放大器 所谓高精度运放是一类受温度影响小,即温漂小,噪声低,灵敏度高,适合微小信号放大用的运算放大器。 高精度运算放大器的运用范畴很广,在产业领域中可用于量测仪器、控

最新运算放大器设计总结

运算放大器的基本参数 1. 开环电压增益A OL 不带负反馈的状态下,运算放大器对直流信号的放大倍数。电压反馈运算放大器采用电 压输入/电压输出方式工作,其开环增益为无量纲比,所以不需要单位。但是,数值较小时,为方便起见,数据手册会以V/mV或V/ yV代替V/V表示增益,电压增益也可以dB形式表示,换算关系为dB = 20 xiogAVOL。因此,1V/ ^V的开环增益相当于120 dB,以此类推。该参数与频率密切相关,随着频率的增加而减小,相位也会发生偏移。 对于反向比例放大电路,只有当AOL >> R+Rf时,Vo=-Rf/RVi才能够成立。 Frequency (Hz) 2. 单位增益带宽B1 (Gain-Bandwidth Product) 开环电压增益大于等于 1 (OdB )时的那个频率范围,以Hz为单位。它将告诉你将小 信号(?土100mV )送入运放并且不失真的最高频率。在滤波器设计电路中,假定运放滤波器增益为 1V/V,则单位增益带宽大于等于滤波器截止频率f cut-off x 100。 3.共模抑制比CMRR 差分电压放大倍数与共模电压放大倍数之比,CMRR=|Ad/Ac|。共模输入电压会影响到 输入差分对的偏置点。由于输入电路内部固有的不匹配,偏置点的改变会引起失调电压改变, 进而引起输出电压改变。其实际的计算方法是失调电压变化量比共模电压变化量,一般来说CMRR= △ Vos/ △ Vcom , TI及越来越多的公司将其定义为CMRR= △ Vcom/ △ Vos。在datasheet中该参数一般为直流参数,随着频率的增加而降低。

CCMMDN-MODE REJECTION RATIO vt. FREQUENCY 4. 输入偏置电流Ibias 输入偏置电流被定义为:运放的输入为规定电位时,流入两个输入端的电流平均值。记为IB。为了运放能正常的工作,运放都需要一定的偏置电流。IB=(IN+IP)/2。 当信号源阻抗很高时,就必须关注输入偏流,因为如果运放有很大的输入偏流,就会对信号源构成负载,因而会看到一个比预想要低的信号源输出电压,如果信号源阻抗很高,那 么最好使用一个以CMOS或者JFET作为输入级的运放,也可以采用降低信号源输出阻抗的方法,就是使用一个缓冲器,然后用缓冲器来驱动具有很大输入偏流的运放。 在双级输入级的情况下,可以使用对失调电流进行调零的方法,就是使从两个输入端看到的阻抗相互匹配。在CMOS和JFET输入电路的情况下,一般来说,失调电流不是问题,也没有必要进行阻抗匹配了。 5. 输入失调电流Ios 当运放的输出端置于规定电位时,流入运放两个输入端的电流之差的绝对值。 I OS=|IN-IP| 6. 电源抑制比PSRR 电源电压的改变量与由此引起的输入失调电压改变量之比的绝对值,单位是dB。对于双电源运放,PSSR= △ V cc士/ △ V os士。PSSR随着频率的增加而下降。开关电源产生的噪声频率从50kHz到500kHz或更高,在这些高频下,PSSR的值几乎为零,所以,电源上的 噪声会引起运放输出端上的噪声,对此必须使用恰当的旁路技术。

运算放大器稳定性实验

●Hello,and welcome to the TI Precision Lab supplement for op amp stability. ●This lab will walk through detailed calculations,SPICE simulations,and real-world measurements that greatly help to reinforce the concepts established in the stability video series. ●你好,欢迎来到TI Precision Labs(德州仪器高精度实验室)的运放稳定 性环节。 ●这个实验会包括计算,SPICE仿真和实际测试。这些环节帮助大家对视频中 的概念加深理解。

●The detailed calculation portion of this lab can be done by hand,but calculation tools such as MathCAD or Excel can help greatly. ●The simulation exercises can be performed in any SPICE simulator,since Texas Instruments provides generic SPICE models of the op amps used in this lab. However,the simulations are most conveniently done in TINA-TI,which is a free SPICE simulator available from the Texas Instruments website.TINA simulation schematics are embedded in the presentation. ●Finally,the real-world measurements are made using a printed circuit board,or PCB,provided by Texas Instruments.If you have access to standard lab equipment,you can make the necessary measurements with any oscilloscope, function generator,Bode plotter,and±15V power supply.However,we highly recommend the VirtualBench from National Instruments.The VirtualBench is an all-in-one test equipment solution which connects to a computer over USB or Wi-Fi and provides power supply rails,analog signal generator and oscilloscope channels,and a5?digit multimeter for convenient and accurate measurements. This lab is optimized for use with the VirtualBench. ●本实验的计算可以通过實際計算,如果使用Mathcad或者Excel这样工具会 更好。

运算放大器技术合集:运放工作原理、基础及经典电路分析

运算放大器技术合集:运放工作原理、基础及经典电路分析 一、入门篇:运算放大器的工作原理、基础 *运算放大器的工作原理 运算放大器具有两个输入端和一个输出端,如图1-1所示,其中标有“+”号的输入端为“同相输入端”而不能叫做正端),另一只标有“一”号的输入端为“反相输入端”同样也不能叫做负端,如果先后分别从这两个输入端输入同样的信号,则在输出端会得到电压相同但极性相反的输出信号:输出端输出的信号与同相输人端的信号同相,而与反相输入端的信号反相。 运算放大器所接的电源可以是单电源的,也可以是双电源的,如图1-2所示。运算放大器有一些非常有意思的特性,灵活应用这些特性可以获得很多独特的用途,总的来说,这些特性可以综合为两条: 1、运算放大器的放大倍数为无穷大。 2、运算放大器的输入电阻为无穷大,输出电阻为零。 现在我们来简单地看看由于上面的两个特性可以得到一些什么样的结论。 首先,运算放大器的放大倍数为无穷大,所以只要它的输入端的输入电压不为零,输出端就会有与正的或负的电源一样高的输出电压本来应该是无穷高的输出电压,但受到电源电压的限制。准确地说,如果同相输入端输入的电压比反相输入端输入的电压高,哪怕只高极小的一点,运算放大器的输出端就会输出一个与正电源电压相同的电压;反之,如果反相输入端输入的电压比同相输人端输入的电压高,运算放大器的输出端就会输出一个与负电源电压相同的电压(如果运算放大器用的是单电源,则输出电压为零)。 其次,由于放大倍数为无穷大,所以不能将运算放大器直接用来做放大器用,必须要将输出的信号反馈到反相输入端(称为负反馈)来降低它的放大倍数。如图1-3中左图所示,R1的

相关文档
相关文档 最新文档