文档库 最新最全的文档下载
当前位置:文档库 › 直线与圆锥曲线的位置关系(一)教学设计

直线与圆锥曲线的位置关系(一)教学设计

直线与圆锥曲线的位置关系(一)教学设计
直线与圆锥曲线的位置关系(一)教学设计

北京市北纬路中学徐学军

《直线与圆锥曲线的位置关系(一)》教学设计

一、教材分析及学生情况分析

本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。

学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。

二、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标:

知识与技能:①理解直线与椭圆的位置关系;

②会进行位置关系的判断,计算弦长。

过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法,

学会解决相关的问题。

情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。

三、教学重点、难点、关键

本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

曲线中常见的弦长问题、中点问题、对称问题等。

所以我制定的教学重点:理解直线与椭圆的位置关系,会判定及应用

教学难点:应用代数方法进行判定,相关计算的准确性,理解用方程思想解决直线与圆锥曲线

的位置关系

关键:感悟方程组的解的个数等于直线与椭圆公共点的个数。计算准确。

为了讲清重点、难点,使学生能达到本节设定的教学目标,我是这样设计教法和学法的。

四、教法

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”,而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现由特殊到一般,采用循序渐进的启发式教学原则。我进行了这样的教法设计:问题引导,问题解决,由学生通过知识迁移,类比探究直线与椭圆位置关系的判断,再由教师引导,自然找出直线与椭圆的位置关系判断方法,激发学生的学习兴趣。在解题过程中体会解决的数学方法。

五、学法

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。课程改革的目标之一是“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力,获得新知识的能力、分析和解决问题的能力以及交流与合作的能力”。数学作为基础教育的核心课程之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。我以类比归纳理论为指导,采用着重于引导学生探索研究的问题教学方法,结合师生共同讨论、归纳。在课堂结构上,我根据学生的认知水平,我设计了:(1)提出问题——引入课题(2)思考交流结论形成:(3)理解应用——巩固方法(4)小结归纳——提高认识,四个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。接下来,我再具体谈谈这堂课的教学过程:

六、教学程序及设想

教学过程实录:

一、提出问题引入新课:

师:我们学习过直线与圆的位置关系及判定,请你回忆相关知识。

学生回答:直线与圆有三种位置关系分别是相离(没有公共点)、相切(一个公共点)、相交(两个公共点)。判定方法有两种:代数法、几何法。

(教师在学生回答的同时在黑板上画出相应图形,并补充纠正。)

师:前面我们学习了圆锥曲线,其中椭圆是最基础的,那么直线与椭圆又有什么样的位置关系呢? 有学生立即回答:和圆一样,相离,相切,相交;教师立即追问:如何定义呢?

学生回答:类似直线与圆的位置关系的定义。

教师动手画图,并提出问题:如何来判定直线与椭圆的位置关系呢?

设计意图:由已有的知识类比迁移到新知识。

师:今天我们就来研究这个问题

二、 思考交流结论形成:

师:通过画图我们看到,直线与椭圆的位置关系也可以归纳为相离,相切和相交,请你类比直线和圆的相离、相切、相交的定义来对直线和椭圆相离,相切和相交进行定义。

学生交流,自由发言,教师适时引导,得出结论。

直线与椭圆没有公共点?直线与椭圆相离;直线与椭圆有一个公共点?直线和椭圆相切;直线与椭圆有两个公共点?直线与椭圆相交。

师:通过公共点的个数可以判断直线和椭圆的位置关系,如何确定公共点的个数呢?你有什么办法呢? 请大家完成学案的第一题。

1、 判断直线123:1;:3;:3l y x l y x l y =+=-+=+与椭圆2

214

x y +=的位置关系。 学生完成练习,教师巡视,根据学生的解题情况引入代数方法。在巡视过程中,大部分学生采用的是 代数的方法,及个别的学生画出了图像,但第三条直线与椭圆的位置关系学生画图的很少,但利用代数方法研究的同学也没有得到结论。此时,教师及时进行了计算上辅导。

师:请你说说如何利用代数方法来进行直线和椭圆的位置关系的判断?

学生:直线与椭圆的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为方程组解的个数与交点的个数是一样的.

联立方程组,消元,得到一个一元二次方程,则

0?>,方程有两个不等的实数根?有两个公共点?相交;

0?=,方程有两个相等的实数根?有一个公共点?相切;

0?< ,方程没有实数根?没有公共点?相离。

师:方法归纳的很好,但是还要求同学们在解决方程问题时要准确计算。

设计意图:以旧带新,学生易于理解。

三、 理解应用:

师:请同学们看学案的练习,完成第二个题。

2、 已知直线:2l y x m =+,椭圆22

:142

x y C +=,问m 为何值时,直线l 与椭圆C :(1)有两个不同的公共点;(2)有一个公共点;(3)没有公共点

学生甲:方程联立,让判别式的值分别大于0,等于0,小于0,然后解不等式和方程即可得解。 师:有没有同学用其他的方法求得?

学生乙:可不可以用画图的方法,椭圆方程是给定的,所以是定的,直线的斜率是2,纵截距是M ,所以是一族平行线,找到交点,结论不就有了吗.

教师对两位同学及时表扬,并适时进行方法上的总结。在巡视过程中,对计算上的问题再次进行辅导。让解题比较快的学生XX 在黑板上进行板演。

设计意图:对知识进行简单应用。

师:下面我们一起来完成第3题和第4题。

3、 已知斜率为2的直线经过椭圆22

154

x y +=的右焦点2F ,与椭圆交于,A B 两点,求AB 的长。 师:本题的解决需要什么条件?如何由题目所给的条件去求得?前面的学习中遇到过类似的问题吗?当时是怎么解决的,方法能不能拿来一用?

学生:前面学习过两点间的距离公式,所以只要有A 、B 两点的坐标,代入公式就行了。通过题目条件可以求出直线AB 的方程,再把两个方程联立就能求交点坐标了。

这时,课代表说话了:还要解方程太麻烦了,有没有简单点的方法,不求根行吗?

师:不错,那你就要好好想想啊!

课代表:想不出来。此时教师及时拉过学生的注意力,把问题进行讲解。

师:那我来说说,。。。。。。

由此题一般化,得到弦长公式。

12l x =-==。① (师:当直线与椭圆相交时,求弦长时,联立直线方程和椭圆方程,利用韦达定理,就可以直接利用公式①求得弦长。那如果知道弦长和椭圆的方程,你能否求得直线方程呢?公式①是否适用于直线与其他圆锥曲线的弦长计算呢?请同学们课下思考。)

设计意图:由特殊到一般,让学生体会韦达定理的应用及解析几何中“设而不求,整体代入”的解题思路。

(机动)4、已知(4,2)M 是直线l 被椭圆22

436x y +=所截得的线段AB 的中点,求直线AB 的方程。

师:要求直线方程,有什么条件,还需要什么条件,如何来得到这个条件?你有什么想法?给了中点坐标,如何用这个条件呢?

学生在教师的引导下,逐步得出求斜率的思路,并进行实施。

师:除了应用韦达定理求斜率外,老师给你们介绍另一种方法来完成本题的求解。(教师板演点差法的解题过程。)

设计意图:对方法进行直观展示,方便学生理解。

四、课堂小结:由学生总结,然后教师补充。重视对方法的总结和应用。

设计意图:由学生总结本节课所学习的主要内容,以及收获,通过数学思想方法的小结,使学生更深刻地了解数学思想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质。

七、教学反思:

在新课程教育理念中,学生活动是第一位的,强调要在“做数学中学数学”,由于主体自身的智力参与,特别是主体高水平的智力参与,使外部的活动过程内化为主体内部的心理活动过程。并从中产生出主体的个人体验。充分体现了新课标的精神,以学生为主体,吸引学生动手实践、自主探索、合作交流。学生以积极主动、勇于探索的学习方式体验了双曲线的形成过程,学生对所学内容会理解更深更记忆更牢。

用问题做引导,让学生在已学知识的基础上学习新的知识,体现了新课程要求的螺旋式上升的学习方式,并借助熟悉的事物逐步迁移到新事物的认知规律,由学生自主完成相关知识的学习也体现了学生为主体的新课程理念。

学生在认同与体验中建构知识技能的传授和能力的培养主要依靠解题训练,对此,波利亚揭示:“中学数学首要任务就是加强解题训练,掌握数学就是意味着善于解题”。对于问题设计和例题设计,运用类比归纳、特殊一般的认知规律、逐步递进的方式,意在既巩固所学知识,又给学有余力的学生以更大的发展空间,体现了因材施教的原则,整个教学环节都很完整。

在授课过程中,教师始终把握解析几何的核心-用代数的方法研究几何问题,能画图的地方一定把图像画出来,需要计算的地方也按要求进行计算,随时体现数与形的紧密联系。重视数学方法的教学渗透。

设计不足:设计之初,就想让学生多动手,所以没有使用多媒体,但实践证明确实耽误了一些时间,第4题(点差法)没有来得及讲。如果使用多媒体,可以在前面复习引入上节省一些时间。这是设计的一个不足。另外,高估了学生的计算能力也是一个不足之处,有些时间都花在指导学生计算上了。这也给教师提了个醒在今后的教学过程中要随时重视对学生的计算能力的培养和训练,为后面解决解析几何综合问题打下良好的基础,否则就会形成学生会想不会写,有思路却写不对从而得不到分的不良局面了。

直线与圆锥曲线的综合问题专题二

专题二 直线与圆锥曲线的综合问题 第一课时 一.知识体系小结 22 2222222222 222222 cos 1(0)()sin 11(0)1(00)1(00)2(0)2(0213x a x y x a b y b a b y x y a b a b x y y x x a b y a b a b a b y px p y px p 圆锥曲线的标准方程 椭圆:焦点在轴上时参数方程,其中为参数; 焦点在轴上时. 双曲线:焦点在轴上:,;焦点在轴上:,. 抛物线:开口向右时,,开口向左时,.22)2(0)2(0)x py p x py p ,开口向上时,开口向下时. 2222 2222 2222 222222 222222 221111 1(0)123142x y x y a b a b x y x y a b a b x y x y a b a b mx ny 常用曲线方程设法技巧 共焦点的设法:与椭圆有公共焦点的椭圆方程为;与双曲线有公共焦点的双曲线方程为;与双曲线共渐近线的双曲线方程为;中心在原点,对称轴为坐标轴的椭圆、双曲线方程可设为;不清楚开口方向的抛.物线设法:焦22(0)(0)x y mx m y x my m 点在轴上,; 焦点在轴上,. 3.解决直线与圆锥曲线问题的通法: (1)设方程及点的坐标; (2)联立直线方程与曲线方程得方程组,消元得方程; (3)应用韦达定理及判别式; (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. 1212|||| |.AB AB x x y y (5)直线与圆锥曲线相交的弦长公式或 222 0002220 222 0002220 2000 1()1()2(0)(). b x x y P x y k a b a y b x x y P x y k a b a y p y px p P x y k y 圆锥曲线中点弦斜率公式 在椭圆中,以,为中点的弦所在直线的斜率; 在双曲线中,以,为中点的弦所在直线的斜率; 在抛物线中,以,为中点的弦所在直线的斜率以上公式均可由点4.差法可得.

圆锥曲线教案

直 线 与 圆 锥 曲 线 的 位 置 关 系 题型归纳: 题型1向量与圆锥曲线相结合的问题 1.设12F F ,分别是双曲线2 2 19y x +=的左、右焦点.若点P 在双曲线上,且120PF PF ?=,则12PF PF += 2.设P 为双曲线2 2 112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为 题型2变量取值范围问题 3、设 1F ,2F 分别是椭圆14 22 =+y x 的左右焦点。1)若P 是该椭圆上的一个动点,求21PF PF ?的最值; (2)设过定点()2,0M 的直线l 与椭圆交于不同的两点A,B,且AOB ∠为锐角(O 为坐标原点),求直线l 的斜率k 的范围 题型3圆锥曲线中的最值问题 4、设P 是椭圆()2 2211x y a a +=>短轴的一个端点,Q 为椭圆上一个动点,求PQ 的最大值. 5、已知椭圆C:22 221(0)x y a b a b +=>>,F 为其右焦点,过F 垂直于x 轴的直线与椭圆相交所得的弦长为2(1)求椭圆C 的方程;(2)直线l :y=kx+m (0km ≠)与椭圆C 交于A 、B 两点,若线段AB 中点在直线x+2y=0上,求?FAB 的面积的最大值。 … 题型4定值问题 6.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程; (Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标. 题型5 存在性问题 7.椭圆)0(12222>>=+b a b y a x 的离心率23e =,A 、B 是椭圆上关于,x y 轴均不对称的两点,线段AB 的垂直平分线与x 轴交于(1,0)P ,点 F 是椭圆的右焦点.Ⅰ)设AB 的中点为00(,)C x y ,求0x 的值; (Ⅲ)过P 的直线交椭圆于,C D 两点,在x 轴上是否存在定点E ,使得CED ∠总被x 轴平分,若存在,求出点E 的坐标;若不存在,请说明理由. 题型6对称性问题 8.已知双曲线2 213y x -=上存在关于直线:4l y kx =+的对称点,求实数k 的取值范围.

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

九年级 直线与圆的位置关系教案

直线与圆的位置关系 教学目标 1、使学生理解直线与圆的三种位置关系,掌握直线与圆的各位置关系所表现的数量特征。 2、指导学生从观察直线与圆的相对运动中归纳直线与圆的位置关系,培养学生分类思想。 3、通过点与圆的位置关系类比研究直线与圆位置关系中的数量问题, 培养学生联想、类比、推理能力以及化归,数形结合等数学思想。 4、指导学生从图形运动中揭示直线与圆的不同位置关系,培养学生的辩证唯物主义观点。 教学重、难点 重点:直线与圆的三种位置的性质和判定。 难点:直线与圆的三种位置关系的研究及运用。 教学过程 一、导入新课 海上日出是非常壮美的景象,那么太阳在升起的过程中它与海平线有几种不同的位置关系呢? 二、新授新课 1、基本概念 我们对刚才的景象进行数学的抽象不难发现,直线和圆在相对运动过程中会有三种不同的位置关系.请大家观察直线与圆处在不同位置关系时有哪些不同点(引导学生观察图形,发现问题) 发现:直线与圆处在不同位置关系时直线与圆的公共点个数不同.(将公共点个数确立为直线和圆位置关系分类的原则,对三种分类进行定义) 直线与圆相交直线与圆相切直线与圆相离 2、数量特征: 直线与圆的相对运动会产生不同的位置关系,那么我们可以通过数量来刻画这些位置关系吗?(指导学生体会位置关系与数量关系的联系,从中感受数与形的相互结合与转化) (1)点与圆的三种位置关系取决于哪两个数据? 点与圆的三种位置关系取决于点到圆心的距离OP和圆的半径r.将二者进行比较得: 点P在圆O外<=>OP﹥r

点P在圆O上<=>OP= r 点P在圆O内<=>OP< r (2)与上述结论进行类比,直线与圆的位置关系取决于哪几个数据? (3)、猜想直线与圆的三种位置关系中r和d满足的关系: 直线与圆相离<=> d﹥r 直线(切线)与圆相切<=> d﹦r 直线(割线)与圆相交<=> d﹤r 3.证明: 观察多媒体演示找出证明的突破口:直线与圆的位置关系可转化为点(垂足) 与圆的位置关系来研究数量特征(指导学生把握知识间的联系与发展,培养学生 的化归思想,使其形成严谨,求实的学习习惯) (1)直线与圆相离<=>垂足P在圆O外<=> d﹥r (2)直线与圆相切<=>垂足P在圆O上<=> d﹦r (3)直线与圆相交<=>垂足P在圆O内<=> d﹤r 4、直线与圆的位置关系的判断方法 练习1.已知圆的半径是7.5cm,圆心到直线的距离为d,当d=10 cm时,直线 与圆有个公共点,当d=5 cm时,直线与圆有个公共 点,当d=7.5cm时直线与圆有个公共点。 练习2、已知⊙A的半径为3.5 ,点A的坐标为(-3,-4),则⊙A与X轴的位 置关系是_____,⊙O与Y轴的位置关系是______。 练习3.如果⊙O的半径为r ,圆心O到直线l的距离为d=5,若⊙O与直线l 至少有一个公共点,则r需满足的条件是。 三、例题讲解 例1.在RT△ABC中,, AC = = ∠以C为圆心,r为半径的圆 cm C o= , BC 3 , 90cm 4 与AB有怎样的位置关系?为什么?(1)r=2cm (2) r=2.4cm (3) r=3cm 分析:(1)直线与圆的位置关系,取决于哪两个数据? 答:d与r,题目已给出半径r,我们需求出直线到圆心的距离d,即点C到AB CD⊥,垂足为D,则CD为圆心到线段AB的距离。 的距离。过点C作AB (2)怎样求CD?

圆锥曲线解题技巧教案

圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程8=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y += 1(0a b >>)。方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B , C 同号,A ≠B )。 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____(答: 11 (3,)(,2)22 ---) ; (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1 (0,0a b >>)。方程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A , B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2= e 的双曲线C 过点 )10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口 向上时22(0)x py p =>,开口向下时2 2(0)x py p =->。 如定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。 4 5 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 1

直线与圆锥曲线的综合问题

第32练 直线与圆锥曲线的综合问题 [题型分析·高考展望] 本部分重点考查直线和圆锥曲线的综合性问题,从近几年的高考试题来看,除了在解答题中必然有直线与圆锥曲线的联立外,在填空题中出现的圆锥曲线问题也经常与直线结合起来.本部分的主要特点是运算量大、思维难度较高,但有时灵活地借助几何性质来分析问题可能会收到事半功倍的效果.预测在今后高考中,主要围绕着直线与椭圆的位置关系进行命题,有时会与向量的共线、模和数量积等联系起来;对于方程的求解,不要忽视轨迹的求解形式,后面的设问将是对最值、定值、定点、参数围的考查,探索类和存在性问题考查的概率也很高. 常考题型精析 题型一 直线与圆锥曲线位置关系的判断及应用 例1 (1)(2015·改编)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45 ,则椭圆E 的离心率的取值围是________________. (2)设焦点在x 轴上的椭圆M 的方程为x 24+y 2b 2=1 (b >0),其离心率为22 . ①求椭圆M 的方程; ②若直线l 过点P (0,4),则直线l 何时与椭圆M 相交? 点评 对于求过定点的直线与圆锥曲线的位置关系问题,一是利用方程的根的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零;二是利用图形来处理和理解;三是直线过定点位置不同,导致直线与圆锥曲线的位置关系也不同.

变式训练1 已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的焦距为4,且过点P (2,3). (1)求椭圆C 的方程; (2)设Q (x 0,y 0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点A (0,22),连结AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由. 题型二 直线与圆锥曲线的弦的问题 例2 设椭圆C :x 2a 2+y 2 b 2=1 (a >b >0)的左,右焦点分别为F 1,F 2,且焦距为6,点P 是椭圆短轴的一个端点,△PF 1F 2的周长为16. (1)求椭圆C 的方程; (2)求过点(3,0)且斜率为45 的直线l 被椭圆C 所截得的线段中点的坐标. 点评 直线与圆锥曲线弦的问题包括求弦的方程,弦长,弦的位置确定,弦中点坐标轨迹等问题,解决这些问题的总体思路是设相关量,找等量关系,利用几何性质列方程(组),不等式(组)或利用一元二次方程根与系数的关系,使问题解决.

沪科版数学九年级下册24.4 直线与圆的位置关系 同步教案

直线与圆的位置关系 教学目标: 1.从具体的事例中认识和理解直线与圆的三种位置关系并能概括其定义.会用定义来判断直线与圆的位置关系. 2.使学生掌握圆的切线的判定方法和切线的性质,能够运用切线的判定方法判断一条直线是否是圆的切线,综合运用切线的判定和性质解决问题,培养学生的逻辑推理能力. 3.使学生了解切线长的概念和切线长定理.会根据切线长的知识解决简单的问题. 教学重、难点: 重点: 1.直线和圆的三种位置关系. 2.切线的性质定理和判定定理概念. 3.切线长定理概念. 难点: 1.直线和圆的三种位置关系的性质与判定的应用. 2.理解运用切线的判定定理解决问题. 3.切线长定理的应用. 教学过程: 一、直线和圆的三种位置关系 1.复习导入、回顾旧知 点和圆的位置关系有哪几种? 如何判定点和圆的位置关系? 2.创设情境,提出问题 首先利用唐诗中的“大漠孤烟直,长河落日圆”体会这里蕴涵的数学意境,再让学生观察太阳升起的过程,我们能发现什么?引出课题. 3.探究发现,建构知识

练习一 让学生动手在纸上画一个圆,把直尺的一边看作直线,移动直尺.通过实验,观察直线和圆的位置关系会有哪几种情况?公共点最少时有几个?最多时有几个?引导学生说直线与圆的公共点个数的变化情况,由此给出相离、相切、相交的定义. 设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点: (1)当21r r l +>时,圆1C 与圆2C 相离; (2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交; (4)当||21r r l -=时,圆1C 与圆2C 内切; (5)当||21r r l -<时,圆1C 与圆2C 内含. 利用刚学过的知识判断直线与圆的位置关系 (1)直线与圆最多有两个公共点.( ) (2)若直线与圆相交,则直线上的点都在圆内.( ) (3)若A.B 是⊙O 外两点,则直线AB 与⊙O 相离.( ) 根据例题引出“直线和圆的位置关系”能否像“点和圆的位置关系”一样类比迁移进行数量分析? 接下来复习提问什么叫点到直线的距离,连结直线外一点与直线上所有点的线段中,最短的是垂线段. 思考问题:设⊙o 的半径为r ,直线a 到圆心o 的距离为d ,在直线和圆的不同位置关系中,d 与r 具有怎样的大小关系?反过来,你能根据d 与r 的大小关系来确定直线和圆的位置关系吗? 4.例题解析 例1如图24-43,.Rt △ABC 的斜边AB=10cm ,.∠A=30°.

直线与圆锥曲线的综合问题

第32练 直线与圆锥曲线得综合问题 [题型分析·高考展望] 本部分重点考查直线与圆锥曲线得综合性问题,从近几年得高考试题来瞧,除了在解答题中必然有直线与圆锥曲线得联立外,在填空题中出现得圆锥曲线问题也经常与直线结合起来.本部分得主要特点就是运算量大、思维难度较高,但有时灵活地借助几何性质来分析问题可能会收到事半功倍得效果。预测在今后高考中,主要围绕着直线与椭圆得位置关系进行命题,有时会与向量得共线、模与数量积等联系起来;对于方程得求解,不要忽视轨迹得求解形式,后面得设问将就是对最值、定值、定点、参数范围得考查,探索类与存在性问题考查得概率也很高. 常考题型精析 题型一 直线与圆锥曲线位置关系得判断及应用 例1 (1)(2015·福建改编)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)得右焦点为F ,短轴得一个端点为M ,直线l :3x—4y =0交椭圆E于A ,B两点。若AF +BF =4,点M 到直线l 得距离不小于\f(4,5),则椭圆E 得离心率得取值范围就是________________。 (2)设焦点在x 轴上得椭圆M 得方程为错误!+错误!=1 (b >0),其离心率为错误!. ①求椭圆M得方程; ②若直线l 过点P(0,4),则直线l 何时与椭圆M 相交? 点评 对于求过定点得直线与圆锥曲线得位置关系问题,一就是利用方程得根得判别式来确定,但一定要注意,利用判别式得前提就是二次项系数不为零;二就是利用图形来处理与理解;三就是直线过定点位置不同,导致直线与圆锥曲线得位置关系也不同. 变式训练1 已知椭圆C :x2a2+y 2 b 2=1(a>b >0)得焦距为4,且过点P (2,\r(3))。 (1)求椭圆C得方程; (2)设Q (x 0,y0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴得垂线,垂足为E 、取点A (0,2\r(2)),连结AE ,过点A 作AE 得垂线交x 轴于点D 。点G 就是点D 关于y轴得对称点,作直线Q G,问这样作出得直线QG就是否与椭圆C一定有唯一得公共点?并说明理由、 题型二 直线与圆锥曲线得弦得问题 例2 设椭圆C :x 2 a 2+错误!=1 (a>b>0)得左,右焦点分别为F1,F 2,且焦距为6,点P就是椭圆短

圆锥曲线优秀教案

与圆锥曲线有关的几种典型题 一、教案目标 (一)知识教案点 使学生掌握与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线相交问题等. (二)能力训练点 通过对圆锥曲线有关的几种典型题的教案,培养学生综合运用圆锥曲线知识的能力. (三)学科渗透点 通过与圆锥曲线有关的几种典型题的教案,使学生掌握一些相关学科中的类似问题的处理方法. 二、教材分析 1.重点:圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题. (解决办法:先介绍基础知识,再讲解应用.) 2.难点:双圆锥曲线的相交问题. (解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.) 3.疑点:与圆锥曲线有关的证明问题. (解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.) 三、活动设计 演板、讲解、练习、分析、提问. 四、教案过程 (一)引入

与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“与圆锥曲线有关的几种典型题”. (二)与圆锥曲线有关的几种典型题 1.圆锥曲线的弦长求法 设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为: (2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|. A、B两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解. 由学生演板完成.解答为: ∵抛物线方程为x2=-4y,∴焦点为(0,-1). 设直线l的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入x2=-4y中得:x2+4kx-4=0. ∴x1+x2=-4,x1+x2=-4k. ∴ k=±1.

(全国通用版)201X版高考数学一轮复习 高考达标检测(三十八)圆锥曲线的综合问题——直线与圆锥曲线

高考达标检测(三十八) 圆锥曲线的综合问题——直线与圆锥曲线 的位置关系 一、选择题 1.已知过抛物线y 2=4x 的焦点F 的直线l 交抛物线于A ,B 两点,且点A 在第一象限,若|AF |=3,则直线l 的斜率为( ) A .1 B.2 C. 3 D .22 解析:选D 由题意可知焦点F (1,0),设A (x A ,y A ), 由|AF |=3=x A +1,得x A =2,又点A 在第一象限, 故A (2,22),故直线l 的斜率为2 2. 2.若直线y =kx +2与抛物线y 2=x 有一个公共点,则实数k 的值为( ) A. 1 8 B .0 C. 1 8 或0 D .8或0 解析:选C 由??? y =kx +2, y 2=x , 得ky 2-y +2=0, 若k =0,直线与抛物线有一个交点,则y =2, 若k ≠0,则Δ=1-8k =0,∴k =1 8, 综上可知k =0或 1 8 . 3.已知双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点, 且AB 的中点为N (12,15),则双曲线C 的离心率为( ) A .2 B.32 C.355 D.52 解析:选B 设A (x 1,y 1),B (x 2,y 2), 由AB 的中点为N (12,15),得x 1+x 2=24,y 1+y 2=30,

由????? x 21a 2-y 21 b 2=1,x 2 2 a 2 -y 22b 2 =1, 两式相减得: x 1+x 2 x 1-x 2 a 2 = y 1+y 2 y 1-y 2 b 2 , 则y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=4b 2 5a 2.

点与圆的位置关系教案

点与圆的位置关系 肖海霞 学习目标:1、理解点与圆的位置关系由点到圆心的距离决定; 2、理解不在同一条直线上的三个点确定一个圆; 3、会画三角形的外接圆,熟识相关概念 学习过程 一、点与圆的位置三种位置关系 生活现象:阅读课本P53页,这一现象体现了平面内...点与圆的位置关系. 如图1所示,设⊙O 的半径为r , A 点在圆内,OA r B 点在圆上,OB r C 点在圆外,OC r 反之,在同一平面上.....,已知的半径为r ⊙O ,和A ,B ,C 三点: 若OA >r ,则A 点在圆 ; 若OB <r ,则B 点在圆 ; 若OC=r ,则C 点在圆 。 二、多少个点可以确定一个圆 问题:在圆上的点有 多个,那么究竟多少个点就可以确定一个圆呢? 试一试 画图准备: 1、圆的 确定圆的大小,圆 确定圆的位置; 也就是说,若如果圆的 和 确定了, 那么,这个圆就确定了。 2、如图2,点O 是线段AB 的垂直平分线 上的任意一点,则有OA OB 图2 画图: 1、画过一个点的圆。 右图,已知一个点A ,画过A 点的圆. 小结:经过一定点的圆可以画 个。 图 1 o B A A

2、画过两个点的圆。 右图,已知两个点A 、B ,画经过A 、B 两点的圆. 提示:画这个圆的关键是找到圆心, 画出来的圆要同时经过A 、B 两点, 那么圆心到这两点距离 ,可见, 圆心在线段AB 的 上。 小结:经过两定点的圆可以画 个,但这些圆的圆心在线段的 上 3、画过三个点(不在同一直线)的圆。 提示:如果A 、B 、C 三点不在一条直线上,那么经过A 、B 两点所画的圆的圆心在线段AB 的垂直平分线上, 而经过B 、C 两点所画的圆的圆心在 线段BC 的垂直平分线上,此时,这 两条垂直平分线一定相交,设交点为O , 则OA =OB =OC ,于是以O 为圆心, OA 为半径画圆,便可画出经过A 、B 、C 三点的圆. 小结:不在同一条直线.....上的三个点确定 个圆. 三、概括 我们已经知道,经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点. 如图:如果⊙O 经过△ABC 的三个顶点, 则⊙O 叫做△ABC 的 ,圆心O 叫 做△ABC 的 ,反过来,△ABC 叫做 ⊙O 的 。 △ABC 的外心就是AC 、BC 、AB 边的 交点。 四、分组练习 A B C B

高中数学复习指导:直线与圆锥曲线问题之设而不求与设而求.doc

“设而不求”与“设而求” 一般地,我们解答直线与圆锥曲线问题,已经形成一种习惯,利用一元二次方程的判别式 研 究范围,利用根与系数的关系研究有关参数的关系,还美其名曰“设而不求”,事实上,“设而 求”也可能比“设而不求”更加简单,避开了一元二次方程的判别式与根与系数的关系研究有关 参数的关系,也许另有一种更好的解法等待着你去探究,不信请看下面的例题: 丫2 例1、己知椭圆方程为y+/=l,过定点P(0,2)的直线交椭圆于不同的两点A 、B (在 A 、P 之间),且满足西=2顾,求的取值范围. 解析1:设AB 的方程为)=尬+ 2, A3」),Ba ,%),贝9 PA = (x },y }-2), PB = (x 2,y 2 -2),由 PB = ZPA ,得 X 2 1 3 由 Q + * '得(1 + 2比2)严+池+6二0.又△二64疋一24(1 + 2/)= 0>0,得k 2>~. y = kx + 2, Sk 6 由根与系数关系,坷+禺=一 ,= - 1+2F - 1 + 2亡 把七=2西代入坷+召=_] + 2加 有西(1+2) = _] +朮,(1) 6 0 6 把x 2=^代入“2=仃乔有彷=匚乔,(2) 由(1)、(2)可以消去西得到含有入比的关系式,这个过程比较复杂,这个关系式是 32k 2 (1+A)2 3 1 3(1+2/) 2 八 3 _― =—■—, 或者变为__+?7 =—石刁—= — , 由* >二,可以求得 召=2坷, y 2-2 = A(y l -2).

3(1+2Q A 32k「 16 32k~(1 + 久)「2

初于是建立了关于2的不等式 '2 v£,又0vQvl,解得£v2vl. 32K I O O (1+A ) O 3 当初没有斜率时,宀亍所以扫<「 解析2:构造2 + ]=玉+玉=(召+兀T ,如此可以直接把年+召=一£「 / x } x 2 x }x 2 l + 2k 6 1 ao&2 3 也=砲代入得到'+君茹莎r"込百-2,由解法1知:宀亍可以 求得2<丐<罟,又061,解得打<1?当仙殳有斜率时,4,所以押<1. 解析3:设人(西,刃),8也,%),则 力4 =(兀[,刃一2), PB = (X 2,>2-2),由 PB = APA ,得v 4+^=i, 2 O 1 又人(召,刃),3(%,%)在二+b=l 上,所以]2 2 - + ^=1. 〔2 - 事实上仅用以上这四个等式就可以求出2与西,必,兀2,%中任意一个的关系. j 吕+*=1,⑴ F 字+(勿 _2Q +2)2=[.(2) (l)x A 2 _(2)得:(Ay.)2 -(心 -22 + 2)2 = / 一 1, (22-2)(22^ -2A + 2) = -1,注意到0<2<1,所以4仇开 一2 + 1) = 2 + 1,解得 气J) _ 3 斥彳一3 1 ”=—,注意到—1S)[S1,所以—is — <1,解得一5/153,又0V/lvl, 1 4A 1 4 2 3 所以-<2<1. 3 解法评价:解法1与解法2都是利用一元二次方程根的判别式与根与系数的关系,是解析 几何常用的方法,但是用这种方法必须对直线方程进行讨论,还应注意,有些时候仅仅使用其中 的根与系数的关系而没有用根的判别式,但是由于根与系数的关系是从整体上建立有关系数的关 系的,所以无法保证实数根的存在性,因此一定要检验判别式大于零.解法3 32k 1 冷=岔, y 2-2 = /l(y l -2).

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

直线与圆锥曲线的综合问题

教学过程 一、复习预习 圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整. 二、知识讲解 考点1范围问题 求范围和最值的方法: 几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题 代数方法:建立目标函数,再求目标函数的最值. 考点2对称问题 要抓住对称包含的三个条件: (1)中点在对称轴上 (2)两个对称点的连线与轴垂直

(3)两点连线与曲线有两个交点(0>?),通过该不等式求范围 考点/易错点3定点、定值、最值等问题 定点与定值问题的处理一般有两种方法: (1)从特殊入手,求出定点和定值,再证明这个点(值)与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定点(定值). 三、例题精析 【例题1】 【题干】已知椭圆1:22221=+b y a x C (0>>b a )与直线01=-+y x 相交于两点A 、B .当 椭圆的离心率e 满足2 223≤≤e ,且0=?OB OA (O 为坐标原点)时,求椭圆长轴长的取值范围. 【答案】 []6,5 【解析】由???=-+=+0 12 22222y x b a y a x b ,得()()012222222=-+-+b a x a x b a 由( ) 0122222>-+=?b a b a ,得12 2 >+b a 此时222212b a a x x +=+,() 2 22 2211b a b a x x +-= 由0=?OB OA ,得02121=+y y x x ,∴()0122121=++-x x x x 即022 2 2 2 =-+b a b a ,故1 222 2 -=a a b 由2 22222 a b a a c e -==,得2 222e a a b -= ∴2 2 11 12e a -+ = 由 2 223≤≤e 得23452 ≤≤a ,∴625≤≤a 所以椭圆长轴长的取值范围为 []6,5 【例题2】

人教版九年级上册数学教案:24.2点和圆、直线和圆的位置关系(第二课时)

第2课时 教学内容 24.2.1点和圆的位置关系(2). 教学目标 1.了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念. 2.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.3.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略. 教学重点 1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论. 2.掌握过不在同一条直线上的三个点作圆的方法. 教学难点 经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆. 教学过程 一、导入新课 我们知道经过一点、两点可以作无数个圆,那么,经过三点可以作多少个圆?本节课我们将进行有关探索. 二、新课教学 1.思考:经过不在同一条直线上的三个点A,B,C能不能作圆?如果能,如何确定所作圆的圆心? 教师指导学生分析、作图. 对于经过不在同一条直线上的三点作圆的问题,因为所求的圆要经过A,B,C三点,所以圆心到这三点的距离要相等.因此,这个点既要在线段AB的垂直平分线上,又要在线段BC的垂直平分线上. (1)连结AB、BC. (2)分别作线段AB、BC的垂直平分线l1和l2,设交点为O,则OA=OB=OC.(3)以O为圆心,OA(或OB,OC)为半径作圆,⊙O就是所要求作的圆.

因为过A,B,C三点的圆的圆心只能是点O,半径等于OA,所以这样的圆只有一个,即:不在同一条直线上的三个点确定一个圆. 2.有关定义. 由右上图可以看出,经过三角形的三个顶点可以作一个圆,这个圆叫做三角 形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角 形的外心. 3.思考:经过同一条直线上的三个点能作出一个圆吗? 如右图,假设经过同一条直线l上的A,B,C三点可以作一个圆.设这个圆 的圆心为P,那么点P既在线段AB的垂直平分线l1上,又在线段BC的垂直平分线l2上,即点P为l1与l2的交点,而l1⊥l,l2⊥l,这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,经过同一条直线上的三个点不能作圆. 上面证明“经过同一条直线上的三个点不能作圆”的方法与我们以前学过的证明不同,它不是直接从命题的已知得出结论,而是假设命题的结论不成立(即假设经过同一条直线上的三个点可以作一个圆),由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.这种方法叫做反证法. 反证法的步骤为第一步假设结论不成立;第二步是由结论不成立推出和已知条件或定理相矛盾.第三步是肯定假设错误,故结论成立. 三、巩固练习 1.已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点? 解:如下图.O为外接圆的圆心,即外心.锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心在三角形的外部.

直线与圆锥曲线的位置关系一教学设计

北京市北纬路中学徐学军 《直线与圆锥曲线的位置关系(一)》教学设计 一、教材分析及学生情况分析 本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。 学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。 二、教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标: 知识与技能:①理解直线与椭圆的位置关系; ②会进行位置关系的判断,计算弦长。 过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法, 学会解决相关的问题。 情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。 三、教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

初中数学《点和圆的位置关系》教案_答题技巧

初中数学《点和圆的位置关系》教案_答题技巧 点和圆的位置关系 教学目标 (一)教学知识点 了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念. (二)能力训练要求 1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力. 2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略. (三)情感与价值观要求 1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.2.学会与人合作,并能与他人交流思维的过程和结果. 教学重点 1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论. 2.掌握过不在同一条直线上的三个点作圆的方法. 3.了解三角形的外接圆、三角形的外心等概念. 教学难点 经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆. 教学方法 教师指导学生自主探索交流法. 教具准备

投影片三张 第一张:(记作3.4A) 第二张:(记作3.4B) 第三张:(记作3.4C) 教学过程 Ⅰ.创设问题情境,引入新课 [师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索. Ⅰ.新课讲解 1.回忆及思考 投影片(3.4A) 1.线段垂直平分线的性质及作法. 2.作圆的关键是什么? [生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等. 作法:如下图,分别以A、B为圆心,以大于AB长为半径画弧,在AB的两侧找出两交点C、D,作直线CD,则直线CD就是线段A B的垂直平分线,直线CD上的任一点到A与B的距离相等. [师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点即为圆心,定长即为半径.根据定义大家觉得作圆的关键是什么? [生]由定义可知,作圆的问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆心和半径的大小.确定了圆心和半径,圆就随之确定. 2.做一做(投影片3.4B) (1)作圆,使它经过已知点A,你能作出几个这样的圆?

相关文档
相关文档 最新文档