文档库 最新最全的文档下载
当前位置:文档库 › 3多自由度体系主振型的正交性和主振型矩阵

3多自由度体系主振型的正交性和主振型矩阵

3多自由度体系主振型的正交性和主振型矩阵
3多自由度体系主振型的正交性和主振型矩阵

10-6 多自由度体系主振型的正交性和主振型矩阵1. 主振型的正交性

正交的概念:两个向量,其中,

,称为正交;矢量的概念。

正交关系有许多用途,详见线性代数的有关部分。

这里我们讨论主振型的正交性:

以两个自由度体系为例:

功的互等定理(Betti’s law)

即:

故有

上式可推广到一般情况

第一个正交关系为:

证明:

由特征方程有

将上式两边分别乘以得

对其中任一式转置并相减得

如果

同理也可推得

(也可直接利用关于质量矩阵得正交性得到。)

对k=L 时,我们定义

M k , K k分别叫做第k个主振型相应得广义质量和广义刚度。

由特征方程有:

即:

由此得:

这就是根据广义刚度Kk和广义质量Mk来求频率Wk的公式。这个公式是单自由度体系频率公式的推广。

正交关系的利用:

判断主振型的形状是否正确;

在振型分解法中的应用。

例17-8讲解重点正交性的验算

2*. 主振型矩阵

如果将n个彼此正交的主振型向量组成一个方阵,即

这个方阵称为主振型矩阵,它的转置矩阵为

根据主振型向量的两个正交关系,可以导出主振型矩阵[Y]的两个性质,即[Y]T[M][Y] 和[Y]T[K][Y] 都应是对角矩阵。下面证明:

[Y]T[M][Y]=

上式中的对角线元素就是广义质量M1,M2,……M n, 由正交关系知其余元素均为零,故[Y]T[M][Y]为对角矩阵。即

[Y]T[M][Y]=

对角矩阵[M*]称为广义质量矩阵。

同样可得

其中Ki为广义刚度,对角矩阵[K*]叫做广义刚度矩阵。在后续章节中,我们将利用这一性质将多自由度体系的振动方程变为简单的形式。

模态振型固有频率基本理论

模态分析技术发展到今天已趋成熟,特别是线性模态理论(通常所说的模态分析均是指线性模态分析)方面的研究已日臻完善,但在工程应用方面还有不少工作可做。首先是如何提高模态分析的精度,扩大应用范围。增加模态分析的信息量是提高分析精度的关键,单靠增加传感器的测点数目很难实现,目前提出的一种激光扫描方法是大大增加测点数的有效办法,测点数目的增加随之而来的是增大数据采集与分析系统的容量及提高分析处理速度,在测试方法、数据采集与分析方面还有不少研究工作可做。对复杂结构空间模态的测量分析、频响函数的耦合、高频模态检测、抗噪声干扰……等等方面的研究尚需进一步开展。模态分析当前的一个重要发展趋势是由线性向非线性问题方向发展。非线性模态的概念早在1960年就由Rosenberg提出,虽有不少学者对非线性模态理论进行了研究,但由于非线性问题本身的复杂性及当时工程实践中的非线性问题并示引起重视,非线性模态分析的发展受到限制。近年来在工程中的非线性问题日益突出,因此非线性模态分析亦日益受到人们的重视。最近已逐步形成了所谓非线性模态动力学。关于非线性模态的正交性、解耦性、稳定性、模态的分叉、渗透等问题是当前研究的重点。在非线性建模理论与参数辨识方面的研究工作亦是当今研究的热点。非线性系统物理参数的识别、载荷识别方面的研究亦已开始。展望未来,模态分析与试验技术仍将以新的速度,新的内容向前发展。 模态振型是一个相对量,通常是一个列向量,二维以上的系统其模态振型不是一个数。一个数对应单模态,其数值无意义。某模态频率下的模态振型反映了在该模态频率下各自由度的相对位移的比值。如果系统的初始位移恰好等于模态频率下的模态振型(或与之成比例),则此时系统的自由响应中只会出现该模态频率。感谢欧阳中华教授的指点,我现在觉得自己当初确实对模态振型概念不清楚。模态振型是系统固有的振动形态,线性响应是振型线性叠加的结果,但振型之间是独立不耦合的。振型是个相对量,所以就有了多种振型归一划的方法。振型是个很重要的固有特征,正如楼上所说用于验证固有频率。 我觉得振型在判别你计算固有频率正确性是非常有用的,比如,通过有限元计算得到了模型的前十阶固有频率,试验模态分析也得到了低阶的固有频率,假设计算的某阶固有频率与试验的某阶固有频率非常接近,但是并不能马上说明他们是同一阶的,需要通过振型来判断。 其他的不知道,但是之所以引入模态的概念,之所以从物理坐标变换到模态坐标就是为了解耦,就是为了让其正交,这样方程才能解出来。从能量角度说,这样各个振型之间就没有能量的交换。 从数学上看,对响应函数级数展开后,其中的各项构成各阶模态,而级数展开形

酉矩阵

正交矩阵、正规矩阵和酉矩阵 在数学中,正规矩阵是与自己的共轭转置交换的复系数方块矩阵,也就是说,满足 其中是的共轭转置。 如果是实系数矩阵,那么条件简化为其中是的转置矩阵。 矩阵的正规性是检验矩阵是否可对角化的一个简便方法:任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后变为对角矩阵的矩阵都是正规矩阵。 在复系数矩阵中,所有的酉矩阵、埃尔米特矩阵和斜埃尔米特矩阵都是正规的。同理,在实系数矩阵中,所有的正交矩阵、对称矩阵和斜对称矩阵都是正规的。两个正规矩阵的乘积也不一定是正规矩阵 酉矩阵 n阶复方阵U的n个列向量是U空间的一个标准正交基,则U是酉矩阵(Unitary Matrix)。 一个简单的充分必要判别准则是: 方阵U的共扼转置乘以U等于单位阵,则U是酉矩阵。即酉矩阵的逆矩阵与其伴随矩阵相等。 酉方阵在量子力学中有着重要的应用。酉等价是标准正交基到标准正交基的特殊基变换。

若一 n 行 n 列的复矩阵U满足 其中为n阶单位矩阵,为U的共轭转置,为酉矩阵或译幺正矩阵。即,矩阵U为酉矩阵,当且仅当其共轭转置为其逆矩阵: 。 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 幺正矩阵U不改变两个复向量的内积: 若为n阶方阵,则下列条件等价: 1.是酉矩阵 2.是酉矩阵 3.的列向量构成内积空间C n上的一组正交基 4.的行向量构成内积空间C n上的一组正交基 酉矩阵的特征值都是绝对值为1的复数,即分布在复平面的单位圆上,因此酉矩阵行列式的值也为1。 酉矩阵是正规矩阵,由谱定理知,幺正酉矩阵U可被分解为 其中V是酉矩阵,Σ是主对角线上元素绝对值为1的对角阵。 对任意n,所有n阶酉矩阵的集合关于矩阵乘法构成一个群。

结构力学习题集9-结构动力计算

第九章 结构的动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2(a)(b) 6、单 自 由 度 体 系 如 图 ,W =98.kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001.m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 ,EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? &&&&()

二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 : A .()()()y l Ps in my EI =-77683θ t &&/; B .()()my EI y l Ps in &&/+=19273θ t ; C .()()my EI y l Ps in &&/+=38473θ t ; D .()()()y l Ps in my EI =-7963θ t &&/ 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A . () 76873EI ml k m //+; B .()76873EI ml k m //-; C . ()76873 EI ml k m //-; D .()76873 EI ml k m //+ 。

4.2多自由度系统的固有频率与主振型

4.2 多自由度系统的固有频率与主振型 一、固有频率和主振型 上节导出了多自由度系统的自由振动微分方程: 以及 考虑到系统的主振动是简谐振动,可设它为: (4-10) 将它分别代入(4-5)与(4-7)式,可得如下主振型方程 (4-11)以及 (4-12)如果引入系统矩阵的概念,可以将式(4-11)与(4-12)化成具有相同的形式,对(4-11)式两端乘以,可得 (4-13)这时,设系统矩阵为 (4-14)且令,则主振型方程(4-11)可化为 (4-15) 再设另一个形式的系统矩阵为 (4-16)且令,则主振型方程(4-12)可化为 (4-17)这样,主振型方程(4-15)与(4-17)就有着相同的形式。 注意到系统的刚度矩阵与柔度矩阵之间存在着互逆关系,即有

或 利用矩阵乘积的求逆公式,可知上述两种系统矩阵之间有着互逆关系: 还应该指出,尽管系统的刚度矩阵、柔度矩阵以及质量矩阵一般都是对称矩阵,但是其系统矩阵和一般已不再是对称矩阵。 现在来看系统固有频率与主振型问题。鉴于方程(4-15)与(4-17)属于同一形式,故只需讨论其中之一。 方程(4-15)可改写为 (4-18) 它有非零解的条件为 (4-19) (4-19)式称为系统的频率方程或特征方程。对它展开的结果,可得一个关于的次代数方程: (4-20) 它的个根成为系统的特征根,亦称矩阵的特征值。特征值与系统固有频率之间有如下关系: (4-21) 一般说来,次代数方程的个根,可以是单根,也可以是重根;可以是实数,也可以是复数。但是,在我们所考虑的情形中,由于系统质量矩阵是正定的实对称阵,刚度矩阵是正定的或半正定的,故所有特征值都是实数,并且是正数或零。事实上,由正定与半正定的条件,对于任何非零的,有 (4-22) 现对系统主振型方程 两端前乘以,得 考虑到条件式(4-22),自然就得出上述结论。 通常,刚度矩阵为正定(或半正定)的系统,称为正定系统(或半正定系统)。所以,上述结论可改述为:正定系统的特征值都是正的,而半正定系统的特征值是正数或零。

正交设计助手II 3.1 软件介绍及使用实例说明

正交设计助手II 3.1 软件介绍及使用实例说明 一、软件各模块介绍 1.软件简介 正交设计助手II 3.1 是一款针对正交实验设计及结果分析而制作的专业软件。正交设计方法是我们常用的实验设计方法,它让我们以较少的实验次数得到科学的实验结论。但是我们经常不得不重复一些机械的工作,比如填实验安排表,计算各个水平的均值等等。正交设计助手可以帮助您完成这些繁琐的工作。此款软件支持混合水平实验,支持结果输出到RTF、CVS、HTML页面和直接打印。 2.创建与管理工程 打开软件后,在文件菜单项下可以“新建工程”或“打开工程”,工程文件以lat作为扩展名。如下图所示 注意:在"实验项目树"区域,右键点击当前的工程名,可修改工程名称。 3.设计实验 新建实验:在当前工程文件中新增一个实验项目,一个工程可包含多个实验项目。 每个实验项目包括有 (1)实验名称、实验描述(实验编号及简要说明)、选用的正交表类型(是标准正交表还是混合水平表) (2)选用的正交表(如L27_3_13或x_L2-3_8等) (3)表头设计结果(每个实验因素的名称、所在列及各水平的描述)。 单击实验—新建实验,如下图所示

该软件支持混合水平实验设计,你将可以选择一个更为合适您的实验的混合水平表(使用工具blend.exe - 混合水平表编辑器 - 改造系统提供的标准正交表)。如果是混合水平实验,要注意每列所能支持的最大水平数。 注意:右键点击当前的实验名称,可以修改实验信息或删除当前实验。 4.分析实验结果 (1)直观分析:根据所选用的正交表对当前实验数据作出基本的直观分析表。 (2)因素指标:以直观分析表的结果,作出当前的因素指标图(即效应曲线图)。 (3)交互作用:选择两个因素进行交互作用分析,作出交互作用表。 (4)方差分析:设定数据中的误差所在列,并选择所要采用的F检验临界值表。计算出偏差平方和(S值)和F比。并给出显著性指标。 注意:如果实验数据未正确输入,系统不能进行分析操作。

模态振型固有频率基本理论

模态振型是一个相对量,通常是一个列向量,二维以上地系统其模态振型不是一个数.一个数对应单模态,其数值无意义.某模态频率下地模态振型反映了在该模态频率下各自由度地相对位移地比值.如果系统地初始位移恰好等于模态频率下地模态振型(或与之成比例),则此时系统地自由响应中只会出现该模态频率. 感谢欧阳中华教授地指点,我现在觉得自己当初确实对模态振型概念不清楚.模态振型是系统固有地振动形态,线性响应是振型线性叠加地结果,但振型之间是独立不耦合地.振型是个相对量,所以就有了多种振型归一划地方法.振型是个很重要地固有特征,正如楼上所说用于验证固有频率. 文档来自于网络搜索 我觉得振型在判别你计算固有频率正确性是非常有用地,比如,通过有限元计算得到了模型地前十阶固有频率,试验模态分析也得到了低阶地固有频率,假设计算地某阶固有频率与试验地某阶固有频率非常接近,但是并不能马上说明他们是同一阶地,需要通过振型来判断. 文档来自于网络搜索 其他地不知道,但是之所以引入模态地概念,之所以从物理坐标变换到模态坐标就是为了解耦,就是为了让其正交,这样方程才能解出来. 从能量角度说,这样各个振型之间就没有能量地交换. 文档来自于网络搜索 从数学上看,对响应函数级数展开后,其中地各项构成各阶模态,而级数展开形式本身要求各个基函数是相互正交地,也就是说:其实是把响应函数放到了一个函数空间里,各个展开项系数相当于这个响应在此函数空间里地坐标.文档来自于网络搜索 因为个自由度以上地系统往往都有耦合现象,例如方程*^^*中地、不同时为对角阵.但是从求解地角度来说,我们又希望其中地每个方程都是独立地,那样我们就可以像求解单自由度系统一样求解.我们就想能否选到合适地坐标系,使得运动完全不耦合,即系统质量矩阵和刚度矩阵同时为对角矩阵,称这样地坐标系为主坐标系,而模态坐标正是我们要寻找地主坐标.固有振型地正交性是指(以自由度为例),第一阶固有振动引起地作用力在第二阶固有振动上所做地功为零,即两种固有振动间无弹性势能地交换.同时也可证明振型地各阶导数间也是正交地. 文档来自于网络搜索 就像不同地坐标系下,对同一运动系统地表述会很不一样,表述同一运动系统地振型模态也可以有很多物理量地坐标系,当然其中很多都是很复杂地,对解决实际问题是没有实际意义和帮助地,只有那个特殊地正交状态地模态坐标,才是最简单最有用地坐标,因为它能把系统解耦,,这个特殊地坐标称之为主坐标,对应主振型,这个状态可以把方程解开,把问题解决掉,,文档来自于网络搜索 各阶模态是互相正交是为了解耦,使问题最简化.类似向量地分解,比方说,一个平面内力向量地分解方式有很多种,但采用直角正交分解最方便. 文档来自于网络搜索 主要从以后地解方程组时候要解耦考虑吧 模态正交,具体表现在模态振型存在正交,请注意“存在”,而这种正交是线性系统模态地基本特性,准确地说是固有特性,正因为存在这种正交特性,带来了运算时地广义坐标下地耦合矩阵变为模态坐标中.文档来自于网络搜索 地解耦,计算变得简单. 注:(对上段话地个人理解:线性系统具有正交特性,人们利用线性系统地正交特性,对线性模态进行解耦,使问题简化.)文档来自于网络搜索 .任一阶主振型地惯性力在另一阶主振型作为虚位移上所做地虚功之和为零 .任一阶主振型地惯性力只在各自地振型上做功,在另外地主振型上不做功 这是正交相应地物理解释,是模态振型正交地物理形式,所以不能用物理含义去证明其相应地数学表达. 上面模态正交地数学和物理形式和概念有解释清楚了,那么,为什么会正交呢?

正交试验设计方法在试验设计中的应用_郝行舟

正交试验设计方法在试验设计中的应用  来稿日期:1999-10-06 郝行舟 李春生 (南阳市公路交通规划勘察设计院) 摘要 本文以三因素三水平的正交试验设计为例,说明正交表的使用方法及正交试验设计方法在试验设计中的应用。并通过一个具体实例向大家介绍正交试验设计的原理、优点及试验结果处理的方法。 关键词 正交试验设计 应用 正交表 优选法 Orthogonal Test Method ′s Applications on Testing Designs Hao X ingzhou (N anya ng H ighw ay Pla n&Reconnaissance Institute ) Abstract This paper ,using 3factor s a nd 3dim ensio ns o r tho go nal test a s a n ex ample ,sho w ho w to use the o rt-hog o nal test table and o rthog o na l test me tho d ′s applica tions on testing desig ns .It a lso g iv e an exa mple to sho w the de -tails o f principle ,adv antag es ,dealing with testing results o f or thog onal test desig ns . Key words  O r tho g onal test desig ns Applica tion O r tho go na l test table O ptimum seeking metho d 1 引言 如何科学地设计试验,以获得高可靠性的试验数 据,这是我们工程技术人员在试验设计中最需要解决的问题。试验安排得好,试验次数少且能获得满意的结果,多快好省,事半功倍,反之则事倍功半。 举例来说:若影响质量指标的因素有A 、B 、C 3种因素,每个因素各取3个水平,分别为A 1、A 2、A 3、B1、B2、B3、C1、C2、C3.(所谓因素的水平即该因素在其试验范围内取具有代表性的“值”,三水平就是有代表性的3个“值”,水平有时不限于数值,它可以是原料的种类或操作方式等等)。按传统的方法采用单因素轮换法安排试验:譬如因素B 固定在B1水平上,因素C 固定在C 1水平上,试验安排为B 1C 1A1 A2A3 ,如果试验结果发现在A3水平较好,则安排试验A3C1 B1B2B3 ,这时发现B 2较好,以后就安排A 3B 2 C1 C2C3 ,如果发现C 3较好,那么A3B2C3为最佳条件,这种试验安排的缺点是:①考察的因素水平仅局限于局部区域,不能全面地反映因素的全面情况,找不出影响质量的主要因素,无 法再在三水平外继续找更好的配比组合(水平)。②如果不进行重复试验,试验误差就估计不出来,因此无法确定最佳分析条件的精度。当然,我们可以用全面试验法按它们所有可能组合的情况做试验,则需做33=27次试验,对各因素进行全面考虑,从中选出最优化条件,但这种作法很不经济,有时是不可能实现的。例如安排5个因素的3水平的全面试验需做35=243次,这在人力、物力、时间上是几乎不可能执行的。因此,我们很自然地会提出下列问题:如何从大量的试验点中挑选适量的具有代表性、典型性的点呢?特别是怎样选择试验次数尽量少而又有代表性的试验呢?利用根据数学原理制作好的规格化表——正交表来设计试验不失为一种上策,这种设计方法被称为正交最优化,即正交试验设计方法。事实上,正交最优化方法的优点不仅表现在试验的设计上,更表现在对试验结果的处理上。 2 正交试验设计方法简介 还以前面提到过的三因素三水平的项目为例,是否同样做9次试验,可以完全克服单因素轮换法安排试验的诸多缺点,且能选出影响质量的最主要因素,便于进一步试验呢?回答是肯定的,这便是利用正交表,进行正交试验设计。表1为三水平正交表中的一种,可以在本例中应用。 26 第19卷 第6期河南交通科技 V ol.19 N o.61999年12月SCIEN CE AN D T ECHN O LO G Y O F HEN AN CO M M UN ICA T IO N Dec.1999

酉矩阵和正交矩阵的性质和应用

正交矩阵与酉矩阵的性质和应用 0 前言 (1) 1 欧式空间和正交矩阵 (2) 1.1 欧式空间 (2) 1.2 正交矩阵的定义和性质 (2) 1.2.1 正交矩阵的定义和判定 (2) 1.2.2 正交矩阵的性质 (3) 2正交变换的定义和性质 (12) 2.1正交变换定义的探讨 (12) 2.2正交变换的判定 (14) 2.3正交变换的性质 (15) 3正交矩阵的应用 (17) 3.1正交矩阵在线性代数中的应用 (17) 3.2利用正交矩阵化二次型为标准形 (22) 3.2.1 对称矩阵可对角化的相关理论证明 (22) 3.2.2 对称矩阵对角化的具体方法及应用举例 (23) 3.2.3利用正交矩阵化简直角坐标系下的二次曲面方程 (25) 3.3正交矩阵在矩阵分解中的作用 (26) 3.4正交矩阵在方程组的求解中的应用 (35) 4 酉空间和酉矩阵 (38) 4.1 酉空间 (38) 4.1.1 酉空间的定义 (38) 4.1.2 酉空间的重要结论 (38) 4.2 酉矩阵 (40) 4.2.1 酉矩阵的定义 (40) 4.2.2 酉矩阵的性质 (40) 5酉矩阵的应用 (48) 5.1酉矩阵在矩阵的分解中的应用 (48) 5.2 利用酉矩阵化正规矩阵为对角形矩阵 (54) 6 正交矩阵与酉矩阵 (57) 7结论 (60) 参考文献 (62) 致谢 (63)

0前言 正交矩阵是一类特殊的实方阵,酉矩阵是一类重要的复矩阵,它们的一些特殊性质,使得它在不同的领域都有着广泛的应用,也推动了其它学科的发展. 随着科学技术的迅速发展,特别是计算机的广泛应用,矩阵问题特别是特殊矩阵的性质及其构造越来越受到科学工作者以及工程人员的重视.它不仅局限于一个数学分支,而且许多理工方法和技术的发展就是矩阵理论的创造的应用与推广的结果. 在矩阵理论的研究中,正交矩阵与酉矩阵在线性代数、优化理论、计算方法等方法都占有重要的地位.戴立辉等(2002)对正交矩阵进行了详细的研究,得到了正交矩阵的若干性质;2005年,雷纪刚在《矩阵理论与应用》中给出了正交矩阵和酉矩阵的关系并证明了酉矩阵就是等距变换;2006年,苏育才在《矩阵理论》中介绍了酉矩阵的概念的推广和酉矩阵的一系列性质;2008年,吴险峰在《正交矩阵的进一步探究》中给出了正交矩阵和酉矩阵的一些性质定理,这些都为正交矩阵和酉矩阵的应用奠定了基础. 在矩阵理论中,经常利用矩阵来描述变换.在实空间中正交变换保持度量不变,而正交变换中对应的变换矩阵就是正交矩阵,所以对正交矩阵的研究就显得格外重要.同样道理,想要得到复空间中保持度量不变的线性变换,就应该对正交变换进行推广,将其推广到复数域上,那对应的正交矩阵相应的也推广到复数域──酉矩阵.下面将通过矩阵理论的深入研究,对正交矩阵与酉矩阵进行比较,得到了酉矩阵的若干结果.

第九章矩阵位移法习题集

第九章 矩阵位移法 【练习题】 9-1 是非题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 9-2 选择题: 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。 3、单元i j 在图示两种坐标系中的刚度矩阵相比: A .完全相同; B .第2、3、5、6行(列)等值异号; C .第2、5行(列)等值异号; D .第3、6行(列)等值异号。

结构动力学

结构动力学试题 2016年4月 重庆交通大学结构工程硕士研究生考试 1.试述结构动力问题和静力问题的主要区别(10分) 答:结构静力学相比,动力学的复杂性表现在: (1)动力问题具有随时间而变化的性质; (2)数学解答不是单一的数值,而是时间的函数; (3)惯性力是结构内部弹性力所平衡的全部荷载的一个重要部分; (4)引入惯性力后涉及到二阶微分方程的求解; (5)需考虑结构本身的动力特性:刚度分布、质量分布、阻尼特性分布的影响。 2.什么是结构动力系统的阻尼?一般结构系统的阻尼有何特性?在结构分析中 阻尼问题的处理方法有哪些?(20分) 答:(1)结构在震动过程中的能量耗散作用称为阻尼; (2)阻尼的特性:a、阻尼耗能与质量(反映附属部分大小)和刚度(反映位移大小)有关。b、难以采用精确的理论分析方法; (3)对于多自由度体系:在结构动力分析中,通常从系统响应这个角度来考虑阻尼,而且能量的损耗是由外界激励来平衡的。一个振动系统可能存在多种不同类型的阻尼,一般来说,要用数学的方法来精确描述阻尼目前是比较困难的。因此,人们根据经验提出了一些简化模型,常用的阻尼模型有黏性阻尼和结构阻尼。黏性阻尼系统:黏性阻尼的特点是阻尼力和运动速度成真封闭。 在用振型叠加法进行分析时,能否将联立的运动方程化为解耦的一系列单自由度运动方程,将取决于阻尼矩阵的性质,即结构的振型是否关于阻尼阵满足正交条件。如果满足阻尼阵的正交条件,则采用振型叠加法分析时,就可以把多自由度体系的动力反应问题化为一系列单自由度问题求解;如果不满足阻尼阵的正交条件,则对位移向量用振型展开后,关于振型坐标的运动方程成为耦联的,必须联立求解,与解耦方程相比,增加了难度和计算量。 3.试述多自由度体系振型矩阵关于质量矩阵和刚度矩阵的正交性的意义,并写出广义正交性的表达式且加以证明。(20分) 答:(1)由振型关于质量、刚度正交性公式可知,i振型上的惯性力在j振型上作的虚功为0。由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动。这说明各个主振型都能单独出现,彼此线性无关。这就是振型正交的物理意义。一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕. (2)振型正交性的证明在Clough书中应用的是Betti互易定理,就像D’Alember 原理一样考虑了惯性力,是运动学中功的互等定理。实际振型正交性的证明可

正交实验举例20160729

回首页 正交试验设计法 正交试验设计法的基本思想 正交表 正交表试验方案的设计 试验数据的直观分析 正交试验的方差分析 常用正交表 1.正交试验设计法的基本思想 正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。它简单易行,计算表格化,使用者能够迅速掌握。下边通过一个例子来说明正交试验设计法的基本想法。 [例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围: A:80-90℃ B:90-150分钟 C:5-7% 试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。试制定试验方案。 这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A:Al=80℃,A2=85℃,A3=90℃ B:Bl=90分,B2=120分,B3=150分 C:Cl=5%,C2=6%,C3=7% 当然,在正交试验设计中,因子可以是定量的,也可以是定性的。而定量因子各水平间的距离可以相等,也可以不相等。 这个三因子三水平的条件试验,通常有两 种试验进行方法: (Ⅰ)取三因子所有水平之间的组合,即 AlBlC1,A1BlC2,A1B2C1,……,A3B3C3,

共有 33=27次 试验。用图表示就是图1 立方体的27个节点。这种试验法叫做全面试验法。 全面试验对各因子与指标间的关系剖析得比较清楚。但试验次数太多。特别是当因子数目多,每个因子的水平数目也多时。试验量大得惊人。如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56=15625次试验,这实际上是不可能实现的。如果应用正交实验法,只做25次试验就行了。而且在某种意义上讲,这25次试验代表了15625次试验。 图1 全面试验法取点.......... (Ⅱ)简单对比法,即变化一个因素而固定其他因素,如首先固定B、C于Bl、Cl,使A变化之: ↗A1 B1C1 →A2 ↘A3 (好结果) 如得出结果A3最好,则固定A于A3,C还是Cl,使B变化之: ↗B1 A3C1 →B2 (好结果) ↘B3 得出结果以B2为最好,则固定B于B2,A于A3,使C变化之: ↗C1 A3B2→C2 (好结果) ↘C3 试验结果以C2最好。于是就认为最好的工艺条件是A3B2C2。 这种方法一般也有一定的效果,但缺点很多。首先这种方法的选点代表性很差,如按上述方法进行试验,试验点完全分布在一个角上,而在一个很大的范围内没有选点。因此这种试验方法不全面,所选的工艺条件A3B2C2不一定是27个组合中最好的。其次,用这种方法比较条件好坏时,是把单个的试验数据拿来,进行数值上的简单比较,而试验数据中必然要包含着误差成分,所以单个数据的简单比较不能剔除误差的干扰,必然造成结论的不稳定。 简单对比法的最大优点就是试验次数少,例如六因子五水平试验,在不重复时,只用5+(6-1)×(5-1)=5+5×4=25次试验就可以了。 考虑兼顾这两种试验方法的优点,从全面试 验的点中选择具有典型性、代表性的点,使 试验点在试验范围内分布得很均匀,能反映 全面情况。但我们又希望试验点尽量地少, 为此还要具体考虑一些问题。 如上例,对应于A有Al、A2、A3三个平面, 对应于B、C也各有三个平面,共九个平面。 则这九个平面上的试验点都应当一样多,即 对每个因子的每个水平都要同等看待。具体

正交矩阵和酉矩阵对比

在矩阵理论中,经常利用矩阵来描述变换.在实空间中正交变换保持度量不变,而正交变换中对应的变换矩阵就是正交矩阵,所以对正交矩阵的研究就显得格外重要.同样道理,想要得到复空间中保持度量不变的线性变换,就应该对正交变换进行推广,将其推广到复数域上,那对应的正交矩阵相应的也推广到复数域上就是酉矩阵.本文通过矩阵理论的研究,对正交矩阵与酉矩阵进行比较,得到了酉矩阵的若干结果. 正交矩阵是一类重要的实矩阵,由于它的一些特殊性质,使得它在不同的领域都有着广泛的作用,也推动了其它学科的发展.本文从矩阵理论的角度,探讨正交矩阵的常用性质以及正交矩阵在数学方面的一些应用。 以酉矩阵的定义为基础,对酉矩阵的性质等进行研究,通过对这些问题的研讨,为酉矩阵的构造奠定了基础.在实际应用方面,若要应用酉矩阵解决实际问题,快速地构造一个酉矩阵就显得及其重要. 本文对酉矩阵的性质及构造展开研究. 根据矩阵理论, 通过查阅图书、电子书库, 以及对以前的知识进行归纳总结, 深入理解, 进行深入的研究, 从而对酉矩阵有了新的认识, 总结一些结论. 在代数性质方面包括:酉矩阵的特征根、对角化、判断方法及酉矩阵的等价条件等. 在运算性质方面包括:酉矩阵的逆、转置矩阵、方幂、数乘、矩阵乘、伴随矩阵等是否仍为酉矩阵. 在酉矩阵的构造方面:以酉矩阵的定义为基础, 对酉矩阵的性质等进行研究, 通过对这些问题的探讨, 为酉矩阵的构造奠定了基础. 在实际应用方面, 若要应用酉矩阵解决实际问题, 快速地构造出一个酉矩阵就显得极其重要, 本文给出了构建酉矩阵的五种方法, 并对应相应的构造方法给出证明. 通过本文的研究对酉矩阵的构造有了进一步的认识.

工程力学结构动力学复习题

工程力学结构动力学复习题

工程力学结构动力学复习题 一、简答题 1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段? 2、何谓结构的振动自由度?它与机动分析中的自由度有何异同? 3、何谓动力系数?简谐荷载下动力系数与哪些因素有关? 4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么? 5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们? 6、简述振型分解法是如何将耦联的运动方程解耦的. 7、时域法求解与频域法求解振动问题各有何特点? 8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样? 答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应 之比值。简谐荷载下的动力放大系数与频率比、

阻尼比有关。当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。原因是:当把动荷载换成作用于质量 的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。 9、振型正交性的物理意义是什么?振型正交性有何应用? 答:由振型关于质量、刚度正交性公式可知,i 振型上的惯性力在j 振型上作的虚功为0。 由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会 转移到别的主振型上去。换句话说,当一个体系只按某一主振型振动时,不会激起其他主振 型的振动。这说明各个主振型都能单独出现,彼此线性无关。这就是振型正交的物理意义。 一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计 算对应的频率。而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。 10、什么是阻尼、阻尼力,产生阻尼的原因一般

正交矩阵的性质及其应用 2

学号 20090501050227 密级 兰州城市学院本科毕业论文正交矩阵的性质及应用 学院名称:数学学院 专业名称:数学与应用数学 学生姓名:苏志升 指导教师:宋雪梅 二○一三年五月

BACHELOR’S DEGREE THESIS OF LANZHOU CITY UNIVERSITY Properties and Applications of Orthogonal Matrix College :Mathematics College Subject :Mathematics and Applied Mathematics Name :Su Zhisheng Directed by :S ong Xuemei May 2013

郑重声明 本人呈交的学位论文,是在导师的指导下,独立进行研究工作所取得的成果,所有数据、资料真实可靠。尽我所知,除文中已经注明引用的内容外,本学位论文的研究成果不包含他人享有著作权的内容对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确的方式标明。本学位论文的知识产权归属于培养单位。 本人签名:日期:

摘要 本文给出了正交矩阵的性质并列举了正交矩阵的多个性质。研究正交矩阵在空间坐标旋转中的作用。 关键词:正交矩阵;性质;标准正交基;特征多项式;应用

ABSTRACT Orthogonal matrix is made up of inner product lead. This paper illustrates several properties of orthogonal matrix and to give the proof. Study the role of orthogonal matrix in space coordinate rotation, and the matrix analysis of typical cases, and illustrates the application of matrix. Key words:orthogonal matrix; Rotation matrix; Orthonormal basis; Characteristic value; The application.

矩阵分析

I. QUESTION I Summarize the known constructions of orthogonal matrices and unitary matrices. Give some numerical examples for each construction. 1》正交矩阵:是实数特殊化的酉矩阵,因此总是正规矩阵。尽管我们在这 里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵不一定是实矩阵。实正交矩阵可以看做是一种特殊的酉矩阵,但存在一种复正交矩阵,复正交矩阵不是酉矩阵。 正交矩阵有以下几种等价定义及其判定 (满足的结构性质) 定义1.1 A 为n 阶实矩阵,若E AA =',则称A 为正交矩阵. 定义1.2 A 为n 阶实矩阵,若E A A =',则称A 为正交矩阵. 定义1.3 A 为n 阶实矩阵,若1-=A A ,则称A 为正交矩阵. 定义1.4 A 为n 阶实矩阵,若A 的n 个行(列)向量是两两正交的单位向量,则称A 为正交矩阵. 实例: ??? ???-θθθθ c o s s i n s i n c o s ?? ????1001 2》酉矩阵:n 阶复方阵U 的n 个列向量是U 空间的一个标准正交基, 则U 是酉矩阵。酉矩阵是正交矩阵往复数域上的推广。 酉矩阵的相关性质: 设有矩阵 ,则 (1)若是酉矩阵,则的逆矩阵也是酉矩阵; (2)若是酉矩阵,则也是酉矩阵; (3)是酉矩阵的充分必要条件是,它的个列向量是两两正交的单位向量。

一个简单的充分必要判别准则是: 酉矩阵的共轭转置和它的逆矩阵相等 酉矩阵基本性质:(A 是酉矩阵) 1.A 的行列式的模等于1 2.H A A =-1,11)()(--=H H A A 3.1-A 也是酉矩阵,两个n 阶酉矩阵的乘积也是酉矩阵 4.A 的每个(列)行向量(看作酉空间n C 的向量)是单位向量;不同的两个(列)行向量是酉矩阵正交的。 实例: ?? ? ? ??++ββαα s i n c o s 00s i n c o s i i (βα,为任意角度) II. QUESTION II A Hadamard matrix of order n is an n n ?matrix with elements in {}1,1+- such that T n n HH nE ?=where T H is the transpose of H and n E is the identity matrix of order n .This class of matrices are useful in many practical applications. Q1 Does Hadamard matrix exist for any order? Please list a Hadarmard matrix of order n with 20n ≤ if such a matrix exists. Q2 Design two Hadamard matrices []12 ;;; n H h h h =and 12; ; [; ]n G g g g = of order 2m n = (where m is odd) such that: 12/2; ;{}; n h h h is orthogonal to 12/2 ; ;{}; n g g g ;and

03 矩阵的对角化与Jordan标准形

第三讲矩阵的对角化与Jordan标准形 对任何线性空间,给定基后,我们对元素进行线性变换或线性运算时,只需用元素的坐标向量以及线性变换的矩阵即可,因此,在后面的内容中着重研究矩阵和向量。 对角矩阵的形式比较简单,处理起来较方便,比如求解矩阵方程=时,将矩阵A对角化后很容易得到方程的解。对角化的过程实Ax b 际上是一个去耦的过程。以前我们学习过相似变化对角化。那么,一个方阵是否总可以通过相似变化将其对角化呢?或者对角化需要什么样的条件呢?如果不能对角化,我们还可以做哪些处理使问题变得简单呢? 一、特征值与特征向量 1. 定义:对m阶方阵A,若存在数λ,及非零向量(列向量)x,使 =λ,则称λ为A的特征值,x为A的属于特征值λ的得Ax x 特征向量。 ?特征向量不唯一 ?特征向量非零

?(I A)x 0λ-=有非零解,则det(I A)0λ-=,称det(I A)λ-为A 的多项式。 [例1]122A 212221?? ??=??????,求其特征值和特征向量。 [解] 122 det(I A)2120221 λ---λ-=-λ--=--λ- 2(1)(5)0λ+λ-= 121λ=λ=- 35λ= 属于特征值1λ=-的特征向量 (I A)x 0--= 1232222220222ξ???? ????ξ=???? ξ???????? 1230ξ+ξ+ξ= 11 223 12ξ=ξ?? ξ=ξ??ξ=-ξ-ξ ? 可取基础解系为 11x 01????=??-???? 20x 11?? ??=??-???? 属于5λ=的特征向量 (5I A)x 0-= 1234222420224--ξ???? ????--ξ=???? --ξ???????? 123ξ=ξ=ξ 可取基础解系为 31x 11????=?????? 2. 矩阵的迹与行列式

3多自由度体系主振型的正交性和主振型矩阵

10-6 多自由度体系主振型的正交性和主振型矩阵1. 主振型的正交性 正交的概念:两个向量,其中, ,称为正交;矢量的概念。 正交关系有许多用途,详见线性代数的有关部分。 这里我们讨论主振型的正交性: 以两个自由度体系为例: 功的互等定理(Betti’s law) 即: 故有

上式可推广到一般情况 第一个正交关系为: 或 证明: 由特征方程有 将上式两边分别乘以得

对其中任一式转置并相减得 如果 同理也可推得 (也可直接利用关于质量矩阵得正交性得到。) 对k=L 时,我们定义 M k , K k分别叫做第k个主振型相应得广义质量和广义刚度。 由特征方程有: 即: 由此得: 这就是根据广义刚度Kk和广义质量Mk来求频率Wk的公式。这个公式是单自由度体系频率公式的推广。 正交关系的利用:

判断主振型的形状是否正确; 在振型分解法中的应用。 例17-8讲解重点正交性的验算 2*. 主振型矩阵 如果将n个彼此正交的主振型向量组成一个方阵,即 这个方阵称为主振型矩阵,它的转置矩阵为 根据主振型向量的两个正交关系,可以导出主振型矩阵[Y]的两个性质,即[Y]T[M][Y] 和[Y]T[K][Y] 都应是对角矩阵。下面证明: [Y]T[M][Y]=

上式中的对角线元素就是广义质量M1,M2,……M n, 由正交关系知其余元素均为零,故[Y]T[M][Y]为对角矩阵。即 [Y]T[M][Y]= 对角矩阵[M*]称为广义质量矩阵。 同样可得 其中Ki为广义刚度,对角矩阵[K*]叫做广义刚度矩阵。在后续章节中,我们将利用这一性质将多自由度体系的振动方程变为简单的形式。

相关文档
相关文档 最新文档