文档库 最新最全的文档下载
当前位置:文档库 › 光伏组件遮挡对功率影响实验

光伏组件遮挡对功率影响实验

光伏组件遮挡对功率影响实验
光伏组件遮挡对功率影响实验

正常图像(无遮挡)

光伏特性曲线实验报告

绪论 一实验目的 本实验课程的目的,旨在通过课内实验教学,使学生掌握太阳能发电技术方面的基本实验方法和实验技能,帮助和培养学生建立利用所学理论知识测试、分析和设计一般光伏发电电路的能力,使学生巩固和加深太阳能发电技术理论知识,为后续课程和新能源光伏发电技术相关专业中的应用打好基础。 二实验前预习 每次实验前,学生须仔细阅读本实验指导书的相关内容,明确实验目的、要求;明确实验步骤、测试数据及需观察的现象;复习与实验内容有关的理论知识;预习仪器设备的使用方法、操作规程及注意事项;做好预习要求中提出的其它事项。三注意事项 1、实验开始前,应先检查本组的仪器设备是否齐全完备,了解设备使用方法及线路板的组成和接线要求。 2、实验时每组同学应分工协作,轮流接线、记录、操作等,使每个同学受到全面训练。 3、接线前应将仪器设备合理布置,然后按电路图接线。实验电路走线、布线应简洁明了、便于测量。 4、完成实验系统接线后,必须进行复查,按电路逐项检查各仪表、设备、元器件的位置、极性等是否正确。确定无误后,方可通电进行实验。 5、实验中严格遵循操作规程,改接线路和拆线一定要在断电的情况下进行。绝对不允许带电操作。如发现异常声、味或其它事故情况,应立即切断电源,报告指导教师检查处理。 6、测量数据或观察现象要认真细致,实事求是。使用仪器仪表要符合操作规程,切勿乱调旋钮、档位。注意仪表的正确读数。. 7、未经许可,不得动用其它组的仪器设备或工具等物。 8、实验结束后,实验记录交指导教师查看并认为无误后,方可拆除线路。最后,应清理实验桌面,清点仪器设备。 9、爱护公物,发生仪器设备等损坏事故时,应及时报告指导教师,按有关实验管理规定处理。 10、自觉遵守学校和实验室管理的其它有关规定。 四实验总结 每次实验后,应对实验进行总结,即实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。实验报告除写明实验名称、日期、实验者姓名、同组实验者姓名外,还包括: 1.实验目的; 2.实验仪器设备(名称、型号); 3.实验原理; 4.实验主要步骤及电路图; 5.实验记录(测试数据、波形、现象); 6.实验数据整理(按每项实验的实验报告要求进行计算、绘图、误差分析等);.回答每项实验的有关问答题。7.

光伏组件转换效率测试和评定方法技术规范

CNCA/CTS0009-2014 中国质量认证中心认证技术规范 CQC3309—2014 光伏组件转换效率测试和评定方法 Testing and Rating Method for the Conversion Efficiency of Photovoltaic (PV) Modules 2014-02-21发布2014-02-21实施 中国质量认证中心发布

目次 目次.................................................................................... I 前言.................................................................................. II 1范围 (1) 2规范性引用标准 (1) 3术语和定义 (1) 3.1组件总面积 (1) 3.2组件有效面积 (1) 3.3组件转换效率 (2) 3.4组件实际转换效率 (2) 3.5 标准测试条件 (2) 3.6 组件的电池额定工作温度 (2) 3.7 低辐照度条件 (2) 3.8 高温度条件 (2) 3.9 低温度条件 (2) 4测试要求 (2) 4.1评定要求 (2) 4.2抽样要求 (3) 4.3测试设备要求 (3) 5测试和计算方法 (4) 5.1预处理 (4) 5.2组件功率测试 (4) 5.3组件面积测定 (6) 5.4组件转换效率计算 (6)

前言 本技术规范根据国际标准IEC 61853:2011和江苏省地方标准DB32/T 1831-2011《地面用光伏组件光电转换效率检测方法》,结合光伏组件产品测试能力的现状进行了编制,旨在规范光伏组件转换效率的测试与评定方法。 本技术规范由中国质量认证中心(CQC)提出并归口。 起草单位:中国质量认证中心、国家太阳能光伏产品质量监督检验中心、中国电子科技集团公司第四十一研究所、中广核太阳能开发有限公司、中国三峡新能源公司、晶科能源控股有限公司、上海晶澳太阳能科技有限公司、常州天合光能有限公司、英利绿色能源控股有限公司。 主要起草人:邢合萍、张雪、王美娟、朱炬、王宁、曹晓宁、张道权、刘姿、陈康平、柳国伟、麻超。

光伏组件横向竖向发电量对比分析

光伏组件竖向、横向布置不同,发电量差异大! 在光伏电站的设计中,光伏组件的放置有两种设计方案: 方案一:竖向布置,如下图。 图1光伏组件竖向布置的光伏电站 方案二:横向布置,如下图。 图2光伏组件横向布置的光伏电站 根据我的了解,目前竖向布置的电站会更多一些。主要原因是,竖向布置安装方便,横向布置时,最上面的一块安装比较费劲!这就影响了施工进度。

经过与业内的多位专家探讨之后,发现一横、一竖,对发电量的影响太大了!逐步说明这个问题。 1、前后遮挡造成电站电量损失 在电站设计过程中,阵列间距是非常重要的一个参数。由于土地面积的限制,阵列间距一般只考虑冬至日6个小时不遮挡。然而,6小时之外,太阳能辐照度仍是足以发电的。从本人获得的光伏电站的实测数据来看,大部分电站冬至日的发电时间在7小时以上,在西部甚至可以达到9个小时。(一个简单的判别方法,日照时数是辐射强度≥120W/m2的时间长度,而辐射强度≥50W/m2时,逆变器就可以向电网供电。因此,当12月份的日照时数在6h以上时,发电时间肯定大于6h。) 结论1:我们为了减少占地面积,在早晚前后光伏方阵必然会有遮挡,造成发电量损失。 2、光伏组件都有旁路二极管 热斑效应:一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量,被遮蔽的太阳电池组件此时会发热,这就是热斑效应。 这种效应能严重的破坏太阳电池。有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。因此,旁路二极管的作用就是:当电池片出现热斑效应不能发电时,起旁路作用,

光伏组件中电池遮挡与伏安特性曲线变化的关系

光伏组件中电池遮挡与伏安特性曲线变化的关系

光伏组件中电池遮挡与I-V曲线特性变化关系 收藏分享2011-4-26 11:06|发布者: 么西么西|查看数: 1668|评论数: 0 摘要: 众所周知,晶体硅太阳电池组件的表面阴影、焊接不良及单体电池功率不匹配等因素是导致输出功率降低的主要原因,研究这些因素的影响不仅对制造晶体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输 ... 匹配等因素是导致输出功率降低的主要原因,研究这些因素的影响不仅对制造晶体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输出降低或失效的原因。 国外曾经有人报道一些在现场用了10到15年的组件电特性已经恶化。其I-V 特性曲线已经和一些普通的光伏组件差别很大,而这种变化的I-V曲线可以用来分析晶体硅太阳电池组件输出降低的原因。本文主要讨论了遮挡部分电池组件输出特性的影响,并用计算机对核过程进行了模拟。 一、模拟方法 在晶体硅太阳电池组件中,当有电池被遮挡时,组件的输出特性可以用下式表示: =3.86X10-5(A),Rsh=15.29这些参数估算时可以用一下参数代替:n=1.96,I (Ω)。a=2.0x10-3,Vbr=-21.29(V),nn=3.R =0.008. 3 组件中有电池被遮盖时的电路可以用图片三来表示,正常的电池和被遮盖住的电池在组建中是串联关系,因此电压V和电流I满足以下等式:

组件中电池被遮挡时的模拟电路 其中,Iph1代表组件中普通电池的光电流,Iph2代表遮挡电池产生的光电流,与等式(2)中的遮挡透过率有关系,例如,当遮挡透过率为35%时,Iph2是Iph1的0.35倍。通过解(3)-(6)式可以计算出I-V的特性。 二、实验 图2(a)和(b)是通过改变阴影透过率的情况下分别计算和实际测量的I-V特性曲线。当组件上的一个电池用不同的透过率(一个组件由36块电池组成)时,短路电流大致变化不大。结果是透过率越低,电流随着电压的升高下降越快。另一方面,开路电压基本上相同。由图可看出:测量结果与计算的结果相吻合。

光伏组件功率衰减分析

光伏组件功率衰减分析研究 2016-08-26 摘要:结合在组件生产和电站质量管理中遇到的问题,对组件材料老化衰减及组件初始光致衰减原因进行了分析和实验测试,提出相应对策。结果表明:组件材料老化功率衰减主要是EVA和背板老化黄变引起,组件初始功率衰减主要由于硅片内硼、氧元素复合引起,提出的对策具有可行性。 0引言 光伏组件是太阳能发电的关键元件,光伏组件功率衰减是指随着光照时间的增加,组件输出功率不断呈下降趋势的现象[1]。组件功率衰减直接关系到组件的发电效率。国内组件的功率衰减与国外最好的组件相比,仍存在一定差距,因此 研究组件功率衰减非常有必要。组件功率衰减包括组件初始光致衰减、组件材料老化衰减及外界环境或破坏性因素导致的组件功率衰减[2]。外界环境导致功率衰减主要由光伏电站运营不当造成,可通过加强光伏电站的维护进行改善或避免;破坏性因素导致的组件功率衰减是由于组件明显的质量问题所致,在组件生产和电站安装过程对质量进行严格检验把控,可减少此类功率衰减的现象。本文主要研究组件初始光致衰减及材料老化衰减。 1组件初始光致衰减分析

1.1组件初始光致衰减原理分析 组件初始光致衰减(LID)是指光伏组件在刚开始使用的几天其输出功率发生大幅下降,之后趋于稳定的现象。普遍认为的衰减机理为硼氧复合导致,即由p型(掺硼)晶体硅片制作而成的光伏组件经过光照,其硅片中的硼、氧产生复合体,从而降低了其少子寿命。在光照或注入电流条件下,硅片中掺入的硼、氧越多,则生成复合体越多,少子寿命越低,组件功率衰减幅度就越大[3]。 1.2组件初始光致衰减的实验分析 本研究采用对比实验的办法,在背板、EVA、玻璃和封装工艺等条件完全一致情况下,采用两组电池片(一组经初始光照,另一组未经初始光照),分别将其编号为I和II。同时,生产出的所有组件经质量全检及电致发光(EL)检测,确保质量完全正常。实验过程条件确保完全一致,采用同一台太阳能模拟仪测量光伏组件I-V曲线。 分别取I和II光伏组件各3组进行试验,记录其在STC状态下的功率输出值。随后,将I和II光伏组件放置于辐照总量为 60kWh/m2(根据IEC61215的室外暴晒试验要求)的同一地点进行暴晒试验,分别记录其功率,结果见表1。

光伏组件与阵列设计复习过程

光伏组件与阵列设计

1.1 引言 太阳电池是将太阳光直接转换为电能的最基本元件,一个单体太阳能电池的单片为一个PN结,工作电压约为0.5V,工作电流约为20-25mA/cm2, 一般不能单独作为电源使用。因而需根据使用要求将若干单体电池进行适当的连接并经过封装后,组成一个可以单独对外供电的最小单元即组件(太阳能电池板)。其功率一般为几瓦至几十瓦,具有一定的防腐、防风、防雹、防雨的能力,广泛应用于各个领域和系统。 当应用领域需要较高的电压和电流,而单个组件不能满足要求时,可把多个组件通过串连或并联进行连接,以获得所需要的电压和电流,从而使得用户获取电力。根据负荷需要,将若干组件按一定方式组装在固定的机械结构上,形成直流发电的单元,即为太阳能电池阵列,也称为光伏阵列或太阳能电池方阵。一个光伏阵列包含两个或两个以上的光伏组件,具体需要多少个组件及如何连接组件与所需电压(电流)及各个组件的参数有关。 太阳能电池片并、串联组成太阳能电池组件;太阳能电池组件并、串联构成太阳能电池阵列。 1.2 光伏组件 1.2.1组件概述 光伏组件(俗称太阳能电池板)是将性能一致或相近的光伏电池片(整片的两种规格125*125mm、156*156mm),或由激光机切割开的不同规格的太阳能电池,按一定的排列串、并联后封装而成。由于单片太阳能电池片的电流和电压都很小,把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。电池串联的片数越多电压越高,面积越大或并联的片数越多则电流越大。如一个组件上串联太阳能电池片的数量是36片,这意味着这个太阳能组件大约能产生17伏的电压。 1.2.2电池的连接与失配 失配的影响:失配损失是由于电池或者组件的互联引起的,这些电池或者组件没有相同的特性或者经历了不同的条件。在PV组件和方阵中,在某种条件下失配问题是一个严重的问题,因为一个组件在最差情况的输出是由其中的具有最低输出的太阳电池决定。例如,当一个太阳电池被遮挡而组件中的其它的太阳电池并没有被遮挡时,一个处于“良好”状态的太阳电池产生的功率可以被低性能的太阳电池耗散,而不是提供给负载。这可以导致非常高的局部电力耗散,并且由此而产生的局部加热可以引起组件不可恢复的损伤。 太阳能电池在串、并联成电池组件时,由于每片太阳能电池电性能不可能绝对一致,这就使得串、并联后的输出总功率往往小于各个单体太阳能电池输出功率之和,称作太阳能电池的失配。在太阳能组件的制造以及组建安装为阵列的过程中,失配问题总会存在,并或多或少的影响太阳能电池的性能。这是

EL测试光伏组件常见质量问题分析与检测方法

EL测试光伏组件常见质量问题分析与检测方法 据苏州莱科斯公司检测光伏电站的经验得出光伏组件安装过程管控不到位造成光伏组件热斑、隐裂、人为破损等质量问题的大面积出现,影响了光伏电站整体高效稳定运行。本文结合国家相关规范要求及光伏组件安装实际情况,对光伏组件常见质量问题进行分析,对光伏组件安装质量控制进行总结,旨在从管理层面系统梳理光伏电站组件安装质量控制有效措施,保证光伏电站高效稳定运行。那常见的问题有哪些以下几点? 光伏组件常见质量问题 光伏组件常见的质量问题有热斑、隐裂和功率衰减。由于这些质量问题隐藏在电池板内部,或光伏电站运营一段时间后才发生,在电池板进场验收时难以识别,需借助专业设备进行检测。 热斑形成原因及检测方法 光伏组件热斑是指组件在阳光照射下,由于部分电池片受到遮挡无法工作,使得被遮盖的部分升温远远大于未被遮盖部分,致使温度过高出现烧坏的暗斑。光伏组件热斑的形成主要由两个内在因素构成,即内阻和电池片自身暗电流。 热斑耐久试验是为确定太阳电池组件承受热斑加热效应能力的检测试验。通过合理的时间和过程对太阳电池组件进行检测,用以表明太阳电池能够在规定的条件下长期使用。热斑检测可采用红外线热像仪进行检测,红外线热像仪可利用热成像技术,以可见热图显示被测目标温度及其分布。 隐裂形成原因及检测方法 隐裂是指电池片中出现细小裂纹,电池片的隐裂会加速电池片功率衰减,影响组件的正常使用寿命,同时电池片的隐裂会在机械载荷下扩大,有可能导致开路性破坏,隐裂还可能会导致热斑效应。 隐裂的产生是由于多方面原因共同作用造成的,组件受力不均匀,或在运输、倒运过程中剧烈的抖动都有可能造成电池片的隐裂。光伏组件在出厂前会进行EL成像检测,所使用的仪器为EL检测仪。该仪器利用晶体硅的电致发光原理,利用高分辨率的CCD相机拍摄组件的近红外图像,获取并判定组件的缺陷。EL检测仪能够检测太阳能电池组件有无隐裂、碎片、虚焊、断栅及不同转换效率单片电池异常现象。功率衰减分类及检测方法 光伏组件功率衰减是指随着光照时间的增长,组件输出功率逐渐下降的现象。光伏组件的功率衰减现象大致可分为三类:第一类,由于破坏性因素导致的组件功率衰减;第二类,组件初始的光致衰减;第三类,组件的老化衰减。其中,第一类是在光伏组件安装过程中可控制的衰减,如加强光伏组件卸车、倒运、安装质量控制可降低组件电池片隐裂、碎裂出现的概率等。第二类、第三类是光伏组件生产过程中亟需解决的工艺问题,在此不再赘述。光伏组件功率衰减测试可通过光伏组件I-V特性曲线测试仪完成。

光伏组件与阵列设计说明

1.1 引言 太阳电池是将太阳光直接转换为电能的最基本元件,一个单体太阳能电池的单片为一个PN结,工作电压约为0.5V,工作电流约为20-25mA/cm2, 一般不能单独作为电源使用。因而需根据使用要求将若干单体电池进行适当的连接并经过封装后,组成一个可以单独对外供电的最小单元即组件(太阳能电池板)。其功率一般为几瓦至几十瓦,具有一定的防腐、防风、防雹、防雨的能力,广泛应用于各个领域和系统。 当应用领域需要较高的电压和电流,而单个组件不能满足要求时,可把多个组件通过串连或并联进行连接,以获得所需要的电压和电流,从而使得用户获取电力。根据负荷需要,将若干组件按一定方式组装在固定的机械结构上,形成直流发电的单元,即为太阳能电池阵列,也称为光伏阵列或太阳能电池方阵。一个光伏阵列包含两个或两个以上的光伏组件,具体需要多少个组件及如何连接组件与所需电压(电流)及各个组件的参数有关。 太阳能电池片并、串联组成太阳能电池组件;太阳能电池组件并、串联构成太阳能电池阵列。 1.2 光伏组件 1.2.1组件概述 光伏组件(俗称太阳能电池板)是将性能一致或相近的光伏电池片(整片的两种规格125*125mm、156*156mm),或由激光机切割开的不同规格的太阳能电池,按一定的排列串、并联后封装而成。由于单片太阳能电池片的电流和电压都很小,把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。电池串联的片数越多电压越高,面积越大或并联的片数越多则电流越大。如一个组件上串联太阳能电池片的数量是36片,这意味着这个太阳能组件大约能产生17伏的电压。 1.2.2电池的连接与失配 失配的影响:失配损失是由于电池或者组件的互联引起的,这些电池或者组件没有相同的特性或者经历了不同的条件。在PV组件和方阵中,在某种条件下失配问题是一个严重的问题,因为一个组件在最差情况的输出是由其中的具有最低输出的太阳电池决定。例如,当一个太阳电池被遮挡而组件中的其它的太阳电池并没有被遮挡时,一个处于“良好”状态的太阳电池产生的功率可以被低性能的太阳电池耗散,而不是提供给负载。这可以导致非常高的局部电力耗散,并且由此而产生的局部加热可以引起组件不可恢复的损伤。 太阳能电池在串、并联成电池组件时,由于每片太阳能电池电性能不可能绝对一致,这就使得串、并联后的输出总功率往往小于各个单体太阳能电池输出功率之和,称作太阳能电池的失配。在太阳能组件的制造以及组建安装为阵列的过程中,失配问题总会存在,并或多或少的影响太阳能电池的性能。这是因为:1,

光伏组件测试

1.1.1组件电性能测试 1 组件测试仪校准:开始测试前使用相应的标准板校准测试仪;之后连续工作四小时(或更换待测产品型号)校准测试仪一次。 2 标准板选用:测试单晶硅组件使用单晶硅标准板;测试多晶硅组件使用多晶硅标准板。 测试120W以上(包括120W)组件:使用160W标准板校准测试; 测试50~120W(包括50W)组件:使用80W标准板校准测试; 测试30~50W(包括30W)组件:使用30W标准板校准测试; 测试30W以下组件:使用15W标准板校准测试。 3 短路电流校准允许误差:±3%。 4 每次校准后填写《组件测试仪校准记录》。 2 组件的测试: 1太阳模拟器光强均匀度测试:①太阳模拟器光强均匀度≤3%;②每周一、四校正测试一次。 2 太阳模拟器光强稳定性测试:①太阳模拟器光强稳定性≤1%;②每天测试前校正测试一次。 3电池组件测试前,需在测试室内静止放置24小时以上,然后进行测试。 .4 测试环境温度湿度:①温度:25±3℃;②湿度:20~80%;③测试室保证门窗关闭,无尘。 3组件重复测试精度:<±1%。 12.4组件电性能参数: 12.4.1国内组件:①三十六片串接:工作电压:≥16.0V;开路电压: ≥19.8V。 ②七十二片串接:工作电压:≥33.5V;开路电压: ≥42.4V。 ③六十片串接:工作电压:≥28.0V;开路电压: ≥34.0V。 ④五十四片串接:工作电压:≥25.0V;开路电压: ≥32.0V。 ⑤功率误差:±3%。 12.4.2国外组件:①三十六片串接:工作电压:≥16.8V;开路电压: ≥20.5V。 ②七十二片串接:工作电压:≥33.5V;开路电压: ≥42.4V。 ③六十片串接:工作电压:≥27.4V;开路电压: ≥34.0V。 ④五十四片串接:工作电压:≥25.0V;开路电压: ≥32.0V。 ⑤功率误差 2.0 仪器/工具/材料 2.1 所需原、辅材料:1.外观检查合格的组件 2.2 设备、工装及工具:1.组件测试仪;2.标准组件; 3.合格印章 3.0 准备工作 3.1 工作时必须穿工作衣,鞋;做好工艺卫生,用抹布清洗工作台 3.2 按《太阳能模拟器操作规范》开启并设置好组件测试仪;每班次开始生产测试前必须用标准

太阳能光伏组件遮挡问题研究

太阳能光伏组件遮挡问题研究 太阳能光伏组件遮挡问题研究 众所周知,晶体硅太阳电池组件的表面阴影、焊接不良及单体电池功率不匹配等因素是导致输出功率降低的主要原因,研究这些因素的影响不仅对制造晶体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输出降低或失效的原因。 国外曾经有人报道一些在现场用了10到15年的组件电特性已经恶化。其I-V特性曲线已经和一些普通的光伏组件差别很大,而这种变化的I-V曲线可以用来分析晶体硅太阳电池组件输出降低的原因。本文主要讨论了遮挡部分电池组件输出特性的影响,并用计算机对核过程进行了模拟。 一、模拟方法 在晶体硅太阳电池组件中,当有电池被遮挡时,组件的输出特性可以用下式表示: 这些参数估算时可以用一下参数代替:n=1.96,I0=3.86X10-5 (A),Rsh=15.29(Ω)。a=2.0x10-3,Vbr=-21.29(V),nn=3.R3=0.008. 组件中有电池被遮盖时的电路可以用图片三来表示,正常的电池和被遮盖住的电池在组建中是串联关系,因此电压V和电流I满足以下等式:

组件中电池被遮挡时的模拟电路 其中,Iph1代表组件中普通电池的光电流,Iph2代表遮挡电池产生的光电流,与等式(2)中的遮挡透过率有关系,例如,当遮挡透过率为35%时,Iph2是Iph1的0.35倍。通过解(3)-(6)式可以计算出I-V的特性。 二、实验 图2(a)和(b)是通过改变阴影透过率的情况下分别计算和实际测量的I-V 特性曲线。当组件上的一个电池用不同的透过率(一个组件由36块电池组成)时,短路电流大致变化不大。结果是透过率越低,电流随着电压的升高下降越快。另一方面,开路电压基本上相同。由图可看出:测量结果与计算的结果相吻合。

光伏组件竖横向布置不同,发电量差异大!

光伏组件竖向、横向布置不同,发电量差异大! 在光伏电站的设计中,光伏组件的放置有两种设计方案:方案一:竖向布置,如下图。 图1光伏组件竖向布置的光伏电站 方案二:横向布置,如下图。

图2光伏组件横向布置的光伏电站 根据我的了解,目前竖向布置的电站会更多一些。主要原因是,竖向布置安装方便,横向布置时,最上面的一块安装比较费劲!这就影响了施工进度。 经过与业内的多位专家探讨之后,发现一横、一竖,对发电量的影响太大了!逐步说明这个问题。 1、前后遮挡造成电站电量损失 在电站设计过程中,阵列间距是非常重要的一个参数。由于土地面积的限制,阵列间距一般只考虑冬至日6个小时不遮挡。然而,6小时之外,太阳能辐照度仍是足以发电的。从本人获得的光伏电站的

实测数据来看,大部分电站冬至日的发电时间在7小时以上,在西部甚至可以达到9个小时。(一个简单的判别方法,日照时数是辐射强 度≥120W/m2的时间长度,而辐射强度≥50W/m2时,逆变器就可以向电网供电。因此,当12月份的日照时数在6h以上时,发电时间肯定大于6h。) 结论1:我们为了减少占地面积,在早晚前后光伏方阵必然会有遮挡,造成发电量损失。 2、光伏组件都有旁路二极管 热斑效应:一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量,被遮蔽的太阳电池组件此时会发热,这就是热斑效应。 这种效应能严重的破坏太阳电池。有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。因此,旁路二极管的作用就是:当电池片出现热斑效应不能发电时,起旁路作用,让其它电池片所产生的电流从二极管流出,使太阳能发电系统继续发电,不会因为某一片电池片出现问题而产生发电电路不通的情况。 上一张60片的光伏组件的电路结构图。

组件遮挡实验

根据了解,目前竖向布置的电站会更多一些。主要原因是,竖向布置安装方便,横向布置时,最上面的一块安装比较费劲!这就影响了施工进度。 经过与业内的多位专家探讨之后,发现一横、一竖,对发电量的影响太大了!逐步说明这个问题。 1、前后遮挡造成电站电量损失 在电站设计过程中,阵列间距是非常重要的一个参数。由于土地面积的限制,阵列间距一般只考虑冬至日6个小时不遮挡。然而,6小时之外,太阳能辐照度仍是足以发电的。从本人获得的光伏电站的实测数据来看,大部分电站冬至日的发电时间在7小时以上,在西部甚至可以达到9个小时。(一个简单的判别方法,日照时数是辐射强度≥120W/m2的时间长度,而辐射强度≥50W/m2时,逆变器就可以向电网供电。因此,当12月份的日照时数在6h以上时,发电时间肯定大于6h。) 结论1:我们为了减少占地面,在早晚前后光伏方阵必然会有遮挡,造成发电量损失。 2、光伏组件都有旁路二极管 热斑效应:一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量,被遮蔽的太阳电池组件此时会发热,这就是热斑效应。 这种效应能严重的破坏太阳电池。有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。因此,旁路二极管的作用就是:当电池片出现热斑效应不能发电时,起旁路作用,让其它电池片所产生的电流从二极管流出,使太阳能发电系统继续发电,不会因为某一片电池片出现问题而产生发电电路不通的情况。 上一张60片的光伏组件的电路结构图。 图3光伏组件的电路结构图 结论2:光伏组件式需要旁路二极管的。 3、二极管在纵向遮挡和横向遮挡时的作用

光伏组件的热斑效应和试验方法

光伏组件的热斑效应和试验方法 光伏电池是将太阳光辐射能量直接转换成电能的器件。单个硅晶体光伏电池能得到的最大电压约为0.6V,最大电流约为30mA/cm2。因此光伏电池很少单个使用,而是串联或并联起来,以获得所期望的电压或电流。光伏组件正是由多个光伏电池连接和封装而成的产品,是光伏发电系统中电池方阵的基本单元。 为了达到较高转换效率,光伏组件中的单体电池须具有相似的特性。在实际使用过程中,可能出现电池裂纹或不匹配、内部连接失效、局部被遮光或弄脏等情况,导致一个或一组电池的特性与整体不谐调。失谐电池不但对组件输出没有贡献,而且会消耗其他电池产生的能量,导致局部过热。这种现象称为热斑效应。当组件被短路时,内部功率消耗最大,热斑效应也最严重。 一、热斑效应原理

当然,并不是所有的电池都可以通过调整遮光比例达到最佳阻抗匹配。完全遮光情况下,不同特性的Y电池I-V曲线如图3所示。斜率越低,表明电池的并联电阻越大。考虑(S-1)个电池串的最大输出功率点所限定的“试验界限”,根据I-V 曲线与“试验界限”的交点,把电池分为电压限制型(A类)和电流限制型(B 类)。A类电池并联电阻较大,可以通过减少遮光面积,达到最佳阻抗比配;B 类电池的并联电阻较小,完全遮光已是Y电池消耗功率最大的状态。 二、热斑耐久试验 热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。因此,IEC 61215:2005《地面用晶体硅光伏组件设计鉴定和定性》专门设置了热斑耐久试验,以考核光伏组件经受热斑加热效应的能力。 热斑耐久试验过程包括最坏情况的确定、5小时热斑试验以及试验后的诊断测量,分为以下4个步骤。 1、选定最差电池 由于受到检测时间和成本的限制,热斑耐久试验不能针对组件中的每一个电池进行。因此,正式试验之前先比较和选择热斑加热效应最显著的电池。具体方法是,在一定光照条件下,将组件短路,依次遮挡每个电池,被遮光后稳定温度最高者为最差电池片。电池温度可以用热成像仪等仪器测量。对于串联-并联- 串联连接方式的大型组件,标准允许随机选择其中30%的电池进行比较。 对于串联和串联-并联连接方式的组件,IEC61215标准给出了两种快速的方法。第一种方法是:将组件短路,不遮光,直接寻找稳定工作温度最高的电池。第二种方法是:将组件短路,依次遮挡每个电池,选择遮光后组件短路电流减少最大的电池。本文推荐采用第二种方法,这主要是考虑到测量短路电流精度较高,测量结果可以用于下一个步骤的判断,而且短路电流跟失谐电池消耗的功率有直接关系。 2、确定最坏遮光比例 选定最差电池之后,还要确定在何种遮光比例下热斑的温度最高。即用一组遮光增量为5%的一组不透明盖板,逐渐减少对该电池的遮光面积,监测电池被遮部位背面的稳定温度,看何时达到最高温度。目前最常见的电池规格有 156mm*156mm和125mm*125mm两种,因此实验室需要准备两组不透明盖板。 以上两个步骤所使用的辐射源,可以是稳态太阳模拟器或自然阳光,辐照度不低于700W/m2,不均匀度不超过±2%,瞬时稳定度在±5%以内。如果气候条件允许,可优先选择自然阳光。南方的实验室在这方面优势明显。以深圳为例,根据气象局统计(表一),年太阳辐射量平均为5225 MJ/m2,年日照时数平均为2060小时,可计算平均太阳辐射强度为705W/m2。另外,低纬度地区的太阳辐射

光伏组件中电池遮挡与伏安特性曲线变化的关系

体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输 ... 配等因素是导致输出功率降低的主要原因,研究这些因素的影响不仅对制造晶体硅太阳电池组件有指导作用,而且也有利于人们正确判断光伏发电系统输出降低或失效的原因。 国外曾经有人报道一些在现场用了10到15年的组件电特性已经恶化。其I-V特性曲线已经和一些普通的光伏组件差别很大,而这种变化的I-V曲线可以用来分析晶体硅太阳电池组件输出降低的原因。本文主要讨论了遮挡部分电池组件输出特性的影响,并用计算机对核过程进行了模拟。 一、模拟方法 在晶体硅太阳电池组件中,当有电池被遮挡时,组件的输出特性可以用下式表示: 这些参数估算时可以用一下参数代替:n=1.96,I0=3.86X10-5(A),Rsh=15.29(Ω)。a=2.0x10-3,Vbr=-21.29(V),nn=3.R3=0.008. 组件中有电池被遮盖时的电路可以用图片三来表示,正常的电池和被遮盖住的电池在组建中是串联关系,因此电压V和电流I满足以下等式:

组件中电池被遮挡时的模拟电路 其中,Iph1代表组件中普通电池的光电流,Iph2代表遮挡电池产生的光电流,与等式(2)中的遮挡透过率有关系,例如,当遮挡透过率为35%时,Iph2是Iph1的0.35倍。通过解(3)-(6)式可以计算出I-V的特性。 二、实验 图2(a)和(b)是通过改变阴影透过率的情况下分别计算和实际测量的I-V 特性曲线。当组件上的一个电池用不同的透过率(一个组件由36块电池组成)时,短路电流大致变化不大。结果是透过率越低,电流随着电压的升高下降越快。另一方面,开路电压基本上相同。由图可看出:测量结果与计算的结果相吻合。

光伏组件能力检验方式

光伏组件能力检验方式 通过观察实验室参加能力验证的表现,实验室客户、管理机构和评价机构可以了解实验室是否有能力胜任所从事的检测活动,监控实验室能力的持续状况,识别实验室之间的差异,为实验室管理提供信息。不仅如此,实验室通过参加能力验证,可以了解自身能力,将其作为实验室内部质量控制的外部补充措施,从而满足持续改进的要求。光伏实验室的检测能力与水平尚需进一步提升。为了科学评估国内光伏组件实验室的检测能力,提高检测数据的准确性,需要通过国际通行的能力验证活动来推动和提高实验室的技术和管理水平,确定和核查实验室检测能力。 一、国内外光伏相关能力验证工作 当前,在国际上常见的光伏产品能力验证计划并不多,各主要光伏生产国的国家计量机构不定期进行小型标准光伏器件的比对,其中较有影响力的一次是美国能源部组织的历时四年的PEP93国际标准太阳电池比对,全世界有10个国家的13个太阳能电池测试实验室参加,我国天津电源研究所参加了这次比对活动,并最终具有了光伏计量基准WPVS的标定资格。近几年,澳大利亚的IFMQualityServices 组织了几次光伏组件的能力验证,但因样品传递周期过长而迟迟未有结果。而一些拥有多家光伏检测实验室的国际大型认证机构,会不定

期开展光伏产品检验能力的比对。目前,在国内尚未有正式官方的针对光伏组件产品的能力验证活动,仅在检测机构中有少量的自行组织的实验室间比对活动,但国家相关主管部门充分关注光伏检测技术的发展水平。近期,国家科技部在国家级课题“碳排放和碳减排评价机构认可关键技术”中的关于低碳产品检测数据质量控制关键技术研究与示范项目中包含了对光伏组件产品能力验证技术的研究,并将作为今后开展能力验证活动的重要依据。同时,北京鉴衡认证中心(CGC)近期也正在筹备签约检测实验室的组件测试能力比对活动。 二、方案规划与设计 光伏组件产品的能力验证作为一个全新的项目,在方案设计时,需根据样品本身的特性,制定出适于开展能力验证并达到预期目的的计划。但因样品本身的复杂性,检测方法的多样性,在方案设计过程中会遇到不少困难与问题。 1.样品选择 常用光伏组件分为晶硅组件和薄膜组件两大类,聚光组件因市场化程度低暂不考虑。因晶硅组件中多晶硅组件光电性能不如单晶硅组件稳定,相对来说易破损;薄膜组件因其固有的光致衰退特性,性能随时间变化较大而不够稳定。方案采用单晶硅组件,选取由72片125

光伏组件生产四——EL检测

光伏组件生产四——EL检测太阳能电池组件缺陷检测仪——即EL测试仪是利用晶体硅的电致发光原理、利用高分辨率的CCD相机拍摄组件的近红外图像,获取并判定组件的缺陷。 EL 检测仪具有灵敏度高、检测速度快、结果直观形象等优点,是提升光伏组件品质的关键设备;红外检测可以全面掌握太阳电池内部问题,为改进生产工艺提供依据,提升产品质量,可以对问题组件进行及时返修,尽可能的降低损失。方便层压前和层压后太阳能电池组件的测试,更换不同规格的太阳能电池组件后设备能方便地调整,保证太阳能电池组件的安全。 使用EL检测仪 通过EL测试仪可以清楚的发现太阳能组件电池片上的黑斑、黑心以及组件中的裂片,包括隐裂和显裂、劣片及焊接缺陷等问题,从而及时发现生产中出现的问题,及时排除,进而改进工艺。对提高效率和稳定生产都有重要的作用,因而太阳电池电致发光测试仪被认为是太阳电池产线上的“眼睛”。 EL检查的生产工艺及注意事项 不同规格的电池片要使用不同的电流和电压,具体如下

注意事项 1.使用前确保太阳能电池组件规格是否有调整,严禁未经调整随意测试不同规格的组件。 2.太阳能电池组件在传输过程中不得随意拉动或者停止太阳能电池组件,确保人员和产品的安全。 3.在检查直流电源前,请在切断电源10分钟后再用万用表等确认进行工作。 4.禁止随意使用U盘拷贝数据,避免病毒传染,重要数据流失。 5.如一段时间不使用,应同时关闭电脑及所有电源。 6.打开直流稳压电源后,确认电源上面的数值是否符合规格。 7.请勿在暗箱内放置任何物体。 EL检测阶段常见问题及解决方法 1、破片 生产过程中由于铺设、层压操作不当导致热应力、机械应力作用不均匀都有可能出现破片现象。 2、黑芯

光伏组件常见质量问题与安装要点

光伏组件常见质量问题与安装要点 光伏组件常见的质量问题有热斑、隐裂和功率衰减。由于这些质量问题隐藏在电池板内部,或光伏电站运营一段时间后才发生,在电池板进场验收时难以识别,需借助专业设备进行检测。 热斑形成原因及检测方法 光伏组件热斑是指组件在阳光照射下,由于部分电池片受到遮挡无法工作,使得被遮盖的部分升温远远大于未被遮盖部分,致使温度过高出现烧坏的暗斑。光伏组件热斑的形成主要由两个内在因素构成,即内阻和电池片自身暗电流。 热斑耐久试验是为确定太阳电池组件承受热斑加热效应能力的检测试验。通过合理的时间和过程对太阳电池组件进行检测,用以表明太阳电池能够在规定的条件下长期使用。热斑检测可采用红外线热像仪进行检测,红外线热像仪可利用热成像技术,以可见热图显示被测目标温度及其分布。 隐裂形成原因及检测方法 隐裂是指电池片中出现细小裂纹,电池片的隐裂会加速电池片功率衰减,影响组件的正常使用寿命,同时电池片的隐裂会在机械载荷下扩大,有可能导致开路性破坏,隐裂还可能会导致热斑效应。 隐裂的产生是由于多方面原因共同作用造成的,组件受力不均匀,或在运输、倒运过程中剧烈的抖动都有可能造成电池片的隐裂。光伏组件在出厂前会进行EL 成像检测,所使用的仪器为EL 检测仪。该仪器利用晶体硅的电致发光原理,利用高分辨率的CCD 相机拍摄组件的近红外图像,获取并判定组件的缺陷。EL 检测仪能够检测太阳能电池组件有无隐裂、碎片、虚焊、断栅及不同转换效率单片电池异常现象。 功率衰减分类及检测方法 光伏组件功率衰减是指随着光照时间的增长,组件输出功率逐渐下降的现象。光伏组件的功率衰减现象大致可分为三类:第一类,由于破坏性因素导致的组件功率衰减;第二类,组件初始的光致衰减;第三类,组件的老化衰减。其中,第一类是在光伏组件安装过程中可控制的衰减,如加强光伏组件卸车、倒运、安装质量控制可降低组件电池片隐裂、碎裂出现的概率等。第二类、第三类是光伏组件生产过程中亟需解决的工艺问题。光伏组件功率衰减测试可通过光伏组件I-V 特性曲线测试仪完成。 光伏组件安装质量控制 光伏组件安装质量控制是对光伏组件卸车、倒运、安装全过程的管控,通过科学的管理有效降低组件人为损坏概率,减少隐裂发生的风险。 光伏组件卸车 组件运输车辆抵达指定卸车地点后,首先需确认箱件数量与货单是否一致,检查组件外包装有无变形、碰撞、损坏、划痕等,并做好相关记录。卸车前对卸车人员进行安全交底,并检查卸车人员精神状态是否良好,劳保用品(安全帽、反光背心、劳保手套等)是否配备齐全;检查起重机械是否工作正常; 检查吊带、钢丝绳有无损伤,并严禁使用承载力不满足要求或出现损伤的吊带和钢丝绳。光伏组件卸车讲究“慢”和“稳”,组件宜放置在平坦、坚实的地面上,严禁歪斜,防止倾倒,且光伏组件放置区域不影响道路交通。 光伏组件倒运 光伏组件倒运是指通过机械设备或运输车辆将整箱光伏组件由光伏组件集中放置区域运输至组件安装地点。光伏组件倒运需将车速控制在5km/h 之内,防止组件因颠簸、碰撞出现碎裂。组件宜放置在靠近光伏支架侧的平整地面上,并方便道路畅通、车辆通行。施工现场已开箱光伏组件需保证正面朝上平放,底部垫有木制托盘或电池板包装物,严禁斜放或悬空,严禁将电池板引出线及插头挤压扯拽,严禁将组件背面直接暴露在太阳光下。 光伏组件安装

光伏组件安全鉴定测试规范

XXXXX有限公司光伏组件安全鉴定测试规范

1.目的 为了合理的验证光伏组件安全性能,以确保必要的测试项目得到统一和规定,进而保证产品质量,满足产品设计需求。 2.适用范围 本规范没有涉及海上和交通工具应用时的特殊要求,也不适用于集成了交/直流逆变器的组件。本规范的试验程序和通过判据为了发现由误用应用等级,不正确的使用方法或组件内部元件破碎而引起的火灾、电击和人身伤害的隐患。 3.术语定义

光伏组件的应用等级定义如下: A级:公众可接近的、危险电压、危险功率应用 通过本等级鉴定的组件可用于高于直流50V或240W以上的系统,同时这些系统是公众有可能接触或接近的。通过本标准和IEC61730-2适用于本应用等级的安全鉴定的组件被认为满足安全等级II的要求。 B级:限制接近的、危险电压、危险功率应用 通过本等级鉴定的组件可用于以围栏或特定区划限制公众接近的系统。通过本应用等级的组件只提供了基本的绝缘保护,这类组件被认为满足安全等级0的要求。 C级:限定电压、限定功率应用 通过本等级鉴定的组件只能用于低于直流50V和240W的系统,这些系统公众是有可能接触和接近的。通过本标准和IEC61730-2适用于本应用等级的安全鉴定的组件被认为满足安全等级III的要求。 注:安全等级在IEC61140中规定。 4.引用标准 IEC 61646,地面用薄膜光伏组件设计鉴定和定型 5.测试内容 组件应进行的试验由IEC61730-1确定的应用等级决定,下表列出各等级所需的试验项目。试验的顺序应根据测试序列进行。 基于应用等级的试验要求

5.1外观检查MST01 5.1.1目的

光伏组件故障分析..

一.接线盒 光伏组件接线盒的主要作用是连接和保护太阳能光伏组件,传导光伏组件所产生的电 流。光伏组件接线盒作为太阳能电池组件的一个重要部件,是集电气设计、机械设计和材料 应用于一体的综合性产品,为用户提供了太阳能光伏组件的组合连接方案。 目前,中国组件制造商生产的组件很多都存在不少的质量问题和隐患,而其中很大一部 分组件质量问题来自于接线盒自身的设计和品质。作为光伏组件制造商的配套企业,接线盒 制造商不仅需要对组件制造商负责,更需要对终端客户负责,特别是对使用过程中人身安全 的保护。所以,优化接线盒结构设计、提高质量是所有接线盒制造企业的首要任务。 常州天华新能源科技有限公司(简称“天华新能源”)下属常州华阳光伏检测技术有限 公司(简称“华阳检测”,于 2009 年 12 月获得了 CNAS 实验室认可,认可范围包括光伏组) 件、光伏材料共 119 项检测能力。公司自 2008 年开始进行接线盒检测(依据标准:VDE 0126-5:2008),讫今共完成 30 家接线盒供应商、50 多款接线盒的

检测和质量分析,获得了

大量的检测数据。 结合光伏组件户外使用的实际情况,我们总结出目前接线盒常见失败项目主要有:IP65 防冲水测试、结构检查、拉扭力试验、湿漏电试验、二极管温升试验、环境试验、750℃灼 热丝试验。 接线盒测试常见失败项目统计图:

一、户外组件因接线盒问题引起的故障图片 接线盒引线端子烧毁 接线盒烧毁 引起组件背板烧焦 组件碎裂 二、接线盒在认证测试中常见失败项目及原因分析 1.接线盒 IP65 防冲水测试 防水性能是接线盒性能的重要指标。认证测试中,先进行老化预处理测试,然后进行防 冲水测试,再通过外观结构检查和工频耐压测试进行评判。测试能否顺利通过,取决于接线 盒的密封保护程度,而接线盒的密封保护直接影响到成品组件的防触电保护和漏电防护的等 级。就目前常规构造的接线盒而言,其设计和材料的缺陷已在认证测试中显露无疑。 图 1 IP65 防冲水测试测试图片

相关文档
相关文档 最新文档