文档库 最新最全的文档下载
当前位置:文档库 › 无参考图像的清晰度评价方法

无参考图像的清晰度评价方法

无参考图像的清晰度评价方法
无参考图像的清晰度评价方法

无参考图像的清晰度评价方法

在无参考图像的质量评价中,图像的清晰度是衡量图像质量优劣的重要指标,它能够较好的与人的主观感受相对应,图像的清晰度不高表现出图像的模糊。本文针对无参考图像质量评价应用,对目前几种较为常用的、具有代表性清晰度算法进行讨论分析,为实际应用中选择清晰度算法提供依据。

(1)Brenner梯度函数

Brenner梯度函数是最简单的梯度评价函数,它只是简单的计算相邻两个像素灰度差的平方,该函数定义如下:

其中:f(x,y)表示图像f对应像素点(x,y)的灰度值,D(f)为图像清晰度计算结果(下同)。

(2)Tenengrad梯度函数

Tenengrad梯度函数采用Sobel算子分别提取水平和垂直方向的梯度值,基与

Tenengrad梯度函数的图像清晰度定义如下:

G(x,y)的形式如下:

其中:T是给定的边缘检测阈值,Gx和Gy分别是像素点(x,y)处Sobel水平和垂直方向边缘检测算子的卷积,建议使用以下的Sobel算子模板来检测边缘:

(3)Laplacian梯度函数

Laplacian梯度函数与Tenengrad梯度函数基本一致,用Laplacian算子替代Sobel算子即可,该算子定义如下:

因此基于Laplacian梯度函数的图像星清晰度的定义如下:

其中G(x,y)是像素点(x,y)处Laplacian算子的卷积。

(4)SMD(灰度方差)函数

当完全聚焦时,图像最清晰,图像中的高频分量也最多,故可将灰度变化作为聚焦评价的依据,灰度方差法的公式如下:

(5)SMD2(灰度方差乘积)函数

灰度差分评价函数具有较好的计算性能,但其缺点也很明显,即在焦点附近灵敏度不高,即该函数在极值点附近过于平坦,从而导致聚焦精度难以提高。在文章《一种快速高灵敏度聚焦评价函数》中提出了一种新的评价函数,称之为灰度方差乘积法,即对每一个像素领域两个灰度差相乘后再逐个像素累加,该函数定义如下:

(6)方差函数

因为清晰聚焦的图像有着比模糊图像更大的灰度差异,可以将方差函数作为评价函数:

其中:为整幅图像的平均灰度值,函数对噪声比较敏感,图像画面越纯净,函数值越小。

(7)能量梯度函数

能量梯度函数更适合实时评价图像清晰度,该函数定义如下:

(8)Vollath函数

Vollath函数定义如下:

其中:为整幅图像的平均灰度值,M和N分别为图像宽和高。

(9)熵函数

基于统计特征的熵函数是衡量图像信息丰富程度的一个重要指标,有信息论可知,一幅图像f的信息量是由该图像的信息熵D(f)来度量:

其中:Pi是图像中灰度值为i的像素出现的概率,L为灰度级总数(通常取值256)。根据Shannon信息论,熵最大时信息量最多。将此原理应用到对焦过程,D(f)越大则图像越清晰。熵函数灵敏度不高,依据图像内容不同容易出现与真实情况相反的结果。

(10)EAV点锐度算法函数

徐贵力、张霞等提出了一种基于边缘锐度的算法用于评价图像的清晰度。通过统计图像某一边缘方向的灰度变化情况来评价。计算公式如下:

其中:df/dx为边缘法向的灰度变化率,f(b)-f(a)为该方向的总体灰度变化。该算法只对图像的特定边缘区域做统计,能否代表整幅图像的清晰度仍有疑问,此外计算前需人工选定边缘区域,不便实现程序运算的自动化,因为王鸿南等在论文图像清晰度评价方法研究中对上述算法进行了改进,改进如下:

a)将针对边缘的梯度计算改为逐个像素领域梯度的计算,以便算法能对图像的整体进行评价,并使算法实现自动化。

b)对方格像素8领域的灰度变化进行距离加权,水平和垂直方向的权重为1,而45度

和135度方向的权重为。

c)对计算结果按图像的大小进行规格化,以便于图像的对比。

经过以上三步改进后的点锐度算法为:

其中:M和N为图像的行数和列数。

(11)Reblur二次模糊

如果一幅图像已经模糊了,那么再对它进行一次模糊处理,高频分量变化不大;但如果原图是清楚的,对它进行一次模糊处理,则高频分量变化会非常大。因此可以通过对待评测图像进行一次高斯模糊处理,得到该图像的退化图像,然后再比较原图像和退化图像相邻像素值的变化情况,根据变化的大小确定清晰度值的高低,计算结果越小表明图像越清晰,反之越模糊。这种思路可称作基于二次模糊的清晰度算法,其算法简化流程如下图:

(12)NRSS梯度结构相似度

Wang等利用人类视觉系统(HVS)非常适于提取目标的结构信息的特点,提出了图像结构相似度概念(SSIM),认为只要能计算目标结构信息的变化,就能够得到感知图像失真值。杨春玲等基于此思路,将该方法引入到计算全参考图像的清晰度评价中,认为图像的清晰度可以使用目标图像与参考图像间的结构相似度来表示,而图像间的结构相似度包含以下三个部分的比较:

而C1、C2和C3是为了避免分母为0而设的常数。图像的结构相似度由下式计算可得:

为简单起见可以令

谢小甫等进一步改进了杨春玲等的方法,根据结构相似度的相关思想结合人烟视觉系统的相关特点,设计了无参考图像清晰度的评价指标(NRSS),计算方法如下:

(a)为待评价图像构造参考图像。定义待评价图像为I,而参考图像,即对

待评价图像I进行低通滤波得到参考图像。实验表明,基于圆盘模型的均值滤波器和高斯模型的平滑滤波器都可以取得较好的效果,为了更好的与成像系统匹配,建议采用7x7

大小且的高斯平滑滤波器。在需要实时处理的工程应用中7x7均值滤波器并不会是评价效果下降很大。

(b)提取图像I和的梯度信息。利用人眼对水平和垂直方向的边缘信息最为敏感的特性,使用Sobel算子分别提取水平和垂直方向的边缘信息,定义I和的梯度图像

是G和。

(c)找出梯度图像G中梯度信息最丰富的N个图像块。将图像G划分为8x8的小块,块间的步长为4,即相邻块有50%重叠,这是为了避免丢失重要的边缘。计算每块的方差,方

差越大说明梯度信息越丰富,找出其中方差最大的N块,记为,对应的

中的对应块定义为。N的值大小直接影响评价结果,同时也影响算法运行时间。在后面的实验中设N=64。

(d)计算结构清晰度NRSS。先计算每个xi和yi的结构相似度SSIM(xi,yi),其中SSIM 计算方法参见前面的定义,则图像的无参考结构清晰度定义为:

(13)FFT图像变换域

待写!

(14)No-Reference Perceptual Quality Assessment of JPEG Compressed Images

在这篇文章中,作者【Zhou Wang】等针对JPEG压缩图片提出了一种新的无参图像质量评价方法。

JPEG图片是基于8x8块的DCT变换的编码技巧,它是有损的因为对DCT变换系数做量化的时候会产生量化误差。量化就会导致模糊和块效应。模糊主要是因为丢失了高频的DCT系数。块效应是由于块边界的不连续性,因为每个分块的量化是独立的。

我们用f(x,y)表示一幅图片,图片尺寸为MxN,计算跨越每个水平线的信号差:

首先计算块效应,块效应的定义就是左右跨越边界的信号差的平均值:

然后计算块内信号差的平均值:

再计算zero-crossing(ZC)率,ZC是边界跨零的意思,也就是说相邻两个点的

值的乘积为负数,也就是一正一负,因此对于[1,N-2]范围内的y,定义如下变量:

于是水平方向的ZC率定义如下:

同理,我们可以计算垂直方向的几个指标值。最后得到这几个指标的水平和垂直方向的平均值:

有很多方式把这几个指标联系起来组成一个质量评价模型。我们采用如下图像质量定义:

其中是从大量实验中提炼出来的模型参数。本文中所采用的参数值如下:

(15)No-Reference Image Quality Assessment forJPEG/JPEG2000Coding

这篇文章的作者在前面那篇文章的基础上,重新定义了新的质量指标:

其实S就是在(14)中已经得到的质量评价值。

(16)No-Reference Image Quality Assessment using Blur and Noise

图像质量受很多因素影响,例如:亮度、对比度、色调、边界、噪声、模糊等。在本文中,我们假定噪声和模糊是影响图像质量最重要的两个因素。简单起见,只对彩色图像的亮度分量做模糊和噪声监测。本文的图像质量评价算法框架图如下:

A)模糊检测

模糊估计分为两个步骤:首先是边缘检测,然后是模糊确定。此处模糊估计是通过计算当前像素点与领域内像素点均值之差来确定。我们用f(x,y)表示图片,其中

。定义水平绝对差如下:

整个图片的水平绝对差的均值为:

如果当前像素点的则该像素点就是一个候选的边缘点

.如果比它水平方向两个相邻的点

都大,则该像素点就被确认为一个边缘点。边缘点

的判断总结如下:

接下来我们检测边缘点是否模糊。定义:

同理,按照以上的步骤我们可以计算垂直方向的值。两者之大者称作Inverse Blurriness,用于最终的模糊判定依据。

低于阈值ThB的Inverse Blurriness被认为是模糊的。实验测试表明此处的阈值ThB取值0.1。最后,边缘模糊的均值和比率为:

B)噪点检测

因为沿边缘的噪点视觉上不明显,因此我们只检测边缘之外的噪点。边缘检测会被噪点影响,因此在检测边缘之前做一个噪点滤波的预处理。在本文中,我们应用均值滤波来消除噪点。均值滤波之后的图像g(x,y)为:

候选的噪点估计如下:

同理可以在垂直方向计算对应的值。然后得到候选的噪点是:

其中N_cand(x,y)表示候选噪点,它在边缘区域为0。

噪点均值和比率为:

其中Sum_Noise是N(x,y)之和,Noise_cnt是噪点总数目。

C)噪点和模糊的组合

此处我们的图像质量评价指标定义如下:

其中w1、w2、w3、w4是权值。通过线性回归分析获取这些权值。本文中这些权值为:

实验

为了测试以上评价方法的准确性,我们才用C语言编程实现以上算法,由于以上算法都是针对灰度图,因此在处理彩色图像的时候,首先将彩色图像转化为灰度图(简单起见,转化算法采用了grey=(R+G+B)/3)。测试图片采用了美国德州大学图像与视频工程实验室提供的图像质量评价数据库。该图像数据库包含了29幅原始图像,并利用原始图像生成了包括JPEG压缩、JPEG2000压缩、高斯模糊、Fastfsding(在Fastading通道中传输传输错误)、WhiteNoise(白噪声)五类失真在内的失真图像共779幅。此处我们选用JPEG目录下的部分图片做测试。

首先来看看第一组测试图片:

DatabaseRelease2\jpeg\img29.bmp

DatabaseRelease2\jpeg\img42.bmp(原始图片)

DatabaseRelease2\jpeg\img77.bmp

DatabaseRelease2\jpeg\img81.bmp

DatabaseRelease2\jpeg\img183.bmp

测试数据(阈值T=50)

算法img29img42img77img81img183

Brenner791.451050.36844.41898.57754.88

Tenengrad10.8812.7211.5111.9210.59

Laplacian8.50714.479.059.869.08

SMD18.5724.7120.9422.5714.32

SMD2168.19293.15196.84217.17128.57

Variance2107.862134.982083.192100.052110.90

Energy677.48941.98713.81754.95668.54

Vollath1940.971897.701910.281912.101940.81

Entropy7.007.387.267.38 5.24

EAV75.8893.7183.7089.1660.85

JPEG 2.089.25 3.95 5.16-1.53

JPEG2 2.12 4.99 3.90 4.60 1.04

Remark:

1)肉眼可以分辨以上五幅图像的质量排名为:img42>img81>img77>img29>img183

2)与主观感知一致的算法有:Brenner、Tenengrad、SMD、SMD2、Energy、Entropy、EAV、JPEG、JPEG2

3)Variance、Vollath算法所得数据非常接近,无法分辨出图像质量。

4)Laplacian在判断img29和img183的时候出现失误,这两个图片的质量都非常差

第二组测试图片(省略了图片显示,有兴趣的朋友可以去网上下载):

DatabaseRelease2\jpeg\img20.bmp(原始图片)

DatabaseRelease2\jpeg\img23.bmp

DatabaseRelease2\jpeg\img56.bmp

DatabaseRelease2\jpeg\img152.bmp

DatabaseRelease2\jpeg\img215.bmp

DatabaseRelease2\jpeg\img228.bmp

第二组测试数据(阈值T=50)

算法img20img23img56img152img215img228

Brenner756.67500.89615.53553.55418.77725.29

Tenengrad8.00 6.177.08 6.66 5.567.73

Laplacian11.36 6.048.02 6.87 5.7810.86

SMD19.4113.4017.1615.448.6719.56

SMD2231.65120.85169.69141.3981.10224.10

Variance2773.792631.732690.922650.812649.592724.18

Energy775.58466.00581.42510.01421.47743.86

Vollath2601.472535.772565.372542.392564.132558.90

Entropy7.15 6.847.287.21 4.167.29

EAV73.8654.7167.4861.7637.0274.89

JPEG9.59 3.03 6.38 4.93-1.878.62

JPEG2 5.00 3.03 4.88 4.51 1.03 4.99

Remark:

1)肉眼可以分辨以上图片的质量排名为:img20>img228>img56>img152>img23>img215 2)与主观感知一致的算法有:Brenner、Tenengrad、Laplacian、SMD2、Energy、JPEG、JPEG2 3)Vollat、Entropy算法失误比较多。

4)SMD、EAV在判断img20和img228的时候出现失误,这两个图片质量都非常好,肉眼有时候很难分辨,因此这种失误在可以接受的范围。

5)Variance在判断img23和img215的时候出现失误,这两个图片质量都非常差。

无参考图像质量评价算法研究

目录 目录 摘要.......................................................................................................................................... I Abstract ...................................................................................................................................... III 1.绪论.. (1) 1.1图像质量评价的研究背景与意义 (1) 1.2有参考图像质量评价算法的国内外研究现状 (2) 1.3无参考图像质量评价算法的国内外研究现状 (2) 1.3.1 面向特定失真的NRIQA算法 (2) 1.3.2 非特定失真的NRIQA算法 (5) 1.4论文的主要内容和章节安排 (8) 2.图像质量评价的主要算法 (11) 2.1主观方法 (11) 2.2 客观方法 (11) 2.2.1全参考图像质量评价 (12) 2.2.2半参考图像质量评价 (14) 2.2.3无参考图像质量评价 (14) 2.3图像质量评价算法性能的衡量指标 (17) 2.4图像质量评价数据库 (18) 2.5本章小结 (19) 3.基于Haar小波的无参考模糊图像质量评价算法 (21) 3.1小波变换的基本原理 (21) 3.2基于Haar 小波的特征图像提取 (22) 3.3广义高斯分布参数估计 (24) 3.4模糊图像质量得分 (27) 3.5实验结果及分析 (28) 3.6本章小结 (30) 4. 基于稀疏表示的无参考图像质量评价算法 (31) 4.1图像特征提取 (31) 4.1.1空域特征提取 (31) 4.1.2频域特征提取 (34) I

超声科图像质量评价详细介绍

超声科图像质量评价评分标准细则 附表(一) 1.图像清晰度(10分)(一副图像显示不清晰扣1分) 2.图像均匀性(10分)(一副图像不均匀扣1分) 3.超声切面标准性(10分)(一副图像不标准扣1分,漏一个常规切面扣2分) 4.伪相识别(10分)(缺伪像图像相关图像扣5分) 5.彩色血流显示情况(10分)(缺规定血流图像一副扣2分)6.图像于超声报告相关性(10分)(缺报告相关性常规切面图像一副扣1分) 7.图像有无斑点、雪花细粒、网纹(10分)(一副图像有斑点、雪花细粒、网纹扣1分) 8.图像与临床疾病相关性(10分)(报告所选图像与疾病相关性无关扣5分) 9.探测深度(要占1/2以上)(10分)(一副图像未达到1/2扣1分) 10.工作频率与脏器相关性(10分)(一副图像工作频率与脏器相关性不符扣1分)

超声科图像质量评价评分标准 1.图像清晰度10分 2.图像均匀性10分 3.超声切面标准性10分 4.伪相识别10分 5.图像与报告相关性10分 6.彩色血流显示情况10分 7.图像有无斑点、雪花细粒、网文10分 8.图像与临床疾病相关性10分 9.探测深度(要占1/2以上)10分 10.工作频率与脏器相关性10分

超声科图像质量评价细则 附表(二) 按照超声科常规切面操作规范规定细则如下: 1.肝脏:正常肝脏6个切面(第一肝门,门静脉二维图像,门静脉 血流频谱图像并有测值,第二肝门图像,肝脏工字状结构图像,肝左叶图像)。 异常肝脏8个切面(第一肝门,门静脉二维图像,门静脉血流频谱图像并有测值,第二肝门图像,肝脏工字状结构图像,肝左叶图像,异常部位二维及彩色) 2.胆囊:正常1个切面(显示胆囊颈部,胆囊底部) 异常2个切面(显示胆囊颈部+胆囊底部,异常部位图像) 3.胰腺:正常2个切面(胰腺的二维+彩色血流图像,显示胰头, 胰体,胰尾,) 4.异常3个切面(胰头,胰体,胰尾,胰腺彩色血流图像) 5.脾脏:正常2个切面(脾脏全长及脾门彩色血流图像) 异常3个切面(脾脏全长切面,异常二维及彩色血流图像) 5.泌尿系统:正常双肾2个切面(肾脏纵切面二维及彩色血流图像)异常双肾4个切面(肾脏纵切面二维及彩色血流图像,异常部位二维及彩色) 6.膀胱:正常2个切面(膀胱三角,膀胱底部) 异常4个切面(膀胱三角,膀胱底部,异常部位二维及彩色)7.前列腺:正常3个切面(前列腺纵切面,前列腺横切面,前列腺彩

图像大小和分辨率解析

图像大小和分辨率 与数码照片有关的工作中一个比较复杂的话题,就是对图像大小与分辨率之间的关系的理解。作为照片处理者,你随时都会遇见ppi值(每英寸像素的数量)、像素大小以及输出大小。要想获得精确的图像效果,尤其是打印后的图像效果,把这两个概念整理清楚是非常必要的。 图像大小 图像文件的两个重要特征是它的图像大小(不要与图像文件的大小混淆了)以及它的分辨率。图像大小涉及的是图像中点的数量。以像素乘以像素来说明,第二个像素值指的是垂直方向的像素数量。例如一个图像的大小可以是4368×2912像素,也就是共有12719616或者取整为1200万个图像点,也就是1200万像素。图像文件大小则与它所需的存储空间有关,以字节为单位。 一个图像的像素越大,所含的图像信息就越多,被清楚还原的尺寸也就越大。在输出大小相同的情况下,像素越大,单个细节就显示得越清楚,就越会形成清晰的视觉效果。但这里的视觉图像大小只是一个非实体的、虚拟的值,单独这个值既不能以厘米计算纸上的图片大小,也不能说明显示器上的图像大小。为了对图像上的大小进行确切的描述,还需要另外一个值,那就是分辨率,因为只有通过介质的显示,数字的像素信息才能有一个实际的载体。 分辨率 分辨率是用来表示一定长度的线段上的图像点数量的参数,用每英寸像素(ppi)来表示。它描述的是一个特定的输出介质在一个区域内所能显示的像素数量,同时也表明了在这个介质上正确展示一张照片的最低要求。每个输出介质的分辨率都是不同的。

你可以把一个图像想象成一个大的马赛克,每个像素中都含有关于各个马赛克“小石子儿”所应有的色彩信息。输出介质决定着单颗小石子儿的大小——显示器上的单颗小石子儿较大,而打印照片时相纸上的单颗小石子儿较小。因此在平铺面积相同的情况下,相纸所能容纳的小石子儿要比显示器容纳的多。也可以说,显示器在相同面积中所需要的小石子儿较少。相应的,在小石子儿数量相同的情况下,在显示器上所铺出来的面积就更大。但是在这两种显示介质前,在与这两个马赛克保持相应距离时,你会看到同样的图像。 此外,比较难以理解的是,分辨率这个概念也被应用于其他与摄影相关的情况,但是不同情况下的所指少有不同。 ——镜头分辨率描述的是这个镜头将黑白相间的细线条分辨开来成像的能力,即解像能力 ——相机的感光元件用分辨率来描述垂直方向和水平方向上的测量像素的数量,也就是可以成像的测量像素的总量(通常用“百万像素”表示) ——与相机的感光元件非常相似的是,显示器把垂直方向和水平方向上所可能显示的像素的总量也口语化地叫做分辨率,虽然这更多地是在描述显示器的大小(在这个意义上,更接近“图像大小”的概念) 但是一张照片的分辨率并没有说出这个图像文件中真正的像素数量。在一个特定的输出介质上,一张大图和一张小图的显示分辨率是完全相同的,但是大图要比小图显得大得多。为了理解这其中的关联,请你在后面的叙述中想象一下两个不同的图片文件,它们展示的是同一个主题:照片1的图像大小是6048×4032像素,照片2只有300×200像素。这两张照片将在显示器上和相纸上被展示出来。

如何提高照片像素 [数码拍摄提高照片像素的方法]

如何提高照片像素[数码拍摄提高照片像素的方法] 初玩摄影的朋友,是否为照片的像素不高而烦恼?以下是小编为你精心整理的数码拍摄提高照片像素的方法,希望你喜欢。 数码拍摄提高照片像素的方法 1. 尽量使用三脚架 很多情况下,照片图像模糊、不清晰的原因,是拍摄者在按动快门时产生“手振”或相机反光板抬升产生“机振”所造成的。如果使用了三脚架,无论快门速度设定到如何的“慢”,甚至长时间的曝光,即可防止图像由于“抖动”而产生的图像模糊。但要注意,使用三脚架时,要尽可能地使用快门线,忽视这一点,仍有可能在手指接触快门时产生的震动而影响清晰度。 2. 尽可能地使用高速快门 在手持照相机拍照的情况下,尽可能采用高速快门来拍摄。没有经验的拍摄者,快门速度设定在1/30s以下时,照片拍虚的概率较大。即使专业摄影工作者,也不能保证在低速快门拍摄时有百分之百的把握。提高快门速度,会相应提高照片清晰度的概率。当然,在手持照相机提高快门速度的情况下,势必开大光圈,因而会失去“大景深”,但为保证照片的清晰度,放弃景深是不得已的办法。 3. 尽可能使用“最佳光圈” 任何镜头都存在不同程度的成像误差,这些成像误差将使镜头的成像质量受到不同程度的影响。由于镜头球面的曲率不同,光线经过透镜中心和边缘时因折射率不同而不能聚焦于同一焦点,从而导致清晰度下降。如使用镜头的最大光圈拍摄,将导致该镜头像差缺陷的最大暴露,导致图像清晰度下降,而使用镜头的最小光圈拍摄,会产生光的衍射,也会导致图像清晰度下降。为改善像差而引起的清晰度下降问题,通常采用缩小光圈的办法来提高成像的质量。一般来说镜头的最佳光圈为该镜头最大光圈缩小2~3档左右,拍摄者可对某个镜头的最佳光圈进行比较。 4. 尽可能采用手动对焦 目前大多数相机具有自动对焦功能。然而,在景深特别小的情况下,自动对焦往往会聚焦不准确,特别是在向主体近距离对焦,使用长焦距镜头,采用大光圈拍摄人像特写的情况下,要特别小心。如果此时采用自动对焦,“靶子”非要对在人物的眼睛上,如果没有十分的把握,宁可放弃自动对焦,而采用手动对焦。人们不希望照片上人物的耳朵或鼻子是清晰的,而传神的眼睛是模糊的。 5. 尽量使用遮光罩 遮光罩的使用,很多人并不在意。在用正面光、前侧光或侧光时,遮光罩的作用并不明显。但是在逆光或侧逆光拍摄时,必须使用遮光罩,有时即便使用了遮光罩,阳光仍会直射到镜头上,造成画面“冲光”,产生雾翳,影响被摄体的色彩饱和度和清晰度。这时,应调整镜头角度,避开直射到镜头上的光线。此外,遮光罩还有助于防止镜头镜面损伤,同时避免手指接触到镜面。 6. 合理利用景深 景深的大小是根据拍摄者拍摄的目的来决定。如果是拍摄风光摄影,景深就要求大,目的是为让照片上景物的清晰范围从近至远都表现得很清楚。如果是拍摄特写,景深就要求小,目的是让照片上主体的背景虚化,突出被摄主体。用小景深来表现风光题材,或用大景深去表现被摄体特写,从摄影表现手法上来说适得其反。如何合理运用景深呢?请记住:采用小光圈、短焦距镜头、远距离对焦拍摄三种方法,景深就大。采用大光圈、长焦距镜头、近距离对焦拍摄三种方法,景深就小。采用其中一种或两种拍摄方法也行,但效果没有三

无参考图像质量评价综述

第41卷第6期自动化学报Vol.41,No.6 2015年6月ACTA AUTOMATICA SINICA June,2015 无参考图像质量评价综述 王志明1,2 摘要图像质量对人类视觉信息的获取影响很大,如何在没有参考图像的情况下准确地评价失真图像的质量是一个关键但又非常困难的问题.本文回顾了近20年来无参考图像质量评价发展的主要技术.首先,介绍了这一领域常用的衡量评价算法性能的技术指标,以及几个网上共享的典型图像质量评价数据库;然后,对各种无参考图像质量评价算法进行详细的分类介绍和特点评析;最后,基于典型数据库对近几年的一些非特定失真图像质量评价方法进行了性能测试和比较.目的是为这一领域的研究人员提供一个较为全面的、有价值的文献参考. 关键词图像质量评价,无参考图像质量评价,相关系数,模糊,噪声 引用格式王志明.无参考图像质量评价综述.自动化学报,2015,41(6):1062?1079 DOI10.16383/j.aas.2015.c140404 Review of No-reference Image Quality Assessment WANG Zhi-Ming1,2 Abstract Image quality has a strong impact on human visual information acquisition.It is a key but di?cult task to evaluate the quality of a distorted image without a reference image.This paper reviews the main techniques of no-reference image quality assessment(IQA)developed during the past20years.Firstly,some technical indexes for IQA algorithm evaluation and several public IQA databases available on network are introduced.Then,various no-reference IQA algorithms are introduced,sorted and discussed in detail.At last,several non-distortion-speci?c no-reference IQA algorithms presented in recent years are tested and compared on a public database.The purpose of this paper is to provide an integrated and valuable reference for no-reference IQA research. Key words Image quality assessment(IQA),no-reference image quality assessment(NR-IQA),correlation coe?cient, blur,noise Citation Wang Zhi-Ming.Review of no-reference image quality assessment.Acta Automatica Sinica,2015,41(6): 1062?1079 图像作为视觉信息的来源,蕴含了大量的有价值信息.在图像的获取、存储、传输、显示等过程中不可避免地会引入一些干扰因素,如噪声、模糊、数据丢失等,这些都会造成图像质量的下降(降质、失真).图像质量的好坏直接影响到人们的主观感受和信息量获取,图像质量评价(Image qual-ity assessment,IQA)的研究也在近20年受到广泛的重视.图像质量评价可以分为主观评价方法和客观评价方法,主观评价由观察者对图像质量进行主观评分,一般采用平均主观得分(Mean opin-ion score,MOS)或平均主观得分差异(Di?erential mean opinion score,DMOS)(即人眼对无失真图像和有失真图像评价得分的差异)表示,但主观评价工作量大、耗时长,使用起来很不方便;客观评 收稿日期2014-06-03录用日期2015-02-02 Manuscript received June3,2014;accepted February2,2015本文责任编委封举富 Recommended by Associate Editor FENG Ju-Fu 1.北京科技大学计算机与通信工程学院北京100083 2.材料领域知识工程北京市重点实验室北京100083 1.School of Computer and Communication Engineering,Uni-versity of Science and Technology Beijing,Beijing100083 2. Beijing Key Laboratory of Knowledge Engineering for Materials Science,Beijing100083价方法是由计算机根据一定算法计算得到图像的质量指标,根据评价时是否需要参考图像又可以分为全参考(Full reference,FR)、半参考(部分参考)(Reduced reference,RR)和无参考(No refer-ence,NR)等三类评价方法.全参考方法(FR)在评价失真图像时,需要提供一个无失真的原始图像,经过对二者的比对,得到一个对失真图像的评价结果,如信噪比(Signal noise ratio,SNR)、峰值信噪比(Peak signal noise ratio,PSNR)、均方误差(Mean square error,MSE)、平均结构相似度(Mean structure similarity,MSSIM)[1]、视觉信息保真度(Visual information?delity,VIF)[2]、视觉信噪比(Visual signal-to-noise ratio,VSPR)[3]、最显著失真(Most apparent distortion,MAD)[4]、图像差异预测(Image di?erence prediction,IDP)[5]等.随着研究的发展,这类方法的准确性越来越好,但其缺点是需要提供无失真的参考图像,这在实际应用中往往很难得到.文献[6?7]等对全参考图像评价方法进行了系统的介绍.半参考方法(RR)也称为部分参考方法,它不需要将失真图像与原始图像相比较,而只需要将失真图像的某些特征与原始图

解读电视的分辨率和清晰度

解读电视的分辨率和清晰度 2005-1-23 16:31:48 来源:家庭影院技术作者:不详 家庭影院的图像显示设备的种类、性能和功能永远是一个新鲜话题,但其有关的基础知识,或更确切的说是有关电视、电视机和其它视频播放设备的基础知识的话题,却是一个古老而有趣的话题,也是许多家庭影院爱好者一致关心和感兴趣的话题。由于对电视、电视机和其它视频播放设备的基础知识并非每个家庭影院爱好者都明白,对现在正在蓬勃发展着的新技术、新设备的特点也不能正确地理解。不但如此,即使就是现在自己正在使用着的设备,也不懂得如何去将它的性能充分发挥出来,不懂得如何去将它的功能充分利用起来。笔者作为一个普通家庭影院爱好者,在这里希望能从探讨的角度出发,和大家一起来解读有关家庭影院图像技术和显示设备的一系列常用的、实用的和重要的基本知识,其中还包括设备的使用和调整等方面的知识。在目前五彩纷呈的显示技术和显示设备中,我们拟从电视说起,在电视中,又打算从大家都最关心的分辨率和清晰度问题说起。 一、分辨率和清晰度还用得着讨论吗? 说起电视的分辨率和清晰度,似乎是尽人皆知、谁人都懂的问题,好像没有什么值得可谈的,更没有必要作专文加以讨论。 在与清晰度有关的用语中,除了清晰度一词以外,我们经常还可以见到分辨力、分辨率、解析力、解析度、解像力、解像度这些词语。对于这些词语分别的含义和所指的具体内容是什么,怎样使用才合适,目前流行的看法是很不统一的,归纳起来主要有3种不见的看法。 第一种:分辨率就是清晰度 这是一种最普遍的看法。这种看法认为,这些词语的意义是一样的或者说是一致的,有的人习惯于用分辨力(率)、分解力、解析力(度)和解像力(度)这一类词,而另一些人习惯于用清晰度这一个词。或者说,这些词的意义是一样的,但在习惯上对不同的对象使用不同的词汇,如习惯于将清晰度一词用于电视机,将分辨率一词用于计算机之类的显示器。 第二种:分辨率和清晰度是两回事 这种意见认为清晰度与分辨率(还包括分辨力、解析度、解像度等几个词语)有着本质的区别,它们所指的具体内容本来就不一样。具体说来,清晰度是指人眼宏观看到的图像的清晰程度,是由系统和设备的客观性能的综合结果造成的人们对最终图像的主

Photoshop提高照片清晰度方法

Photoshop提高照片清晰度方法 Photoshop 2008-09-16 16:49:52 阅读497 评论0 字号:大中小订阅 这幅照片的表情抓拍得非常到位。体现了作者熟练的抓拍技术和瞬间的把握。 作为摄影,还应当从摄影技术角度进一步提高,以达到精益求精。这幅照片不足之处是焦点没有集中在人物面部而集中在了胸部和左手,多少有些影响了主题充分展现。能不能把人物面部的清晰度进一步加强呢? 我们可以利用Photoshop技术轻松地增加面部的清晰度或模糊不需要清晰的地方,当然偶介绍的这种加强清晰度的方法不是那种一一般情况下的直接锐化,整个制作过程相对复杂一些,但效果显著,并加强动态感,把这幅优秀的照片做得更好。 第一步:用Phostshop打开原图; 图1 原图 第二步:打开"图层"→"新建"→"通过拷贝的图层",复制一个新的"背景副本";

图2 复制一个新的背景副本 第三步:通过"图像"→"调整"→"去色",使"背景副本"图层变成黑白;

图3 使背景副本图层变成黑白 第四步:将两个图层混合模式设为"叠加",这时可以看到图像仅仅拉大了反差,并没有增加清晰度。仍需要继续哦

图4 将两个图层混合模式设为叠加 第五步:这是最关键的一步。打开"滤镜"→"其他"→"高反差保留"面板,拉动滑标至半径1。0-2。0,从灰色图中可以看到图像的反差边缘呈现出来,彩色图像也开始变得清晰起来。

图5 把图像的反差边缘呈现出来 特别提醒:控制在1.0-2.0之间即可!只要能稍看到反差痕迹即可,不然将适得其反。

图6 滑标千万不要拉得过大 第六步:继续加强清晰度。将图层1用鼠标直接拖至下边的"创建新图层"图标上,即可生成一叠加新的效果图层,如果不满意,还可以继续用同样方法拖拉当前图层,直到清晰度满意为止。但不要太过份。

如何利用PS增强人物照片的清晰度

如何利用PS增强人物照片的清晰度 最近经常发现网友发的自拍作品有点对焦不清的感觉,照片有少量的重影。总体感觉不是很清晰。如果要让照片清晰,单纯用锐化是不行的,个人总结了以下两种方法,供大家参考。 第一种方法针对灰度较大的照片调清晰,主要用调色工具和蒙版来控制需要清晰的部分,方法非常简单实用。 以这种图片为例吧 先看看经过ps后的效果

1、打开图片,观察直方图:图中红圈出,说明亮部和暗部匀无细节。 2、创建色阶调整层(此处也可用自动色阶,自动色阶对好多图片会起到很好的作用).方法如图所示:按住红圈中的滑块向箭头方向移动。

3、创建色彩平衡调整层:对阴影高光分别进行调整。 4、用曲线来提亮皮肤,添加蒙板后察出不需提亮部分。 5、盖印图层,进行适当的磨皮修饰,再创建色相/饱和度调整图层参数设置如下图,确定后完成最终效果。

如果要让照片清晰,单纯按照上面的方法还是是不行的,个人认为需要慢慢把五官的轮廓找出来,慢慢修正,这样照片的效果会好很多。 以这种图片为例,看起来比较随意比较模糊的一种自拍照 先看看经过ps后的效果

1、首先磨皮,打开原图,按Ctrl + J把背景图层复制一层,执行:滤镜 > 模糊 > 高斯模糊,数值为4,确定后按住Alt键加上图层蒙版,然后用白色画笔在人物脸部有杂点的部位涂抹。 新建一个图层,按Ctrl + Alt + Shift + E盖印图层,然后把图层混合模式改为“滤色”,图层不透明度改为:30%。 3、新建一个图层,盖印图层,下面开始处理五官之一眼睛,先用钢笔工具把眼睛主体部分抠出来,转为选区,选择加深工具曝光度为:10%左右,贴着边缘线把边缘部分稍微加深一点。 4、双眼皮部分的处理,用钢笔工具勾出双眼皮的区域,转为选区如图4,选择减淡工具,曝光度为:10%,涂抹下图箭头位置,稍微涂白一点,制作出下眼皮的高光部分,涂好后不要取消选区。 5、按Ctrl + Shift + I反选,选择加深工具涂抹,下图箭头所示位置,稍微加深一点即可,加深的时候要贴住边缘线,用力摇均匀。

基于Matlab的图像清晰度评价方法研究

飘泊·绿茶彩您好!因上找到下载的修复工具带的特别多,请使下面的方法修复。开始运行输入回车,在命令提示符下输入下面命令回车。完后,在输入下面的回车。如果怕输入错误,可以复制这两条指令,然后在命令提示符后击鼠标右键,打粘贴‖回车,耐心等待,直到屏幕滚动停止为止。重启电脑。在检查运行进入表在_下,应该只有一个正常的键值将的删除。如果还有一个默认不管它,一般它为空。内存操作系统系统故障电脑络硬件系统软件内存不能为修复工具显示这个内存不能为修复工具修复需要多长时间内存不能为修复工具怎么这个对话框每次开机都出现一次,我了内存不能为修复工具内存不能为修复工具软件绿版怎么使查看同主题内存修复修复工具修复工具绿版修复工具内存修复工具内存使率决内存不能为下面集几个例子给大家分析例一浏览器出现指令引的内存,或者指令引的内存。该内存不能为。要终止程序,请单击确定的息框,单击确定后,又出现发生内部错误,您正在使的其中一个窗口即将关闭的息框,关闭该提示息后,浏览器也被关闭。决方法开始运行窗口,输入回车,着会出现一个息对话框‖确定。再依次运行以下命令。这个方法有说没必要,但重新一下那些对系统也没有坏处,反正多方下手,能决就行。修复或升浏览器,同时打上系统补叮看过其中一个修复方法是,把系统还原到系统初始的状态下〃议将升到了。例二有些应程序错误指令参考的内存。该内存不能为。决方法的预读缺技术这种最佳化技术也被到了应程序上,系统对每一个应程序的前几次启动况进行分析,然后新增一个描述套需求的虚拟内存映像‖并把这些息储存到文件夹。一旦建立了映像,应软件的装入速度大大提高。的预读取数据储存了最近次系统启动或应软件启动的息〃议将虚拟内存撤换,删除目录下所有文件,让重新收集程序的物理地址。例三在下双击光盘里面的文件,显示指令引的内存。该内存不能为‖要终止程序,请单击确定‖而在里运行却正常。决方法这可能是系统的兼容,的系统,右键文件,属,兼容,把兼容模式运行这个程序选择上,并选择。如果打了的补丁后,只要开始,运行,输入。右键,属,也会出现兼容的眩例四关闭时出现错误,以前一直使正常,最近却在每次关闭时出现指令引的内存。该内 云之我买了两个小乌龟。是放在水里好还是不放水好。一天吃多少东西。还他们的生活习惯,生存环境等等我都想了一下。谢了。住的地方拿个容器弄点沙石在一边垒个陆地装点水就可以了至于吃的头两天回家最好不要急着喂食观察两天也让龟龟有机会熟悉环境一般来说龟龟吃新鲜的小鱼小虾瘦肉也行如果你的龟龟很小那爵刀剪剪小如果比较大那小型的活鱼也可以的当然一些红线虫啊面包虫啊也可以就是看着恶心点还有龟龟是可以吃狗饲料的哦甚至是苹果啊香蕉拌在肉类里维生素最主要是从小养习惯只有食物新鲜干净是不会轻易拉肚子的一般拉肚子其实是由于温差过大比如一会把他放在空间里一会又拿出去晒太阳平时勤换水多晒太阳很重要晒太阳最好时机是早上和下午点后每天要记得晒晒这样幼龟最好在头两年里不要让他们冬眠。因为冬眠很容易染上疾的还会消耗它很多的力对于不让它们冬眠的龟,可以在冬季降温时采取加温饲养的措施,小红耳的话,可以在水里放上恒温棒一般观赏鱼市臣有。我认为水温尽量在度左右为佳;关于加热棒的水深,通常加热棒都是要全浸在水中才能操作安全的,依说明书办吧。很要紧的是在水中放个温度计日常留水温的变化与及是否近所较的温度。恩。。。懂了这些一般的都可以应了谢谢大家了。那两只嘘放生了我觉得这是对它们最好的。小乌龟要怎么养?手掌大的小乌龟要怎么养?喂的东西是放在水里面吗?冬天小乌龟要怎么养啊有一只得了白眼快一个月了一直反反复复不小乌龟要怎样养才能一直活着啊?小乌龟要怎么养啊??查看同主题小乌龟小乌龟养殖小乌龟眼睛小乌龟作文小乌龟歌词做个傻子简单活少食多餐勤换水,龟要更是要必备。养龟不要放太多的水,不要没过龟的下面的壳只没过脚就行,要不龟就该淹死了。跟养金鱼一样养,给它喂新鲜的小鱼小虾。水不要高过它的头,而且还要放点能让它爬上去的东西,夏天早上或晚上让它晒晒太阳。乌龟不喜欢吵,把它放在安静的地方。鱼虾猪肉它们都吃,不过最爱鱼了没小鱼也可以在大鱼上切一块喂。多换水,在水缸里小石子给它搭出块陆地,

无参考图像的清晰度评价方法

无参考图像的清晰度评价方法 在无参考图像的质量评价中,图像的清晰度是衡量图像质量优劣的重要指标,它能够较好的与人的主观感受相对应,图像的清晰度不高表现出图像的模糊。本文针对无参考图像质量评价应用,对目前几种较为常用的、具有代表性清晰度算法进行讨论分析,为实际应用中选择清晰度算法提供依据。 (1)Brenner梯度函数 Brenner梯度函数是最简单的梯度评价函数,它只是简单的计算相邻两个像素灰度差的平方,该函数定义如下: 其中:f(x,y)表示图像f对应像素点(x,y)的灰度值,D(f)为图像清晰度计算结果(下同)。 (2)Tenengrad梯度函数 Tenengrad梯度函数采用Sobel算子分别提取水平和垂直方向的梯度值,基与 Tenengrad梯度函数的图像清晰度定义如下: G(x,y)的形式如下: 其中:T是给定的边缘检测阈值,Gx和Gy分别是像素点(x,y)处Sobel水平和垂直方向边缘检测算子的卷积,建议使用以下的Sobel算子模板来检测边缘: (3)Laplacian梯度函数 Laplacian梯度函数与Tenengrad梯度函数基本一致,用Laplacian算子替代Sobel算子即可,该算子定义如下: 因此基于Laplacian梯度函数的图像星清晰度的定义如下: 其中G(x,y)是像素点(x,y)处Laplacian算子的卷积。 (4)SMD(灰度方差)函数 当完全聚焦时,图像最清晰,图像中的高频分量也最多,故可将灰度变化作为聚焦评价的依据,灰度方差法的公式如下:

(5)SMD2(灰度方差乘积)函数 灰度差分评价函数具有较好的计算性能,但其缺点也很明显,即在焦点附近灵敏度不高,即该函数在极值点附近过于平坦,从而导致聚焦精度难以提高。在文章《一种快速高灵敏度聚焦评价函数》中提出了一种新的评价函数,称之为灰度方差乘积法,即对每一个像素领域两个灰度差相乘后再逐个像素累加,该函数定义如下: (6)方差函数 因为清晰聚焦的图像有着比模糊图像更大的灰度差异,可以将方差函数作为评价函数: 其中:为整幅图像的平均灰度值,函数对噪声比较敏感,图像画面越纯净,函数值越小。 (7)能量梯度函数 能量梯度函数更适合实时评价图像清晰度,该函数定义如下: (8)Vollath函数 Vollath函数定义如下: 其中:为整幅图像的平均灰度值,M和N分别为图像宽和高。 (9)熵函数 基于统计特征的熵函数是衡量图像信息丰富程度的一个重要指标,有信息论可知,一幅图像f的信息量是由该图像的信息熵D(f)来度量: 其中:Pi是图像中灰度值为i的像素出现的概率,L为灰度级总数(通常取值256)。根据Shannon信息论,熵最大时信息量最多。将此原理应用到对焦过程,D(f)越大则图像越清晰。熵函数灵敏度不高,依据图像内容不同容易出现与真实情况相反的结果。 (10)EAV点锐度算法函数

自动人脸识别中的图像质量评价

一种基于倒谱的人脸图像清晰度评价方法 杨飞苏剑波 1 引言 人脸识别由于其非接触式、基本无须配合和操作隐蔽性强等优势,被认为是一种可广泛使用的生物特征识别技术,长期以来一直受到学术界和产业界的广泛关注[1-4]。然而,也正因为追求“无须配合”的实施效果,导致了人脸图像采集的随意性,图像之间差异较大、图像质量参差不齐的情况。采用低质量的人脸图像进行人脸识别,必然会导致识别准确率的下降[2, 4]。而长期以来,人脸识别的研究大都是基于预先准备好的图像质量一般较高的人脸库的,这与现实应用情况有很大的不同。因此尽管实验测试中的人脸识别准确率已经相当之高,然而在实际应用中的表现却并不尽如人意。为此,近年来有不少研究者开始着手于研究对各种不同质量人脸图像足够鲁棒的人脸识别技术,目前虽已取得了很大的进展,但离实用仍有一些差距。一方面,由于处理低质量图像而被引入的额外手段往往十分复杂,会大大增加人脸识别系统的复杂度,使得人脸识别耗费时间更长――这对于多数实际应用是不可接受的;另一方面,不受图像样本因素影响的人脸识别算法是难以获得的。因此,我们必须研究新的解决方法。 在基于视频流的自动人脸识别应用中,获得的人脸图像数量通常较多,如果对人脸图像样本进行质量评价,筛选较为合适的样本用于识别,这无疑会提高自动人脸识别系统的准确率;即使样本数目有限,也可以依据质量评价结果来选用相应的图像预处理方法来提高识别率。另外,根据人脸图像的质量情况来调整分类器的阈值或其它参数能有效地降低错误拒绝率(FRR)或错误接受率(FAR),亦可提高人脸识别的实用性能。可见,在自动人脸识别系统中引入人脸图像质量评价环节是一条推动人脸识别实用化的重要途径。因此,近几年来人脸图像的质量评价逐渐引起了人们的关注,关于图像质量评价的评价框架和相关指标的研究工作也已有一些公开报道[2-4],但关于人脸图像质量评价方法的研究目前还并不充分,人们往往是直接借用传统的图像质量评价方法。本文的研究表明,现有方法并不一定适用于自动人脸识别这个特别领域中的人脸图像质量评价,其评价结果与实际情况可能存在一定差距。本文接下来将以清晰度这一重要的人脸图像质量评价指标为例进行详细说明,并提出一种比传统评价方法更适合于自动人脸识别的清晰度评价方法。最后,通过对同一组人脸图像进行清晰度评价实验,将其与传统清晰度评价方法进行对比,以验证本文方法的准确性要高于传统方法。另外,还在真实环境下通过人脸识别实验来验证本文提出的清晰度评价方法在自动人脸识别中的作用及其适用性。 2自动人脸识别中的清晰度评价 在基于视频流的自动人脸识别应用中,自动检测采集到的人脸图像不清晰的情况时有发生。不清晰的人脸图像不但会影响人脸识别的准确率,而且还会影响对譬如人脸姿态等其它图像质量指标的评价[2,4],故本文将清晰度选作研究对象。影响人脸图像清晰度的原因主要有图像模糊和采集噪声干扰。忽略采集噪声,摄像机对焦失准或拍摄瞬间人脸沿摄像机光轴方向快速运动会造成离焦模糊,拍摄瞬间人脸垂直于摄像机光轴方向快速运动会造成运动模糊,实际上这两种模糊经常是并存的。传统的图像质量评价往往是考察经过计算压缩、传输、增强或其他处理变换后的图像与原始图像质量上的差别,在评价时通常有“标准图像”可供参照[5]。因此,无论是具有计算简单优点而被广泛使用的均方差(MSE)和峰值信噪比(PSNR)方法,还是更符合人眼视觉系统(HVS)特性的结构相似度(SSIM)方法[6]或基于自然场景统计(NSS)的视觉信息逼真度(VIF)方法[7],由于必须得通过将变换后的图像与标准图像进行比较来做出质量评价,故皆不适合作为自动人脸识别中的人脸图像清晰度评价方法。另一方面,无需参考图像的图像质量评价方法相对较少,且主要用于图像盲恢复参数的辨识(如对点扩散函数PSF的估计等),其中的特征提取过程较为复杂,计算耗时长,故难以满足自动人脸识别系统的时间要求。于是,研究者们提出了

一分钟教会你图片文件怎么保持清晰度压缩的方法

一分钟教会你图片文件怎么保持清晰度压缩的方法图片怎么保持清晰度压缩呢?在很多的时候,我们想要将图片进行保持清晰度压缩,但是找不到好的方法,图片保持清晰度压缩的方法很简单,下面教给大家保持清晰度的图片压缩的方法。 操作选用工具:迅捷压缩软件 迅捷压缩软件:https://https://www.wendangku.net/doc/716404453.html,/compress 具体操作步骤如下: 1:先在浏览器搜索图片压缩,找到在线压缩图片的网站,进入到网站的首页。 2:在网站的首页可以找到文档处理,鼠标移动到文档处理,就会看到图片压缩,点击图片压缩进入到压缩的页面。

3:在压缩的页面找到选择文件,点击选择文件选择需要进行压缩的图片文件,最多可以选择四张。 4:添加文件后,在下面会看到压缩的选项,将选项调整到清晰度优先的格式,点击开始压缩,你需要进行压缩的文件就会在压缩的过程中。

在线网站进行压缩图片可以添加的图片少,可以使用下面方法进行多张图片压缩 1:找到一款压缩软件,将压缩软件下载到指定的电脑位置中。打开软件,找到图片压缩,进入到压缩的页面。 2:在压缩的页面可以看到添加文件以及添加文件夹,将需要压

缩的图片文件添加到压缩的页面中。 3:在下面会看到压缩的选项以及输出的格式,将压缩选项调整到清晰度优先即可。 4:在底部可以看到保存至,设置好自己文件需要保存的路径,

最好是可以随时找到的文件夹。 5:点击开始压缩,需要进行压缩的图片文件就会在压缩的过程中,请耐心等待。压缩完成的文件会直接保存带指定的文件夹中。

希望以上的操作对您有所帮助。按照上面的方法操作会比较简单。

图像质量质量评价

图像质量评价综述 摘要:图像质量评价是图像处理领域的研究热点。本文综合论述了图像质量的主观和客观评价方法,就各自具体的实现方法做了简要的介绍,并分析了各自适用性和存在的问题。最后进而根据发展趋势和应用需求,对图像质量评价方法的进一步发展提出了若干技术与研究方向的展望。 [关键字] 图像质量评价人类视觉系统结构相似度全参考评价部分参考评价无参考评价 [abstract] Image quality assessment (IQA) is a hot research area in the field of image processing. In this paper, we discuss the subjective and objective assessment methods of image quality, respectively give a brief introduction of their specific implementation method, and analyses the respective applicability and problems. Finally, the further development of the technology and research directions of the future are proposed based on the trends and application requirements. [keywords] Image Quality Assessment(IQA) Human Visual System(HVS) Structural similarity Full Reference(FR) Reduced Reference(RR) No Reference(NR), 一.引言 图像是人类获取信息的重要途径,其所承载的信息远比其它形式的信息更贴切、更丰富。图像质量表示图像向人或设备提供信息的能力,直接关系着所获取信息的充分性与准确性。然而,图像在获取、处理、传输和存储的过程中,由于各种因素的影响,将不可避免的产生图像的降质问题,这给信息获取或图像的后期处理带来了极大的困难。因此,在图像处理的相关领域建立图像质量评价机制具有重大的意义。 图像质量评价的问题涉及到图像处理技术许多方面,例如压缩、传输、增强、存储、水印等。一个有效的评价标准可以有如下三种应用:首先,可以在质量控制系统中检测图像质量。例如图像采集系统利用其来自动调整系统参数,从而获得最好的图像数据;其次,可以用作衡量图像处理系统和算法的标准。例如有若干图像降噪和恢复的算法用来提高数码照片的质量时,质量标准便可以用来确定哪个算法可获得最好的结果;最后,可以嵌入到图像处理系统中来优化系统和参数设置。例如在视频通信系统中,质量标准既能辅助编码端的预滤波和比特分配

实时视频图像的清晰度检测算法研究教案

实时视频图像的清晰度检测算法研究 2010-12-18 17:11:42 来源:微型机与应用 关键字:实时视频图像背景提取Sobel算子清晰度检测 实时视频图像的质量分析已成为众多应用领域性能好坏的关键因素之一,因此实时视频图像的清晰度检测变得尤为重要。目前针对实时视频图像清晰度检测的研究较少,图像清晰度检测算法的研究对象主要针对静止的图像。现有的图像清晰度检测算法大致分为空域和频域两类。在空域中多采用基于梯度的算法,如拉普拉斯(Laplace)算法、差分平方和(SPSMD)算法、Sobel算子等。此类算法计算简洁、快速、抗噪性能好、可靠性较高。在频域中多采用图像的FFT变换(或其他变换),如功率谱(Power-spectra)算法等[1-2]。此类算法的检测效果好,但计算复杂度高、计算时间长,不适合应用在基于软件实现的实时检测系统中。 当前对实时视频图像的一种重要应用是对运动目标的检测,常用的目标检测方法有帧差法、背景减法、光流法及运动能量法[3],其中最简单而又快捷的方法是背景差法。其基本思想是通过对输入图像与背景图像进行比较来分割运动目标,关键环节是背景图像的提取。目前常用的背景提取方法有多帧图像平均法、灰度统计法、中值滤波法、基于帧差的选择方法、单高斯建模等。参考文献[4]中对以上算法做了充分的研究。 本文是针对实时视频图像的清晰度检测,基于实时视频图像背景基本保持不变的环境。通过比较上述算法,针对实时视频图像的特点,提出一种基于背景提取与Sobel算子相结合的实时视频图像的清晰度检测算法。 1 实时视频图像的清晰度检测算法原理 当视频播放画面超过24帧/s时,根据视觉暂留原理,人眼无法辨别每幅单独的静态画面,看上去是平滑连续的视觉效果。视频中的事物通常分为静止和运动两类,连续多帧画面中保持静止的物体可视为静止的背景,连续多帧画面中位置变化的物体可视为运动的前景。因此,实时视频图像中的每帧图像都可以划分为静止的背景和运动的前景两类区域。由于视频序列图像中运动的前景区域随机变化,引起图像像素点梯度值的随机改变,使得实时视频图像的清晰度检测较难实现。因此,本文的算法是利用实时视频图像中静止的背景区域检测视频序列图像的清晰度,即由背景提取和清晰度检测两部分组成。 1.1 实时视频图像的背景提取

提高照片清晰度方法

作为摄影,还应当从摄影技术角度进一步提高,以达到精益求精。这幅照片不足之处是焦点没有集中在人物面部而集中在了胸部和左手,多少有些影响了主题充分展现。能不能把人物面部的清晰度进一步加强呢? 当然可以,确实要感谢现代科学技术,Photoshop软件是世界上最强大的图像处理和编辑软件,为我们后期制作带来极大自由空间的快捷方便,我们可以利用PS技术轻松地增加面部的清晰度或模糊不需要清晰的地方,当然偶介绍的这种加强清晰度的方法不是那种一一般情况下的直接锐化,整个制作过程相对复杂一些,但效果显著,并加强动态感,把这幅优秀的照片做得更好。 图1 原图 第二步:打开"图层"→"新建"→"通过拷贝的图层",复制一个新的"背景副本";

图2 复制一个新的背景副本 第三步:通过"图像"→"调整"→"去色",使"背景副本"图层变成黑白;

图3 使背景副本图层变成黑白 第四步:将两个图层混合模式设为"叠加",这时可以看到图像仅仅拉大了反差,并没有增加清晰度。仍需要继续革命哦

图4 将两个图层混合模式设为叠加 第五步:这是最关键的一步。打开"滤镜"→"其他"→"高反差保留"面板,拉动滑标至半径1。0-2。0,从灰色图中可以看到图像的反差边缘呈现出来,彩色图像也开始变得清晰起来。

图5 把图像的反差边缘呈现出来 特别提醒:,控制在1.0-2.0之间即可!只要能稍看到反差痕迹即可,不然将适得其反。

图6 滑标千万不要拉得过大 第六步:继续加强清晰度。将图层1用鼠标直接拖至下边的"创建新图层"图标上,即可生成一叠加新的效果图层,如果不满意,还可以继续用同样方法拖拉当前图层,直到清晰度满意为止。但不要太过份。

相关文档