文档库 最新最全的文档下载
当前位置:文档库 › 频率和相位之间的关系

频率和相位之间的关系

频率和相位之间的关系

频率和相位有什么关系

如果频率不同的话,相位差时刻都是变化的。锁相环稳定后,鉴相器两个输入频率是相同的,相位差保持恒定。以正弦函数为例:

F(t)=sin(2πft+α):

f就是频率;2πft+α就是相位;α是t=0时的相位,即初相位。

频率不同就无从谈相差了。频率和相位是周期园函数的两个独立参数,想像一下两个人围着一个圆形场地跑步,离起跑点的圆弧距离是运动位置与起跑点所夹圆心角的函数,这个夹角就是相位,而一定时间所跑圈数是频率,如果两人速度相同(即频率相同),则两人之间的距离是始终不变的,也就是相位差是一定的,这个相位差大小取决于后跑者比先跑者延后起跑的时间。如果两人速度不一样,则之间距离(相位差)不断变化。所以频率不同,相位差不固定。鉴相器不管频率只比较相位,只要相位变化,就给信号给控制器对频率加以控制,使其二者频率一致。

“F(t)=sin(2πft+α):f就是频率;2πft+α就是相位;α是t=0时的相位,即初相位。”

就是这么简单。我们通常说的“相位”这个词其实有两个含义:

1.特指周期信号的初相位

2.一般意义上的相位,即“瞬时相位”

频率和相位,一开始都是周期信号的属性,频率是单位时间内的周期数,初相位指周期信号相对所选时间原点的位置,瞬时相位则是指周期信号在任一时刻“走到了一个周期中的哪一步”。对上面的公式,如果从数学角度理解:

频率就是相位的微分(相位的“行进速度”)或者相位是频率的积分。这种关系,从数学上推广一步,即使f是变量也成立,再回到物理世界,就发现,不必强求“严格的”周期信号,频率和相位都可以是瞬时值。频率不同,“初相位”之差是没有意义的,但“瞬时相位”之差仍然存在,不就是两个2πft+α之差么?

所谓鉴相器的“相”,指的是就是这种瞬时相位,所以自然不必局限于周期信号,当然也不必局限于“同频”信号,否则“鉴相器”就是个错误的词了。鉴相器的功能,理论上把这种瞬时相位差变换成电压值(当然实际电路总需要经过一段时间才能得出结果,不可能完全“瞬时”)。

锁相环的工作原理,表面看是用鉴相器的输出控制VCO的频率,但实际是通过瞬时频率的积分达到相位控制,最终使反馈到鉴相器的瞬时相位与输入的瞬时相位之差趋于零。

BG2WLA整理

2012.04.26

信号频率与相位分析实验

实验四 信号频率与相位分析 一、实验目的 1 理解李沙育图形显示的原理; 2 掌握用李沙育图形测量信号频率的方法; 3 掌握用李沙育图形测量信号相位差的方法; 4 用示波器研究放大电路的相频特性。 二、实验原理和内容 1 李沙育图形 扫描速度旋钮置”X-Y ”位置时,Y1通道变成x 通道,在示波器的y 通道(Y2)和x 通道(Y1,与Y2通道对称)分别加上频率为f y 和f x 的正弦信号,则在荧光屏上显示的图形称为李沙育(或李萨如)图形。李沙育图形的形状主要取决于f y 、f x 的频率比和相位差。例如,当 f y /f x =1,且相位差为0时,屏幕上显示一条对角线;当f y /f x =2,且相位差为0时,屏幕上显示“∞”;当f y /f x =1,但相位差不为0时,屏幕上显示一个椭圆。图4-1所示为f y /f x =2且相位差为0时的李沙育图形。 2 李沙育图形法测量未 知信号的频率 扫描速度旋钮置”X-Y ”位置,被测信号加到Y2通道,用信号发生器输出一个正弦信号加到X 通道(Y1),Y1、Y2的偏转灵敏度置相同位置,由小到大逐渐增加信号发生器输出信号频率,当屏幕上显示一个稳定的椭圆时,信号发生器指示的频率即为被测未知信号的频率。 3 李沙育图形法测量信号相位差 设u x = U xm sin (ωt+θ),u y = U ym sin ωt ,分别 加到x 通道(Y1通道)和Y2通道,扫描速度旋钮 置”X-Y ”位置,荧光屏上显示的李沙育(或李萨如) 图形如图5-2所示。则 m x x 0 1sin -=θ (4-1) 图4-1 f y /f x =2且相位差为0时的李沙育图形 U x t t U y x 0 x m 图4-2李沙育图形法测相位差

实验4 信号频率与相位分析

实验四 信号频率与相位分析 一、实验目的 1 理解李沙育图形显示的原理; 2 掌握用李沙育图形测量信号频率的方法; 3 掌握用李沙育图形测量信号相位差的方法; 4 用示波器研究放大电路的相频特性。 二、实验原理和内容 1 李沙育图形 扫描速度旋钮置”X-Y ”位置时,Y1通道变成x 通道,在示波器的y 通道(Y2)和x 通道(Y1,与Y2通道对称) 分别加上频率为f y 和f x 的正弦信号,则在荧光屏上显示的图形称为李沙育(或李萨如)图形。李沙育图形的形状主要取决于f y 、f x 的频率比和相位差。 例如,当f y /f x =1,且相位差为0时, 屏幕上显示一条对角线;当f y /f x =2,且相位差为0时,屏幕上显示“∞”;当f y /f x =1,但相位差不为0时,屏幕上显示一个椭圆。图4-1所示为f y /f x =2且相位差为0时的李沙育图形。 2 李沙育图形法测量未知信号的频率 扫描速度旋钮置”X-Y ”位置,被测信号加到Y2通道,用信号发生器输 出一个正弦信号加到X 通道(Y1),Y1、 Y2的偏转灵敏度置相同位置,由小到大逐渐增加信号发生器输出信号频率,当屏幕上显示一个稳定的椭圆时,信号发生器指示的频率即为被测未知信号的频率。 3 李沙育图形法测量信号相位差 设u x = U xm sin (ωt+θ),u y = U ym sin ωt ,分别加到x 通道(Y1通道)和Y2通道,扫描速度旋钮置”X-Y ”位置,荧光屏上显示的李沙育(或李萨如)图形如图5-2所示。则 m x x 0 1sin -=θ (4-1) 4 放大电路的相频特性研究 放大电路的相频特性是指输出信号与输入信号的相位差与信号频率的关系。采用李沙育图形法可以测量相位 差。保持输入信号幅度不变,改变输入信号频率,逐点测量各频率对应的相位差,采用描点法作出相频特性曲线。 三、实验器材 1、信号发生器 1台 2、示波器 1台 图4-1 f y /f x =2且相位差为0时的李沙育图形 图4-2李沙育图形法测相位差

频率和相位之间的关系

频率和相位有什么关系 如果频率不同的话,相位差时刻都是变化的。锁相环稳定后,鉴相器两个输入频率是相同的,相位差保持恒定。以正弦函数为例: F(t)=sin(2πft+α): f就是频率;2πft+α就是相位;α是t=0时的相位,即初相位。 频率不同就无从谈相差了。频率和相位是周期园函数的两个独立参数,想像一下两个人围着一个圆形场地跑步,离起跑点的圆弧距离是运动位置与起跑点所夹圆心角的函数,这个夹角就是相位,而一定时间所跑圈数是频率,如果两人速度相同(即频率相同),则两人之间的距离是始终不变的,也就是相位差是一定的,这个相位差大小取决于后跑者比先跑者延后起跑的时间。如果两人速度不一样,则之间距离(相位差)不断变化。所以频率不同,相位差不固定。鉴相器不管频率只比较相位,只要相位变化,就给信号给控制器对频率加以控制,使其二者频率一致。 “F(t)=sin(2πft+α):f就是频率;2πft+α就是相位;α是t=0时的相位,即初相位。” 就是这么简单。我们通常说的“相位”这个词其实有两个含义: 1.特指周期信号的初相位 2.一般意义上的相位,即“瞬时相位” 频率和相位,一开始都是周期信号的属性,频率是单位时间内的周期数,初相位指周期信号相对所选时间原点的位置,瞬时相位则是指周期信号在任一时刻“走到了一个周期中的哪一步”。对上面的公式,如果从数学角度理解: 频率就是相位的微分(相位的“行进速度”)或者相位是频率的积分。这种关系,从数学上推广一步,即使f是变量也成立,再回到物理世界,就发现,不必强求“严格的”周期信号,频率和相位都可以是瞬时值。频率不同,“初相位”之差是没有意义的,但“瞬时相位”之差仍然存在,不就是两个2πft+α之差么? 所谓鉴相器的“相”,指的是就是这种瞬时相位,所以自然不必局限于周期信号,当然也不必局限于“同频”信号,否则“鉴相器”就是个错误的词了。鉴相器的功能,理论上把这种瞬时相位差变换成电压值(当然实际电路总需要经过一段时间才能得出结果,不可能完全“瞬时”)。 锁相环的工作原理,表面看是用鉴相器的输出控制VCO的频率,但实际是通过瞬时频率的积分达到相位控制,最终使反馈到鉴相器的瞬时相位与输入的瞬时相位之差趋于零。 BG2WLA整理 2012.04.26

详细讲解频率和相位之间的关系

频率和相位是周期函数的两个独立参数,想像一下两个人围着一个圆形场地跑步,离起跑点的圆弧距离是运动位置与起跑点所夹圆心角的函数,这个夹角就是相位,而一定时间所跑圈数是频率,如果两人速度相同(即频率相同),则两人之间的距离是始终不变的,也就是相位差是一定的,这个相位差大小取决于后跑者比先跑者延后起跑的时间。如果两人速度不一样,则之间距离(相位差)不断变化。所以频率不同,相位差不固定。鉴相器不管频率只比较相位,只要相位变化,就给信号给控制器对频率加以控制,使其二者频率一致。 “F(t) = sin(2πft +α):f就是频率;2πft + α 就是相位;α是t = 0时的相位,即初相位。就是这么简单。 首先,我们通常说的“相位”这个词其实有两个含义: 一、特指周期信号的初相位 二、一般意义上的相位,即“瞬时相位” 频率和相位,一开始都是周期信号的属性,频率是单位时间内的周期数,初相位指周期信号相对所选时间原点的位置,瞬时相位则是指周期信号在任一时刻“走到了一个周期中的哪一步”。 对上面的公式,如果从数学角度理解: 频率就是相位的微分(相位的“行进速度”)或者相位是频率的积分; 这种关系,从数学上推广一步,即使f是变量也成立,再回到物理世界,就发现,不必强求“严格的”周期信号,频率和相位都可以是瞬时值。 频率不同,“初相位”之差是没有意义的,但“瞬时相位”之差仍然存在,不就是两个2πft + α 之差么? 所谓鉴相器的“相”,指的是就是这种瞬时相位,所以自然不必局限于周期信号,当然也不必局限于“同频”信号,否则“鉴相器”就是个错误的词了。鉴相器的功能,理论上把这种瞬时相位差变换成电压值(当然实际电路总需要经过一段时间才能得出结果,不可能完全“瞬时”) 锁相环的工作原理,表面看是用鉴相器的输出控制VCO的频率,但实际是通过瞬时频率的积分达到相位控制,最终使反馈到鉴相器的瞬时相位与输入的瞬时相位之差趋于零。

相关文档
相关文档 最新文档