文档库 最新最全的文档下载
当前位置:文档库 › 大肠杆菌噬菌体的研究进展

大肠杆菌噬菌体的研究进展

大肠杆菌噬菌体的研究进展
大肠杆菌噬菌体的研究进展

龙源期刊网 https://www.wendangku.net/doc/7014722377.html,

大肠杆菌噬菌体的研究进展

作者:吴伟胜李玉保王守荣等

来源:《江苏农业科学》2015年第08期

摘要:大肠杆菌病为畜牧养殖业常见疾病之一,目前临床上主要依赖于抗生素进行控

制。随着大肠杆菌耐药性增强以及人们对食品安全意识的提高,急需寻找安全、高效的抗生素替代品。噬菌体是能够感染细菌、真菌、放线菌或螺旋体等微生物的病毒总称,具有巨大的潜在应用价值。对近几年国内外有关大肠杆菌噬菌体的分布、分离纯化方法、保存方法、形态、pH值稳定性、温度稳定性、分子生物学以及应用方面作了简要概述,并对以后的科研和应用进行了思考和展望。

关键词:大肠杆菌;噬菌体;研究进展

中图分类号:S852.61+2 文献标志码: A[HK]

文章编号:1002-1302(2015)08-0008-03

近年来,由于畜牧养殖业大量使用抗生素,导致病原微生物的耐药性升高 [1],同时,抗生素的使用对食品安全构成威胁。噬菌体作为一类能够感染和裂解大肠杆菌等微生物的病毒,具有宿主专一、不产生耐药性 [2]、使用安全 [3-4]等优势,在美国已应用于儿童腹泻疾病的治疗 [5]。因此,噬菌体有望在防控畜牧业肠道性疾病中替代抗生素。本文对近几年国内外关于大肠杆菌噬菌体的分离和保存方法、生物学特性等进行综述,希望能够对大肠杆菌噬菌体更深入的研究和应用提供思路和方法。

1 大肠杆菌噬菌体的分布

目前研究发现的病毒种类数量庞大,其中大部分是噬菌体 [6]。大肠杆菌噬菌体在我们生活的周围环境中普遍存在。到目前为止,学者们已经从不同的样品中分离出来多种大肠杆菌噬菌体,并对所分离的噬菌体进行了分类和命名。在养殖场的鸡粪 [7-8]和污水中 [9],以不同的大肠杆菌为宿主菌分离到不同种类的大肠杆菌噬菌体;在养猪场的粪便中,以产肠毒素性大肠杆菌K88 为宿主菌分离并纯化了1株噬菌体PK88-4 [10];在城市的污水中,以肠出血性大肠杆菌O157 ∶ H7为宿主菌分离出裂性噬菌体 [11]。此外,在医院的污水中,用大肠杆菌E1~E17共17种细菌做指示菌分离出1种广谱噬菌体IME11 [12]。

2 大肠杆菌噬菌体的分离纯化方法

对于噬菌体的分离纯化,大致可以分为采样、富集、分离、纯化4个步骤。每个步骤又包含1种或多种不同的方法,可以根据自身的试验条件和试验状况将不同方法组合,进而得到最佳的分离纯化方法。

大肠杆菌的研究与应用

大肠杆菌的研究与应用 中文摘要:大肠埃希氏菌(E.coli)通常称为大肠杆菌,是Escherich在1885年发现的,在相当长的一段时间内,一直被当作正常肠道菌群的组成部分,认为是非致病菌。直到20世纪中叶,才认识到一些特殊血清型的大肠杆菌对人和动物有病原性,尤其对婴儿和幼畜(禽),常引起严重腹泻和败血症。本文通过对大肠杆菌的结构及其致病机理等进行分析描述,以供大家参考学习。 关键词:大肠杆菌;致病性;危害;预防 The English abstract:Escherichia coli (E.c oli) are usually called escherichia coli, Escherich is found in 1885, in a long period of time, has been regarded as the normal bowel flora, that is part of the pathogen. Until the 20th century, realized some special type of escherichia coli serum of people and animals, especially for the infants and young (birds), often cause severe diarrhea and sepsis. Based on the structure and pathogenic escherichia coli mechanism analysis of reference, the study. Keywords:escherichia coli;The pathogenicity;Hazards;prevent 一、结构特征 大肠杆菌是人和许多动物肠道中最主要且数量最多的一种细菌,周身鞭毛,能运动,无芽孢。主要生活在大肠内。能发酵多种糖类产酸、产气,是人和动物肠道中的正常栖居菌,婴儿出生后即随哺乳进入肠道,与人终身相伴,其代谢活动能抑制肠道内分解蛋白质的微生物生长,减少蛋白质分解产物对人体的危害,还能合成维生素b和k,以及有杀菌作用的大肠杆菌素。正常栖居条件下不致病。它侵入人体一些部位时,可引起感染,如腹膜炎、胆囊炎、膀胱炎及腹泻等。人在感染大肠杆菌后的症状为胃痛、呕吐、腹泻和发热。感染可能是致命性的,尤其是对孩子及老人。其主要具有以下一些特征: 1、大肠杆菌是细菌,属于原核生物;具有由肽聚糖组成的细胞壁,只含有核糖体简单的细胞器,没有细胞核有拟核;细胞质中的质粒常用作基因工程中的运载体。 2、大肠杆菌的代谢类型是异养兼性厌氧型。 3、人体与大肠杆菌的关系:在不致病的情况下(正常状况下),可认为是互利共生(一般高中阶段认为是这种关系);在致病的情况下,可认为是寄生。 4、培养基中加入伊红美蓝遇大肠杆菌,菌落呈深紫色,并有金属光泽,可鉴别大肠杆菌是否存在。 5、大肠杆菌在生物技术中的应用:大肠杆菌作为外源基因表达的宿主,遗传背景清楚,技术操作简单,培养条件简单,大规模发酵经济,倍受遗传工程专家的重视。目前大肠杆菌是应用最广泛,最成功的表达体系,常做高效表达的首选体系。 6、大肠杆菌在生态系统中的地位,假如它生活在大肠内,属于消费者,假如生活在体外则属于分解者。[1]

pET-32b(+)大肠杆菌表达载体说明

pET-32b(+) 编号 载体名称 北京华越洋生物VECT5030 pET--‐32b(+) pET32b载体基本信息 别名: pET32b, p et 32b 质粒类型: 大肠杆菌蛋白表达 表达水平: 高 克隆方法: 多克隆位点,限制性内切酶 载体大小: 5899bp 5' 测序引物: T7或者Trx--‐F 5' 测序引物序列: T7: 5'--‐TAATACGACTCACTATAGGG--‐3'; Trx--‐F: 5' T TCCTCGACGCTAACCTG 3' 载体标签: thioredoxin (N端); H is (中间和C端) 载体抗性: Ampicillin 备注: Production of soluble, active target proteins; N--‐term thrombin cleavage s ite; Nterm e nterokinase c leavage s ite; a,b,c v ary b y M CS 稳定性: 瞬时表达 Transient 组成型: 组成型 Constitutive 病毒/非病毒: 非病毒 pET32b载体质粒图谱和多克隆位点信息

pET32b载体简介 The pET--‐32a--‐c series is designed for cloning and high--‐level expression of peptide sequences fused with the 109aa Trx?Tag? thioredoxin protein (1). Cloning sites are available for producing fusion proteins also containing cleavable His?Tag? and S?Tag? sequences for detection and purification. Unique sites are shown on the circle map. Note that t he s equence i s n umbered b y t he p BR322 c onvention, s o t he T7 e xpression r egion i s reversed on the circle map. The cloning/expression region of the coding strand transcribed by T7 RNA polymerase is shown below. The f1 origin is oriented so that infection with helper phage will produce virions containing single--‐stranded DNA that corresponds to the coding strand. Therefore, single--‐stranded sequencing should be performed u sing t he T7 t erminator p rimer . pET32b载体序列 ORIGIN 1 ATCCGGATAT AGTTCCTCCT TTCAGCAAAA AACCCCTCAA GACCCGTTTA GAGGCCCCAA 61 GGGGTTATGC TAGTTATTGC TCAGCGGTGG CAGCAGCCAA CTCAGCTTCC TTTCGGGCTT 121 TGTTAGCAGC CGGATCTCAG TGGTGGTGGT GGTGGTGCTC GAGTGCGGCC GCAAGCTTGT 181 CGACGGAGCT CGAATTCGGA TCCGATATCG CCATGGCCTT GTCGTCGTCG TCGGTACCCA 241 GATCTGGGCT GTCCATGTGC TGGCGTTCGA ATTTAGCAGC AGCGGTTTCT TTCATACCAG 301 AACCGCGTGG CACCAGACCA GAAGAATGAT GATGATGATG GTGCATATGG CCAGAACCAG 361 AACCGGCCAG GTTAGCGTCG AGGAACTCTT TCAACTGACC TTTAGACAGT GCACCCACTT 421 TGGTTGCCGC CACTTCACCG TTTTTGAACA GCAGCAGAGT CGGGATACCA CGGATGCCAT 481 ATTTCGGCGC AGTGCCAGGG TTTTGATCGA TGTTCAGTTT TGCAACGGTC AGTTTGCCCT 541 GATATTCGTC AGCGATTTCA TCCAGAATCG GGGCGATCAT TTTGCACGGA CCGCACCACT 601 CTGCCCAGAA ATCGACGAGG ATCGCCCCGT CCGCTTTGAG TACATCCGTG TCAAAACTGT 661 CGTCAGTCAG GTGAATAATT TTATCGCTCA TATGTATATC TCCTTCTTAA AGTTAAACAA 721 AATTATTTCT AGAGGGGAAT TGTTATCCGC TCACAATTCC CCTATAGTGA GTCGTATTAA 781 TTTCGCGGGA TCGAGATCGA TCTCGATCCT CTACGCCGGA CGCATCGTGG CCGGCATCAC 841 CGGCGCCACA GGTGCGGTTG CTGGCGCCTA TATCGCCGAC ATCACCGATG GGGAAGATCG 901 GGCTCGCCAC TTCGGGCTCA TGAGCGCTTG TTTCGGCGTG GGTATGGTGG CAGGCCCCGT 961 GGCCGGGGGA CTGTTGGGCG CCATCTCCTT GCATGCACCA TTCCTTGCGG CGGCGGTGCT 1021 CAACGGCCTC AACCTACTAC TGGGCTGCTT CCTAATGCAG GAGTCGCATA AGGGAGAGCG 1081 TCGAGATCCC GGACACCATC GAATGGCGCA AAACCTTTCG CGGTATGGCA TGATAGCGCC 1141 CGGAAGAGAG TCAATTCAGG GTGGTGAATG TGAAACCAGT AACGTTATAC GATGTCGCAG 1201 AGTATGCCGG TGTCTCTTAT CAGACCGTTT CCCGCGTGGT GAACCAGGCC AGCCACGTTT 1261 CTGCGAAAAC GCGGGAAAAA GTGGAAGCGG CGATGGCGGA GCTGAATTAC ATTCCCAACC 1321 GCGTGGCACA ACAACTGGCG GGCAAACAGT CGTTGCTGAT TGGCGTTGCC ACCTCCAGTC 1381 TGGCCCTGCA CGCGCCGTCG CAAATTGTCG CGGCGATTAA ATCTCGCGCC GATCAACTGG 1441 GTGCCAGCGT GGTGGTGTCG ATGGTAGAAC GAAGCGGCGT CGAAGCCTGT AAAGCGGCGG 1501 TGCACAATCT TCTCGCGCAA CGCGTCAGTG GGCTGATCAT TAACTATCCG CTGGATGACC 1561 AGGATGCCAT TGCTGTGGAA GCTGCCTGCA CTAATGTTCC GGCGTTATTT CTTGATGTCT 1621 CTGACCAGAC ACCCATCAAC AGTATTATTT TCTCCCATGA AGACGGTACG CGACTGGGCG 1681 TGGAGCATCT GGTCGCATTG GGTCACCAGC AAATCGCGCT GTTAGCGGGC CCATTAAGTT 1741 CTGTCTCGGC GCGTCTGCGT CTGGCTGGCT GGCATAAATA TCTCACTCGC AATCAAATTC

噬菌体制剂的研究现状及发展前景

噬菌体制剂的研究现状及发展前景 作者:赵庆友,朱瑞良* (山东农业大学动物科技学院山东泰安 271018) 来源:中国兽药杂志2010-7期 南宁兽药科技网(南网)https://www.wendangku.net/doc/7014722377.html,上传2010-9-1 摘要:噬菌体制剂是利用噬菌体溶解细胞的特性而用于治疗动物的病原菌的临床感染。早 在20世纪初,噬菌体治疗就取得了积极的治疗效果。目前传统抗生素治疗动物细菌感染时 易产生耐药性,而噬菌体制剂则表现出许多突出的优越性。本文从噬菌体的生物学特性,噬 菌体制剂的作用机制,以及噬菌体制剂的发展状况和应用前景等方面进行了论述。 关键词:噬菌体;制剂;应用;现状;前景。 Recent Advances And Prospects In Bacteriophage Therapy ZHAO Qing-you, ZHU Rui-liang* (College of Animal Science & Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018) Abstract: Phage therapy is to treat bacterial clinical infections of animals with bacteriolysis. In the 1920’s, Phage therapy had had efficiency in clinical treatment. Many creatural experiments and clinical treatments indicate that phage therapy is a potential alternative method for treatment and prevention of bacteria disease. This method comes along, quite opportunely to counter the resistance problem of the antibiotics. From the biological characteristics,the therapy mechanism,the development status and the application prospects, the systemic discussion of bacteriophage in this review. Key words: Bacteriophage ; biological agents; application; current situation; prospects 英国细菌学家和内科医生Frederick Twort 和法裔加拿大细菌学家Flix D’Herelle 分别在1915年和1917年独立发现了噬菌体,不久之后就用来治疗感染性疾病。d`Herelle 最早从来自痢疾的临床样本研究中观察到噬菌体滴度的增加正好伴随着病人的康复过程。他 将噬菌体称为“外源性免疫因子”[1]。1934年美国科学家报道了利用噬菌体疗法治疗肠球菌 感染的成功率可达80%【2】。但随着抗生素的成功推广应用,二次世界大战之后美国和西欧的 大多数国家都终止了噬菌体制剂的研制。近年来细菌耐药性问题不断突现,用抗生素治疗细 菌感染面临巨大的挑战,一些科学家和临床工作者开始重视噬菌体制剂的研制。 1 噬菌体的生物学特征 噬菌体(Bacteriophage, phage)是以细菌为宿主的一类病毒,所以又称为细菌病毒,它

大肠杆菌表达系统的研究进展综述

基因工程制药综述 班级:生技132 : 学号:

大肠杆菌表达系统的研究进展综述 自上世纪 70 年代以来, 大肠杆菌一直是基因工程中应用最为广泛的表达系统。尽管基因工程表达系统已经从大肠杆菌扩大到酵母、昆虫、植物及哺乳动物细胞,并且近年来出现了很多新型的真核表达系统, 但是大肠杆菌仍然是基因表达的重要工具。尤其是进入后基因组时代以来, 有关蛋白结构以及功能研究的开展 ,对基因表达的要求更高,这时大肠杆菌往往是表达的第一选择。文章综述了近年来有关大肠杆菌表达载体及宿主细胞的改造工作。 1 表达载体 1. 1 表达调控 构建有效的表达载体是表达目的基因的基本要求, 同时也是影响基因表达水平以及蛋白活性的重要因素。标准的大肠杆菌表达载体的主要组成: 启动子、操纵子、核糖体结合位点、翻译起始区、多克隆位点、终止子、复制起点以及抗性筛选因子等。理想的表达载体要求在转录和翻译水平上可以控制目的基因的表达 ,然而目的基因在宿主体过分表达(选用较强的启动子等)会对宿主造成压力, 引起相关的细胞应答反应, 影响蛋白的活性等。基因组、RNA 转录组、蛋白质组、代调控组等领域的研究成果给我们提供了大量关于基因表达调控的信息[ 1]。现已能从基因和细胞的整体水平来方便地选择合适的启动子或合理开发新的载体系统。譬如 Lee 等利用二维凝胶电泳法比较了重组载体和空载体被分别转入宿主细胞后蛋白组学的差异,发现两者都产生了大肠杆菌热休克蛋白并引起了 cAMPCRP 调节蛋白的应答, 其中重组子的影响更为强烈;另外, 还发现外源基因的表达使宿主核糖体合成速率、翻译延长因子和折叠酶表达水平、细胞生长率下降 , 而使细胞呼吸活力上升[ 2]。目前应用的表达载体主要问题是表达过程中出现的全或无的情况, 通常表达的培养物都是非纯种的细胞群, 其中有一些细胞可以最大限度地被诱导,而另一些细胞在诱导后基因的表达被关闭。分离具有合适强度启动子及翻译速率的载体变种可以优化表达水平,说明启动子的选择对于基因的诱导表达非常重要。 Deborahat 提出在芯片上排列具有不同强度级别启动子的载体进行互补分析, 可能有助于筛选最为适合的启动子[3]。开发非 IPTG 或阿拉伯糖诱导的载体也可以提高基因表达水平, Qing 等利用 cspA 基因的独特性开发了一系列冷休克表达载体pCold, 使目的基因在低温下(<15℃) 诱导表达,提高了产物的溶解性和稳定性[4]。 1. 2 融合表达载体 除了表达载体的调控性,为了提高蛋白产物的活性以及简化下游纯化的操作等 ,往往在表达载体上插入其它辅助的基因序列与目的基因构成融合蛋白表达。融合信号肽(PelB、Om pA 、MalE、PhoA 等)表达可以使融合蛋白通过经典的 Sec 途径分泌到周质或胞外表达, 有利于形成二硫键以及避免胞质蛋白酶的水解和 N 端甲硫氨酸的延伸。另外,最近开发的双精氨酸转运体系(Tat)可以有效分泌正确折叠的重组蛋白[5]。常见的纯化标签多根据亲和层

大肠杆菌文献综述

文献综述 禽大肠杆菌病的研究进展 郑琳红 西南大学荣昌校区动物医学系,重庆荣昌402460 摘要:禽大肠杆菌病是由致病性大肠杆菌引起各种禽类的一种急性或慢性传染病,主要侵害鸡、鸭、鹅,以及各类珍、特禽,临床上有多种表现形式,其中以急性败血型、卵黄性腹膜炎和生殖器官损害较常见,危害性也最为严重。本文主要在病原学、流行病学、临床症状、病理变化和诊断与防治等方面对禽大肠杆菌病进行了综述。 关键词:禽大肠杆菌;流行特点;疫病防治;研究进展 禽大肠杆菌病(colibacillosis)是由致病性大肠埃希氏菌( E. coli )引起禽类的一种急性、慢性传染病的总称。其病型和病变复杂多样。本菌抗原结构复杂,血清型多,变异菌株不断出现,分布极广,不同地区有不同血清型,同一地区不同养殖场甚至同一养殖场同一种群也可能有多个血清型。本病的普遍性,给养禽业造成严重威胁和重大经济损失[1,2]。 禽大肠杆菌病常继发于其他致病因子或与其他致病因子一同作用,使其表现得复杂多变,往往使真正的罪魁祸首得以掩盖。禽大肠杆菌病发病频繁,容易反复发作,加上用药较乱,病原菌血清型多、抗原结构复杂,极易产生耐药性,使其防不胜防。1976年Smits等发现新城疫疫苗、传染性支气管炎疫苗免疫,支原体感染与大肠杆菌感染之间的关系,气雾免疫法及支原体感染大幅提高大肠杆菌感染率[3]。 1.病原学 大肠杆菌是人和动物肠道中的常见菌,多为条件性致病菌,当机体健康,抵抗力强时,这些菌株不表现致病性,当机体健康状况下降,特别是在应激情况下,其致病性增强,引起发病。致病性大肠杆菌在自然界中广泛存在,凡有哺乳动物和禽类活动的环境空气、水源和土壤中均有本菌存在。当禽舍通风不良、饲养密度大、卫生条件差、饲料质量不好、禽舍污染严重时,该病传播途径可经过消化道、呼吸道、交配等途径水平传播,还可通过其它多种途径,使种蛋被污染而进行垂直传播[1]。 禽大肠杆菌病病原是革兰氏阴性、非抗酸性、染色均一,不形成芽孢,两端钝圆的短杆菌,需氧或兼性厌氧。有时大小和形态可能是多变的,许多菌株有运动性,有周身

pET-48b(+)大肠杆菌表达载体说明

pET-48b(+) 编号 载体名称 北京华越洋生物VECT4670 pET--‐48b(+) pET48b载体基本信息 别名: pET48b, p ET 48b 质粒类型: 大肠杆菌蛋白表达 表达水平: 高 克隆方法: 多克隆位点,限制性内切酶 载体大小: 5605 b p 5' 测序引物序列: T7: 5'--‐TAATACGACTCACTATAGGG--‐3'; Trx--‐F: 5'--‐TTCCTCGACGCTAACCTG--‐3' 3' 测序引物序列: T7t: 5'--‐TGCTAGTTATTGCTCAGCGG--‐3' 载体标签: N--‐Trx, N--‐His,N--‐HRV 3C, C--‐S, C--‐Thrombin 载体抗性: Kanamycin (卡那霉素) 备注: Same as pET47 but also has Nterm Trx Tag; contains HRV 3C Protease cleavage site for fusion tag removal at low temperatures; Cterm thrombin c leavage s ite. 稳定性: 瞬时表达 组成型: 组成型 病毒/非病毒: 非病毒 pET48b载体质粒图谱和多克隆位点信息

pET48b载体简介 pET--‐48b载体含有N端Trx和His标签,在标签后面紧跟着的是HRV 3C蛋白酶切位点。HRV 3C蛋白酶能够高特异性的识别LEVLFQ↓GP蛋白序列,能够在低温下高效切割掉融合标签序列。pET--‐48b载体还含有一个可选择的C端Thrombin蛋白酶切位点,紧接着位点后是S标签。 pET48b载体的单一的多克隆位点见上面的环状质粒图谱。注意:载体序列是以pBR322质粒的编码规矩进行编码的,所以T7蛋白表达区在质粒图谱上面是反向的。 T7 RNA聚合酶启动的克隆和表达区域在质粒图谱中也被标注了出来。质粒的F1复制子是被定向的,所以在T7噬菌体聚合酶的作用下,包含有蛋白编码序列的病毒 粒子能够

噬菌体治疗细菌感染的研究进展

第42 卷第 6 期 2013 年 浙江大学学报(医学版) JOURNAL OF ZHEJIANG UNIVERSITY (MEDICAL SCIENCES) Vol 42 No 6 2013 http:∥www.journals.zju.edu.cn / med DOI:10.3785 / j.issn.1008-9292.2013.06.019 噬菌体治疗细菌感染的研究进展 裴景亮1,付玉荣2综述 (1.潍坊医学院医学检验学系、附属医院检验科、 山东省临床检验诊断学高校重点实验室,山东潍坊261031; 2.潍坊医学院基础医学院病原生物学教研室,山东潍坊261053) [摘要]噬菌体是一种细菌依赖性病毒,在治疗细菌特别是耐药性细菌感染方面,与传统的抗 生素比较具有独特的优势,其代谢动力学及给药途径是目前的研究热点。噬菌体裂解酶作为一种 新的治疗手段,具有比活性噬菌体制剂更多的优点。文中就噬菌体在细菌感染治疗方面的作用机 理、给药途径和基因工程的应用,及噬菌体裂解素的研究进展进行综述,对噬菌体治疗细菌感染提 出展望。 [关键词]细菌噬菌体;裂解酶;给药途径;细菌感染/治疗 [中图分类号]R378 [文献标志码] A [文章编号]1008-9292(2013)06-0700-05 Research advance on bacteriophage therapy in bacterial infection PEI Jingliang1,FU Yurong2(1.Affiliated Hospital of Weifang Medical University,Key Laboratory of Clinical Diagnosis in Universities of Shandong,Weifang 261031;2.Department of Microbiology,Weifang Medical University,Weifang 261053) [Abstract]Bacteriophage is a bacterium dependent virus.It has unique advantages in the treatment of bacterial infection,especially infection caused by drug-resistant bacteria.Its metabolic kinetics and route of administration are the current research focus.Bacteriophage lytic enzyme,as a new therapeutic method, has more advantages than active bacteriophage.This review is focused on the recent progress in bacteriophage research,including the mechanism of bacteria lysis,the route of administration,the application of genetic engineering,etc. [Key words]Bacteriophages;Lytic enzymes;Route of administration;B acterial infection / therapy [J Zhejiang Univ (Medical Sci),2013,42 (6):700-704.] 耐药菌特别是多重耐药菌的出现对人类健 收稿日期:2012-09-03 修回日期:2013-01-30 康构成了极大威胁,这类细菌感染的疾病面临无药可用的境地。寻找新的有效的抗菌制剂已 经成为刻不容缓的问题。噬菌体制剂作为新型 的治疗方法,受到越来越广泛的关注。 噬菌体( bacteriophage,phage)是一类特异性感染细菌、真菌、放线菌等微生物的病毒,广基金项目:国家自然科学基金资助项目(81100006 ); 山东省自然科学基金资助项目(ZR2010HM073). 作者简介:裴景亮(1979 -),男,硕士,主管技师,从事临床微生物学研究工作. 通讯作者:付玉荣(1973 -),女,博士,副教授,硕导,从事病原微生物学研究;E-mail:yifuyurong@ 163.com

大肠杆菌基因工程菌常用类型

1、大肠杆菌DH5a菌株 DH5a是世界上最常用的基因工程菌株之一。由于DH5α是DNA酶缺陷型菌株,有利于基因克隆,保存质粒,但该菌株的蛋白酶没有缺陷,表达的蛋白容易被降解,因此通常不作为表达菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2、大肠杆菌BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3、大肠杆菌BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompThsdS(rBB-mB-),gal,dcm(DE3,pLysS,Camr 4、大肠杆菌JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株。 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5、大肠杆菌TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU,galK,rps,(Strr) endA1,nupG 6、大肠杆菌HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验。 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7.XL10-Gold菌株:所制备的感受态细胞是目前转化效率最高的感受态细胞,缺失几乎所有已知的限制酶切系统;同时缺失核酸内切酶(endA),提高了质粒DNA的产量和质量;重组酶缺陷型(recA)减少插入片段的同源重组概率,保证了插入DNA的稳定性,提高感受态转化效率及大质粒转化能力的宿主菌基因型。

噬菌体侵染细菌的实验误差分析

噬菌体侵染细菌的实验误差分析 贵州省思南中学勾华强 在噬菌体侵染细菌的实验中,赫尔希和蔡斯分别用35S和32P标记的T2噬菌体侵染大肠杆菌,在理论上,用35S标记的T2噬菌体侵染大肠杆菌后,上清液具有很高的放射性,下层沉淀物中不含放射性。用32P标记的噬菌体侵染大肠杆菌后,上清液中不含放射性,下层沉淀物中具有很高的放射性;而实际上,实验的最终结果显示:用35S标记的T2噬菌体侵染大肠杆菌后,在离心的下层沉淀物中,具有一定的放射性,而上清液中的放射性强度比理论值略低。用32P标记的T2噬菌体侵染大肠杆菌后,在离心的上层清液中,具有一定的放射性,而下层沉淀物中的放射性强度比理论值略低。 在此实验中,是什么原因导致实验数据与理论数据之间存在着误差呢?我们不妨来对此实验过程进行一下误差分析: 一、误差的主要来源: (一)35S标记的T2噬菌体侵染大肠杆菌的误差来源: 1、在实验中,35S标记的T2噬菌体与大肠杆菌混合培养后,在搅拌器中搅拌不充分,使吸附在大肠杆菌外被35S标记的噬菌体蛋白质外壳没有与大肠杆菌完全分离开,所以离心后下层沉淀物中存在放射性,而上清液中的放射性比理论值略低。

2、在实验中,被35S标记的一部分噬菌体没有侵染到大肠杆菌细胞内,经离心后少量存在于沉淀物中,使沉淀物中出现放射性,而上清液中的放射性比理论值略低。 (二)32P标记的T2噬菌体侵染大肠杆菌的误差来源: 1、在实验中,32P标记的噬菌体和大肠杆菌混合培养的时间过长,噬菌体在大肠杆菌细胞内增殖后释放出来,经离心后分布于上清液,使上清液出现放射性,而下层的放射性强度比理论值略低。 2、在实验中,仍然有一部分噬菌体没有侵染到大肠杆菌细胞内,经离心后少量分布于上清液中,使上清液出现放射性,而下层沉淀物中的放射性强度比理论值略低。 二、减小误差的主要方法: 在此实验中要减小实验数据和理论数据之间的误差,应注意以下几点。 1、用被35S和32P标记的T2噬菌体侵染大肠杆菌时,要控制好条件,使之让T2噬菌体处于最适于侵染的环境中,达到充分侵染的目的。 2、严格控制好从噬菌体和大肠杆菌混合培养到用离心机分离的时间,时间过短未充分侵染,时间过长侵染进入大肠杆菌细胞内的噬菌体增殖后释放出来,都会使实验误差增大,故严格控制好时间是减小误差的关键因素之一。

pET-22b(+)大肠杆菌表达载体说明

pET-22b(+) 编号 载体名称 北京华越洋生物VECT5200 pET--‐22b(+) pet22b载体基本信息 别名: pET22b, p et 22b, p ET--‐22b(+) 质粒类型: 大肠杆菌蛋白表达 表达水平: 高 克隆方法: 多克隆位点,限制性内切酶 载体大小: 5500bp 5' 测序引物及序列: T7: 5'--‐TAATACGACTCACTATAGGG--‐3' 3' 测序引物序列: T7t: 5'--‐GCTAGTTATTGCTCAGCGG--‐3' 载体标签: N--‐pelB; C--‐His 载体抗性: 氨苄 备注: pET22b载体含有PelB信号肽序列, 能够将表达的目的蛋白定位在细胞外周质腔。 稳定性: 瞬时表达 Transient 组成型: 组成型 Constitutive 病毒/非病毒: 非病毒 pet22b载体质粒图谱和多克隆位点信息

pet22b载体简介 pET--‐22b(+)载体携带有一个N端的pelB信号肽序列,能够将表达的目的蛋白定位于外周质腔,同时载体含有C端His标签。载体的单一的多克隆位点见上面的环状质粒图谱。注意:载体序列是以pBR322质粒的编码规矩进行编码的,所以T7蛋白表达区在质粒图谱上面是反向的。 T7 RNA聚合酶启动的克隆和表达区域在质粒图谱中也被标注了出来。质粒的F1复制子是被定向的,所以在T7噬菌体聚合酶的作用下,包含有蛋白编码序列的病毒 粒子能够产生,并启动蛋白表达,同时蛋白表达将被T7终止子序列的作用下终止蛋白翻译。 pet22b载体序列 ORIGIN 1 ATCCGGATAT AGTTCCTCCT TTCAGCAAAA AACCCCTCAA GACCCGTTTA GAGGCCCCAA 61 GGGGTTATGC TAGTTATTGC TCAGCGGTGG CAGCAGCCAA CTCAGCTTCC TTTCGGGCTT 121 TGTTAGCAGC CGGATCTCAG TGGTGGTGGT GGTGGTGCTC GAGTGCGGCC GCAAGCTTGT 181 CGACGGAGCT CGAATTCGGA TCCGAATTAA TTCCGATATC CATGGCCATC GCCGGCTGGG 241 CAGCGAGGAG CAGCAGACCA GCAGCAGCGG TCGGCAGCAG GTATTTCATA TGTATATCTC 301 CTTCTTAAAG TTAAACAAAA TTATTTCTAG AGGGGAATTG TTATCCGCTC ACAATTCCCC 361 TATAGTGAGT CGTATTAATT TCGCGGGATC GAGATCTCGA TCCTCTACGC CGGACGCATC 421 GTGGCCGGCA TCACCGGCGC CACAGGTGCG GTTGCTGGCG CCTATATCGC CGACATCACC 481 GATGGGGAAG ATCGGGCTCG CCACTTCGGG CTCATGAGCG CTTGTTTCGG CGTGGGTATG 541 GTGGCAGGCC CCGTGGCCGG GGGACTGTTG GGCGCCATCT CCTTGCATGC ACCATTCCTT 601 GCGGCGGCGG TGCTCAACGG CCTCAACCTA CTACTGGGCT GCTTCCTAAT GCAGGAGTCG

大肠杆菌耐药性研究进展

大肠杆菌耐药性研究进展 教郁,高维凡,胡彩光 (沈阳农业大学,辽宁省沈阳市,110000) 摘要:大肠杆菌是典型的革兰氏阴性杆菌,其引起的大肠杆菌病是一种常见疾病,在治疗过程中 容易产生耐药性,且耐药谱广,耐药机制复杂,给养鸡业预防和治疗该病带来很大困难。大肠杆茵对抗生素的耐药问题是当前国内外研究的热点。本文对大肠杆菌耐药的现状以及产生耐药性机制的研究进行了综述,以便正确理解大肠杆菌耐药性的特点及其规律,从而为防治大肠杆菌耐药性的产生及合理用药提供理论依据。 关键词:大肠杆菌;耐药性;作用机制 The research progress on mechanism of Drg-resistance of Escherichia coli Abstract: E.coli is gram-negative bacteria, colibacillosis is a kind of common disease. Escherichia coli strains showed high levels of resistance, resistance spectrum to expand, and multiple drug resistance. The drug resistant gene is complex and diverse. So the prevention and treatment of the disease bring a lot of difficulties. Antibiotic resistance is the current domestic and international research hot spot. The advances on mechanism of resistance and the present situation of E coli resistance are summarized.Thus the trend of the drug-resistance on the E coli resistance can be understood better and the basis for preventing the production of the resistant stains and using drugs reasonablely can be furtherly provided. Keywords: Eescherichia coli; resistance; resistance mechanism 致病性大肠杆菌为医学和兽医学临床感染中最常见的病原菌之一。从发病情况看,大肠杆菌病发病率在细菌病引发的疾病中居世界首位。兽医临床上大肠杆菌造成的危害十分严重,它一年四季均可致病,一直是困扰养殖业发展的常见病、多发病,给养禽业造成了严重的经济损失;大肠杆菌病的主要防治措施是应用疫苗及抗生素。国内外已研制出多种疫苗对大肠杆菌病进行预防,但因大肠杆菌具有多种血清型,仅国内报导就有80余种,应用疫苗对大肠杆菌病进行防治尚不能满足对该病的防治要求。抗生素在大肠杆菌病预防及治疗方面有着不可替代的作用,但是随着抗生素的广泛、持续及不当使用,大肠杆菌耐药谱不断扩大和耐药水平不断提高,大肠杆菌耐药及多重耐药现象已十分严重。虽然新型抗生素不断问世,但抗生素的研制速度远远低于耐药菌的产生速度。因此了解大肠杆菌耐药状况,掌握大肠杆菌耐药趋势,研究大肠杆菌耐药机理,对控制耐药菌株的蔓延具有十分重要的意义。 1.大肠杆菌耐药性现状 近年来,随着抗生素及各种化学合成药物在我国畜牧业生产中的广泛应用,大量的抗生素、消毒剂等不断进入水、土壤、河流、沉积物等各种环境中。使得大肠杆菌耐药谱不断扩大和耐药水平不断提高,给我国畜牧业的持续发展和人类健康带来潜在的危害。国内外各地均分离得到耐药家畜源性大肠杆菌,并对这些病原菌进行了耐药谱系的检测。梅姝等[1]报道分离得到的长春地区127株鹿源大肠杆菌对5种抗菌药物呈现不同

大肠杆菌噬菌体的研究进展

龙源期刊网 https://www.wendangku.net/doc/7014722377.html, 大肠杆菌噬菌体的研究进展 作者:吴伟胜李玉保王守荣等 来源:《江苏农业科学》2015年第08期 摘要:大肠杆菌病为畜牧养殖业常见疾病之一,目前临床上主要依赖于抗生素进行控 制。随着大肠杆菌耐药性增强以及人们对食品安全意识的提高,急需寻找安全、高效的抗生素替代品。噬菌体是能够感染细菌、真菌、放线菌或螺旋体等微生物的病毒总称,具有巨大的潜在应用价值。对近几年国内外有关大肠杆菌噬菌体的分布、分离纯化方法、保存方法、形态、pH值稳定性、温度稳定性、分子生物学以及应用方面作了简要概述,并对以后的科研和应用进行了思考和展望。 关键词:大肠杆菌;噬菌体;研究进展 中图分类号:S852.61+2 文献标志码: A[HK] 文章编号:1002-1302(2015)08-0008-03 近年来,由于畜牧养殖业大量使用抗生素,导致病原微生物的耐药性升高 [1],同时,抗生素的使用对食品安全构成威胁。噬菌体作为一类能够感染和裂解大肠杆菌等微生物的病毒,具有宿主专一、不产生耐药性 [2]、使用安全 [3-4]等优势,在美国已应用于儿童腹泻疾病的治疗 [5]。因此,噬菌体有望在防控畜牧业肠道性疾病中替代抗生素。本文对近几年国内外关于大肠杆菌噬菌体的分离和保存方法、生物学特性等进行综述,希望能够对大肠杆菌噬菌体更深入的研究和应用提供思路和方法。 1 大肠杆菌噬菌体的分布 目前研究发现的病毒种类数量庞大,其中大部分是噬菌体 [6]。大肠杆菌噬菌体在我们生活的周围环境中普遍存在。到目前为止,学者们已经从不同的样品中分离出来多种大肠杆菌噬菌体,并对所分离的噬菌体进行了分类和命名。在养殖场的鸡粪 [7-8]和污水中 [9],以不同的大肠杆菌为宿主菌分离到不同种类的大肠杆菌噬菌体;在养猪场的粪便中,以产肠毒素性大肠杆菌K88 为宿主菌分离并纯化了1株噬菌体PK88-4 [10];在城市的污水中,以肠出血性大肠杆菌O157 ∶ H7为宿主菌分离出裂性噬菌体 [11]。此外,在医院的污水中,用大肠杆菌E1~E17共17种细菌做指示菌分离出1种广谱噬菌体IME11 [12]。 2 大肠杆菌噬菌体的分离纯化方法 对于噬菌体的分离纯化,大致可以分为采样、富集、分离、纯化4个步骤。每个步骤又包含1种或多种不同的方法,可以根据自身的试验条件和试验状况将不同方法组合,进而得到最佳的分离纯化方法。

噬菌体侵染细菌教案 闫红博

噬菌体侵染细菌的实验教案 闫红博 20122501108 一、教材内容分析 《噬菌体侵染细菌的实验》是人教版普通高中新课程生物必修2《遗传与进化》中第3章第1节的内容。本部分内容之前已经介绍了格里菲斯和艾弗里的“肺炎双球菌的转化实验”。而“噬菌体侵染细菌的实验”是比之前的实验更具说服力的一个实验,教师应引导学生重温科学家的探究历程,领悟科学的过程和方法,最终得出科学的结论 二、学习对象分析 高中学校没有成熟的实验条件供学生亲自做噬菌体侵染细菌的实验,因此教师应该形象直观地展示科学探索的过程,引导学生的思路再现一遍科学家的实验探究过程,达到发展学生科学思维能力的目的。 三、教学策略 由艾弗里肺炎双球菌转化实验的不足之处引入新内容,让学生思考如何对这一问题进行研究,提高说服力,培养他们分析问题和解决问题的能力,激发他们了解科学家当年的研究过程和方法的兴趣。通过重温科学家的探究历程,领会实验选材的巧妙、思维的严谨和实验方法的科学;通过实验结果的分析理解DNA是主要的遗传物质。 四、、教学目标 1、知识与技能: (1)理解“噬菌体侵染细菌”的实验过程; (2)理解DNA是主要的遗传物质。 2、情感态度和价值观: (1) 探讨实验技术在证明DNA是主要遗传物质中的作用。体验科学探索的艰辛过程; (2) )领悟科学研究的过程和方法,培养学生的实验探究能力。 五、教学重点和难点 1、重点: (1)噬菌体侵染细菌的原理和过程。 (2)证明DNA是遗传物质的实验的关键设计思路。 2、难点:

(2)证明DNA是遗传物质的实验的关键设计思路。 六、教学设计流程 设疑导入→问题引导呈现探究→讨论实验结果→归纳总结→拓展延伸

相关文档