文档库 最新最全的文档下载
当前位置:文档库 › 3逆向调制自由空间激光通信技术研究进展_孙华燕

3逆向调制自由空间激光通信技术研究进展_孙华燕

3逆向调制自由空间激光通信技术研究进展_孙华燕
3逆向调制自由空间激光通信技术研究进展_孙华燕

大气激光通信系统的研究教材

大气激光通信系统的研究 摘要:激光信息在大气中传输是目前大气光学领域最为活跃的研究热点之一。 由于激光本身所具有的高强度、高相干性、高单色性和高方向性等特性,从而有容量大、波束窄、速度快、保密性好和抗干扰性强等优点,因此激光成为无线光通信中最理想的载体。 本文概述了大气激光通信的基本原理及发展状况,介绍了其特点和用途。并以一种新型的具有以太网接口,能实现计算机间通信的大气激光通信系统(既可传输语音又可传输数据)为例,结合实验研究对发射端机和接收端机两大部分进行了阐述。 并针对大气无线激光通信系统,本文深入地研究了大气湍流信道中随机光 强信号的检测方法,对激光束在大气湍流信道中的传输进行了仿真和建模,并对实际的大气湍流信道进行了测量。 关键词:大气激光通信光发射端机光接收端机损耗特性激光器 一.激光通信的概述 1960年激光的出现极大地促进了许多学科的发展,其中也包括通信领域激光以其良好的方向性、相干性及高亮度性等特点成为光通信的理想光源。将激光应用于通信,掀开了现代光通信史上崭新的一页,成为当今信息传递的主力军。 激光通信是以激光光束作为信息载体的一种通信方式,和传统的电通信一样,它可分为有线激光通信和无线激光通信两种形式。其中,有线激光通信就是近年来发展迅猛的光纤通信。无线激光通信也可称为自由空间激光通信,它直接利用激光在大气或太空中进行信号传递,可进行语音、数据、电视、多媒体图像等信号的高速双向传递。这是目前国际上的一大研究热点,世界上各主要技术强国正投入大量的人力物力来抢占这一领域的技术优势。根据使用情况,无线激光通信可分为:点对点、点对多点、环形或网络状通信。在本文中,我们主要研究的是点对点的通信。此外,根据传输信道的不同,无线激光通信又可分为:大气激光通信、星际(深空)激光通信和水下激光通信川。 大气激光通信是自由空间激光通信的一个分支,它以近地面大气作为传输媒介,是激光出现后最先研制的一种通信方式。大气激光通信系统主要由光源、调制器、光发射机、光接收机及附加的电信发送和接收设备等组成,只要相互进行瞄准即可进行通信。根据所用光源的不同,大气激光通信系统大致可分为半导体激光通信系统、气体激光通信系统和固体激光通信系统。半导体激光器体积小,重量轻,灵活方便,但光束发散角稍大,适合于近地面的短距离通信。气体激光通信系统的体积和重量都较大,但其通信容量也大,光束发散角较小,适合于卫星间的通信和定点之间的大容量通信。因此,在实践中,根据通信系统在不同应用场合中的要求,合理选取光源。 大气激光通信系统的主要应用和优点

激光通信的应用

激光通信的应用 1. 激光的定义:由受激发射的光放大产生的辐射。 2. 激光通信: 定义1:利用激光进行信息传递的通信。 定义2:利用激光传输信息的通信方式。按传输媒介的不同,可分为大气激光通信和光纤通信。 3. 激光通信的原理: 无线激光通信设备的激光通信终端每一侧分别包括专用望远物镜(Telescope)、激光收发器部分、线路接口、电源、机械支架,部分厂商的设备还包括伺服、监控、远程管理等部分。 激光是一种光波,也具有电磁波的性质。然而。激光与一般的无线电波又有明显的不同,激光的频率为几亿兆周,是微波(超高频电磁波)频率的10万倍以上。由波长 与波速C及频率 的关系式 可知,激光的波长非常短,所以其波动性远比无线电波差。相反,激光却具有奇特的粒 子性,因而使它在军事通信中成为引人注目的“后起之秀”。 激光通信与无线电通信基本相似,在发送端用激光器发出的激光作为载波。话音信号通过发话器变为电信号送入调制器,调制器控制载波的某个参数(频率、振幅或相位)使其按话音的变化把话音信号寄载在激光光波上,通过发射望远镜(也称发射天线)发送出去在媒质中传播。在接收端,接收望远镜(也称接收天线)将激光信号按发送端的逆方向转化为话音信号。 根据传输媒质的不同,激光通信可分为宇宙通信(激光在大气层以外的宇宙空间传播)、大气通信(激光在大气层以内传播)、水下通信(激光在水下传播)以及光纤通信(激光在光导纤维内传播)。四.激光通信的优缺点: 相比于微波通信等其他几种接入方式,无线激光通信主要优势包括: 1.无须授权执照 无线激光通信工作频段在365~326 THz(目前提供无线激光通信设备的厂商使用的光波长范围多在820nm~920nm),设备间无射频信号干扰,所以无需申请频率使用许可证。 2.安全保密 激光的直线定向传播方式使它的发射光束窄,方向性好, 激光光束的发散角通常都在毫弧度,甚至微弧度量级,因此具有数据传递的保密性,除非其通信链路被截断,否则数据不易外泄。

空间激光通信技术的前世今生,这篇文章很深奥看完小编都蒙圈了

空间激光通信技术的前世今生,这篇文章很深奥看完小编都蒙圈了空间激光通信是一种利用激光束作为载波在空间进行图像、语音、信号等信息传递的通信方式。与传统微波通信相比,激光通信具有传输速率快、通信容量大、抗电磁干扰性能强、保密性高等优点,且其通信终端体积小、功耗低、实用性极高,引发各国研究热潮,今天电子发烧友小编就给大家讲解一下空间激光通信技术的前世今生。 什么是空间激光通信技术? 步轨道、星际间、太空间通信。激光空间通信与微波空间通信相比,波长比微波波长明显短,具有高度的相干性和空间定向性,这决定了空间激光通信具有通信容量大、重量轻、功耗和体积小、保密性高、建造和维护经费低等优点。 1、大通信容量:激光的频率比微波高3-4个数量级(其相应光频率在1013-1017 Hz) 光纤通信技术可以移植到空间通信中来,目前光纤通信每束波束光波的数据率可达20Gb /s以上,并且可采用波分复用技术使通信容量上升几十倍。因此在通信容量上,光通信比微波通信有巨大的优势。2、低功耗:激光的发散角很小,能量高度集中,落在接收机望远镜天线上的功率密度高,发射机的发射功率可大大降低,功耗相对较低。这对应于能源成本高昂的空间通信来说,是十分适用的。3、体积小、重量轻:由于空间激光通信的能量利用率高,使得发射机及其供电系统的重量减轻;由于激光的波长短,在同样的发散角和接收视场角要求下,发射和接收望远镜的口径都可以减小。摆脱了微波系统巨大的碟形天线,重量减轻,体积减小。4 细,激光的发散角通常在毫弧度,这使激光通信具有高度的保密性,可有效地提高抗干扰、防窃听的能力。5、激光空间通信具有较低的建造经费和维护经费。 空间激光通信技术前景展望

空间激光通信

空间激光通信研究现状 空间激光通信相对射频通信有着速率高、容量大等许多优点,从上世纪80年代起,各国就陆续开展了对空间激光通信的研究。目前,各国激光通信的调制方式主要分为PPM、PSK 与OOK三种,本文按照调制方式对各国的空间激光通信研究现状进行描述。 1,PPM 欧洲的SILEX项目、OPTEL项目与美国的LLCD项目、LCRD项目、MLCD项目使用或部分使用PPM调制方式。 1、1,LLCD项目[1~3] LLCD就是美国NASA2013年开始实行的一个项目,该项目建了两个探测器,月球环境探测器LLST与地面站LLGT,LLST与LLGT的通信距离距离在35000~400000km之间。 如图1(1)所示,地面站LLGT重达7吨,有4个15cm发射镜头与4个40cm接收镜头组成。LLGT的发射机使用的调制方式为4-PPM,每4个数据时隙后跟有12个或者28个静默时隙,发射激光器的波长就是1550nm,通过4个发射镜头实现4路时分复用,信号发射前经过一个10W光放大器放大,传输速率为10/20Mbps,这个速度就是目前地月RF通信的5000倍。为降低误码率采用了turbo码作为信道编码,码率为1/2,实现了0误码。4路接收镜头阵列有效提高了接收信号强度,接收机就是4个超导单光子计数探测器(工作在3K温度上),接收灵敏度极高,如图1(2)所示,能够提供高速光子计数测量[1]。 月球探测器LLST由光学模块、调制解调器、电子控制器三个模块组成[2],质量30kg。光学模块由一个10cm镜头的镜头组成,完成发射与接收光信号的功能,光学模块安装在一个二轴平衡台上,台上有粗瞄准与捕获探测器,该模块能够测试飞船的振动并进行补偿,实现对地面站的瞄准与捕获,光学模块通过光纤耦合到调制解调模块上。调制解调模块的主要功能就是调制与解调光信号,如图2所示,模块内置了311MHz低噪声时钟(经VCO可倍频至5GHz),解调模块前置了一个0、5W的放大器,对接收光信号进行放大,光信号进入后一部分经PLL使时钟频率同步,一部分进入解调器,解调器的时隙时钟由频率同步后的时钟提供(不需要额外的时隙同步),FPGA的主要作用就是上行链路帧同步,下行链路产生帧信号发送出去[3]。电子控制器模块有一些控制算法功能包括稳定光模块等。LLST的激光器功率仅为0、5W,波长为1550nm,使用的调制方式16-ppm,速率达到了40-622Mbps,使用turobo码信道编码,码率为1/2,速率为40/80/155/311Mbps时可做到0误码,速率622Mbps时误码率小于10^-5。上行链路速度明显小于下行,一个原因就是地面接收机没有体积质量等要求,灵敏度可以做的很高,另一个原因就是大气信道具有不对称性,对上行链路的影响较大,使之误码率变高。

激光原理及技术习题答案

激光原理及技术部分习题解答(陈鹤鸣) 第一章 4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ?应当是多少? 解:相干长度C c L υ = ?,υ?是光源频带宽度 85 3*10/3*101C c m s Hz L km υ?=== 22 510 8 (/) 632.8*3*10 6.328*103*10/c c c c nm Hz c m s λλυυυυλλλυλ-=??=?=???=?== 第二章 4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求: (1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=? 解: T k E E b e n 121 2 n -- = 其中1 2**E E c h E c h -= ?=λ ν λ h c h == ?*E (1)

(2) 10 * 425 .121 48 300 * 10 * 38 .1 10 10 *3 * 10 * 63 .6 1 223 6 8 34 ≈ = = = =- - - - - - - e e e n n T k c h b λ (3) K n n k c h b 3 6 23 8 34 1 2 10 * 26 .6 )1.0( ln * 10 * 10 * 8 .3 1 10 *3 * 10 * 63 .6 ln * T= - = - = - - - λ 9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数1 01 .0- =mm α (2) 0 1 01 100 366 0I . e I e I e I I. z= = = =- ? - α 即经过厚度为0.1m时光能通过36.6% 10.解:

激光原理与技术习题

1.3 如果微波激射器和激光器分别在λ=10μm ,=5×10- 1μm 输出1W 连续功率,试问每秒钟从激光上能级向下能级跃迁的粒子数是多少? 解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中346.62610J s h -=??为普朗克常数, 8310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ? =500nm λ时: 18-1=2.510s n ? =3000MHz ν时: 23-1=510s n ? 1.4设一光子的波长=5×10- 1μm ,单色性λ λ ?=10- 7,试求光子位置的不确定量x ?。若光子的波长变为5×10- 4μm (x 射线)和5 ×10 -18 μm (γ射线),则相应的x ?又是多少 m m x m m m x m m m x m h x h x h h μμλμμλμλλμλλ λλλλλλλλ 11171863462122 1051051051051051051055/105////0 /------?=?=???=?=?=???=?==?=???=?=?P ≥?≥?P ??=P?=?P =?P +P?=P 1.7如果工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105S - 1,试问:(1)该跃迁的受激辐射爱因斯坦系数B 10是多少?(2)为使受激跃迁几率比自发跃迁几率大三倍,腔内的单色能量密度ρ应为多少? c P nh nh νλ==P P n h hc λ ν= =

1.8如果受激辐射爱因斯坦系数B10=1019m3s-3w-1,试计算在(1)λ=6 m(红外光);(2)λ=600nm(可见光);(3)λ=60nm(远紫外光);(4)λ=0.60nm(x射线),自发辐射跃迁几率A10和自发辐射寿命。又如果光强I=10W/mm2,试求受激跃迁几率W10。 2.1证明,如习题图2.1所示,当光线从折射率η1的介质,向折射率为η2的介质折射时,在曲率半径为R的球面分界面上,折射光线所经受的变换矩阵为 其中,当球面相对于入射光线凹(凸)面时,R取正(负)值。 习题

激光原理习题

1、光与物质相互作用的三个基本过程:自发辐射、受激辐射、受激吸收。 2、激光器的损耗指的是在激光谐振腔内的光损耗,这种损耗可以分为两类:内部损耗、镜面损耗。 3、形成激光的条件:实现粒子数反转、满足阈值条件和谐振条件。 4、激光的四个基本特性:高亮度、方向性、单色性和相干性。 5、激光调制方法:内调制是指在激光生成的振荡过程中加载调制信号,通过改变激光的输 出特性而实现的调制。 外调制则是在激光形成以后,再用调制信号对激光进行调制,它并不改 变激光器的参数,而是改变已经输出的激光束的参数。 就调制方法来讲,也有振幅调制、强度调制、频率调制、相位调制以及脉冲调制等形式。 6、三种谱线增宽形式:自然增宽、碰撞增宽、多普勒增宽。 7、单纵模激光器的选频方法:短腔法、法布里—珀罗标准具法、三反射镜法。 8、激光器的基本结构:激光工作物质:能够实现粒子数反转,产生受激光放大。激励能源:能将低能级的粒子不断抽运到高能级,补充受激辐射减少高能级上的粒子数。光学谐振腔:提高光能密度,保证受激辐射大于受激吸收。 9、高斯光束的基膜腰斑半径(腰粗)公式:W 0= 2 1 W s = 2 1 π λL 简答题: 1、用速率方程组证明二能级系统不可能实现粒子数反转分布。

2、简述光频电磁场与物质的三种相互作用过程,并指出其影响因素。(画图说明) 答:光与物质相互作用的本质是光与物质中的电子发生相互作用,使得电子在不同的能级之间跃迁。包括三种基本过程:自发发射、受激辐射以及受激吸收。 .自发发射——在无外电磁场作用时,粒子自发地从E2跃迁到E1,发射光子hv。(a)特点:各粒子自发、独立地发射的光子。各光子的方向、偏振、初相等状态是无规的, 独立的,粒子体系为非相干光源。受激辐射:——原处于高能级E2的粒子, 受到能量恰为hv=E2-E1的光子的激励, 发射出与入射光子相同的一个光子而跃迁到低能级E1 。特点:①受激发射只能在频率满足hv=E2-E1的光子的激励下发生;②不同粒子发射的光子与入射光子的频率、位相、偏振等状态相同; 这样,光场中相同光子数目增加,光强增大,即入射光被放大——光放大过程。受激吸收:——原处于低能级E1的粒子,受到能量恰为hv=E2-E1的光子照射而吸收该光子的能量,跃迁到高能级E2。 3、 3、简述激光器的基本结构以及产生激光的基本条件:①有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构。②有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转③有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提

激光无线通信技术

激光无线通信技术 激光通信是一种以光波作为“载波”,大气、海水或太空作为传输介质的通信方式,与利用电磁波作载波的通信原理一样,只是承载信号的载波是激光,其波长更短,频率更高。与传统无线通信和有线通信相对应的,激光通信也形成了无线通信及有线通信,军事通信所关注的主要是激光无线通信。 激光无线通信具有电磁兼容性好、抗电磁干扰能力强、重量轻、功耗和体积小、保密性好等特点。保密性好的原因在于,一:激光具有高度定向性,发射波束非常短,通常发散角小于1弧度,在毫弧度级,二:信道速率高,能在短时间内大量发送数据,从而减少通信持续时间。波束窄使得抗干扰抗截获能力强,通信时间短的特点使得抗侦测、防窃听的能力强。另外,及激光通信的传输带宽宽,比较适合侦察图像等的实时传输。

美国航天局(NASA )在2014年6月6日宣布,该机构5日利用激光束在3.5秒内把一段时长37秒的高清视频从国际空间站传送回地面,成功完成了一项“可能根本性改变未来太空通信的技术演示”,也预示着太空宽带时代的到来。这项实验的成功表明激光传输技术是可行的,完全可以作为下一步进行更高速率传输和实用性通信的技术基础。

应用及前景展望 1、用于提升星间通信速率 卫星微波通信的极限通信速率在2Gbps左右,近年来通信速率提升困难。而激光通信技术可以轻松实现10Gbps以上的通信速率,采用复用的手段甚至能获得Tbps 以上的通信速率。如此高的通信速率,使得太空通信如同从拨号上网时代升级到了宽带上网时代。 2、用于能源成本较高的空间通信 由于激光通信的光束发散角很小,大大降低了通信过程中信息被截取的可能性,目前还没有截获空间激光通信信息的可行手段,这使激光通信具有高度的保密性。而能量的高度集中,使得落在接收机望远镜天线上的功率密度高,发射机的发射功率可大大降低,功耗相对较低。这对应用于能源成本高昂的空间通信来说也是非常适用的。 3、用于水下通信 此外,激光在水下通信中也有很大的应用空间,电磁波在水中的衰减程度较大,传统的无线电波想要穿透海水,必须使用频率极低的波段,携带的信息量十分有限,传输时间长。然而,研究发现,激光中存在一个频段——光波波长为450~570nm 的蓝绿光,海水对其吸收损耗较小,它通过海水时,不仅穿透能力强,而且方向性极好。因此,激光通信也是深海中传输信息的重要方式之一,可以用于对潜通信、探潜探雷、测深等领域。 限制因素: 但空间激光通信中的激光是在自由空间中传播,因此存在巨大的传输损耗。空间激光通信,尤其是星地间的通信,最大的限制就是经过大气层时受到湍流,及其他天气、环境因素的影响。 其次,空间激光通信链路的距离从千公裡到数亿公里不等,并且链路之间不可能有中继放大,这与地面光纤通信千公裡的链路距离相比实现起来难度大得多。比如火星与地球之间的链路,由于距离太过遥远,激光的几何损耗极大,点对点的瞄准也更为困难。

空间激光通信研究现状及发展趋势

空间激光通信研究现状及发展趋势 前言:在即将到来的信息时代,构建信息传播速率快、信息传输量大、覆盖空间广阔的通信网络是很重要的。空间激光通信技术正是构建符合未来社会发展需求的通信网络的重要技术支持之一。我国的各大高校和科学研究机构都有对这一方面展开研究,比如武汉大学的静态激光通信、华中科技大学的对潜激光通信、中科院成都光电所的自适应激光通信、中电集团34所的大气静态激光通信等。空间激光通信的应用,有助于构建一体化的通信网络,对于我国发展具有深远的影响。 一、空间激光通信的技术特点 1.1光波频率高 空间激光通信就是利用激光进行信号传输的通信技术[1]。激光的频率比微波高出三到四个数量级。这就导致以激光为载波进行通信,能够利用的频带更加宽广,在短时间内传输大量的数据。在地球科学研究、环境灾害监测、军事信息获取等领域,经常需要在一段时间内实现海量数据的传输,空间激光通信就可以有效实现这一点。 1.2光波波长短 空间激光通信所运用的光波具有极短的波长。光波的波长决定了发射天线的口径。如果光波的波长较短,发射天线的口径也

会比较小,这样,激光在发射过程中就会相对集中,不容易发生分散,同时消耗的功率也比以往的微波发射低,节省更多的能源。不仅仅是发射天线,接收终端的型号也与光波的波长长短有关。利用短波长的光波进行信息传输,接收终端的体积、重量也可以相应缩小,同时消耗更低的能源。这种性质使得空间激光通信能够搭配多种通信平台,适用范围极为广阔。 1.3方向性强 空间激光通信发射的激光光束很窄,指向明确,能够直达目的地,很少发生散射[2]。以往的微波通信,光束宽,指向性不明显,容易发生散射和折射,影响通信的效果,导致通信不稳定。空间激光通信就将这一问题进行极大程度的改善。另外,空间激光通信还具有防窃听的能力,在传输过程中不容易被外界窃取信息,在保证了通信的稳定性的同时,也保证了通信的保密性。 1.4波段远离电磁波谱 如果通信光波的波段距离电磁波谱较近,就容易在传输的过程中受到电磁波谱的干扰。所以,空间激光通信采取远离电磁波谱的光波波段。在机场、战争区域等环境中,电磁波谱的干扰极为严重,只有利用空间激光通信才能够确保信息的顺利传输。 二、空间激光通信的关键技术 2.1激光调制发射技术 激光调制发射技术具有高功率和高速率的特点。这种技术的主要组成部件有激光器、驱动器、温度控制、功率控制、光放大

无线激光通信调制方式性能分析

万方数据

无线激光通信调制方式性能分析 作者:赵婷, 陈宇, 宋宇, 闫志强, 张景萃, 齐雷 作者单位:长春理工大学电信学院,长春,130022 刊名: 科技资讯 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2011(16) 参考文献(4条) 1.何攀;李晓毅;侯倩基于LED的紫外光通信调制方式研究[期刊论文]-光通信技术 2010(4) 2.毛昕蓉;李荣无线光通信调制技术的性能分析[期刊论文]-通信技术 2009(42) 3.柯熙政;席晓莉无线激光通信概论 2004 4.David JT;David R Wisely lan Neild et OPtieal wlreless:the story so far 1998 本文读者也读过(5条) 1.柯熙政.陈锦妮.KE Xi-zheng.CHEN Jin-ni无线激光通信类脉冲位置调制性能比较[期刊论文]-激光技术2012,36(1) 2.赵丽丽.王挺峰.孙文涛.郭劲无线激光通信协议的设计[期刊论文]-中国光学2011,04(6) 3.卫斌.杨乾远.徐林.朱宏韬.WEI Bin.YANG Qian-yuan.XU Lin.ZHU Hong-tao一种用于大气激光通信透明传输的光端机[期刊论文]-光通信技术2010,34(7) 4.李国军.敬守钊.黄自力.唐湘成.LI Guo-un.JING Shou-zhao.HUANG Zi-li.TANG Xiang-cheng无线激光通信光发射模块的研究[期刊论文]-电子设计工程2011,19(5) 5.王鹏.邢柳.马永青.WANG Peng.XING Liu.MA Yong-qing无线激光通信APT系统设计[期刊论文]-光通信技术2011,35(3) 本文链接:https://www.wendangku.net/doc/784629448.html,/Periodical_kjzx201116019.aspx

激光技术习题附答案

光电子技术(2 )上篇:"激光技术”习题 1、在电光调制器中,为了得到线性调制,在调制器中插入一个1/4波片,它的 轴向应该如何设置为佳?若旋转1/4波片它所提供的直流偏置有何变化? 2、为了降低电光调制器的半波电压,采用4块z切割的KD*P晶体连接(光路串 联,电路并联)成纵向串联式结构。试问:(1)为了使4块晶体的电光效应逐块舂加,各晶体 x 和 y 轴取向应如何孑⑵若 A = 0.628/血,坯=1.51,/63 = 23.6x 10"%/V,计算其半波电压,并与单块晶体调制器比较之. 3、试设计一种装置,如何检验出入射光的偏振态(线偏光椭圆偏光和自然光), 并指出是根据什么现象?如果一个纵向电光调制器没有起偏器,入射的自然光能否得到光强调制?为什么? 4、一铝酸铅(PhMoO,)声光调制器,对He-Ne激光器进行调制。已知声功率P s = 1W,声光互作用长度L = \.8mm,换能器宽度H = 0.8讪,= 36.3X 10川芒? kg",试求铝酸铅声光调制器的布拉格衍射效率。 5、在锁模激光器中,工作物质为YAG,2 = 1.06/^/棒尺寸0)4x50〃〃”,腔长 L = 0.75//?, fm =选择熔凝石英(n二1.46)作声光介质,声速 匕=5.95 X105C/?/5,采用布拉格衍射,驻波形式,设计声光锁模调制器的尺寸, 并求出布拉格角。 6、有一带偏振棱镜的电光调Q YAG激光器,试回答或计算下列问题: (1)画出调Q激光器的结构示意图,并标出偏振镜的偏振轴和电光晶体各主轴的 相对方向。 ⑵怎样调整偏振棱镜的起偏方向和晶体的相对位置才能得到理想的开关效果? (3)计算 1/4 波长电压V2/4(/ = 25mmjt a = n e = 1.05,/63 = 23.6xlO~l7m/V). 7、声光调Q为什么运转于行波工作状态,一般只适用于连续激光器的高重复频率运行?加到电声换能器上的高频信号还要用频率为f的脉冲电压进行调制?8、当频率人=40MHz的超声波在熔凝石英声光介质(n二1.54)中建立起超声场(v, = 5.96 x lOS/s)时,试计算波长为2 = 1.06“〃的入射光满足布拉格条件的入射角&。 9、一个声光调Q器件(L = 50〃?〃?, H = 5mm)是用熔融石英材料做成,用于连续 YAG激光器调Q。已知激光器的单程增益为0.3,声光器件的电声转换效率为

激光通信技术简介

激光通信技术简介 日前,由美国国家航空航天局研发的“激光通信中继演示”系统即将进入开发整合与测试阶段。空间激光通信是指利用激光束作为载波,在空间直接进行语音、数据和图像等信息双向传送的技术。不仅传输速率高、抗干扰能力强,还具有设备体积小、重量轻、能耗低等特点,将为人类走向太空和空天军事技术应用带来革命性变化。 未来,空间激光通信有望成为星地间数据传输的关键技术,并实现与地面光纤网络的互补,从而建立起包含卫星和大气层内外的立体交叉激光通信网,彻底颠覆现有的全球通信系统,成为满足大数据时代信息传输需求的大带宽高速通信网络。 “你好,世界!”这句看似普通的话,或将开启人类探索太空的新时代。这句话来自美国国家航空航天局录制的一段37秒的高清视频,跨越太空和大气层回传到地面用时3.5秒。虽然在如今的“4G时代”这个速率有些不值一提,但若不是采用了激光通信技术,传统的无线电传输则至少需要10分钟。 从烽火狼烟到太空WiFi 传统的无线电通信技术有着自身不可避免的缺陷,不仅由于各种通信波段之间相互干扰会影响通信质量,想要在“寸土寸金”的航天器上增加天线面积和数量来提升通信效果也真的比“登天”还难。更为重要的是,随着空间通信数据形式的不断丰富,单纯的无线电通信已经难以满足急剧增长的通信带宽需求,易受干扰的无线电波也加剧了太空军事应用的风险。 曾几何时,人们就曾利用“烽火狼烟”接力通信,将千里之外的边关战事信息第一时间传递至内地。从上个世纪60年代激光发明之后,利用激光进行无线光通信就成为研究的热点。说起激光通信,可能还有点陌生,但如果一提到光纤通信,我想大家都耳熟能详。其实,光纤通信只是激光通信的一个具体应用,是指激光在光纤介质中的传输。空间激光通信主要利用激光作为载体,将信息加载到激光上发送,并在外太空等自由空间内进行信息传输,到了接收端经过一系列光电变换就可实现信息的传输和通信。

自由空间光通信技术的发展现状与未来趋势

自由空间光通信技术的 发展现状与未来趋势 易成林 (华中科技大学武昌分校,湖北武汉430070) 摘 要:自由空间光通信(Free2Space Optical Columniation,简称FSO)是一种通过激光在大气信道中实现点对点、点对多点或多点对多点间语音、数据、图像信息的双向通信技术,介绍了自由空间光通信的国内外研究现状,分析了应用现状和未来发展趋势。 关键词:自由空间;光通信技术;现状;趋势 中图分类号:F623 文献标识码:A 文章编号:167223198(2007)0920263202 1 自由空间光通信的研究现状 1.1 基于光电探测器直接耦合的FSO系统 早在30多年前,自由空间光通信曾掀起了研究的热潮,但当时的器件技术、系统技术和大气信道光传输特性本身的不稳定性等诸多客观因素却阻碍了它的进一步发展。与此同时,随着光纤制作技术、半导体器件技术、光通信系统技术的不断完善和成熟,光纤通信在20世纪80年代掀起了热潮,自由空间光通信一度陷入低谷。然而,随着骨干网的基本建成以及最后一公里问题的出现,以及近年来大功率半导体激光器技术、自适应变焦技术、光学天线的设计制作及安装校准技术的发展和成熟,自由空间光通信的研究重新得到重视。 在国外,FSO系统主要在美英等经济和技术发达的国家生产和使用。到目前为止,FSO己被多家电信运营商应用于商业服务网络,比较典型的有Terabeam和Airfiber公司。在悉尼奥运会上,Terabeam公司成功地使用FSO设备进行图像传送,并在西雅图的四季饭店成功地实现了利用FSO设备向客户提供10OMb/s的数据连接。该公司还计划4年内在全美建设100个FSO城市网络。而Airfiber公司则在美国波士顿地区将FSO通信网与光纤网(SON ET)通过光节点连接在一起,完成了该地区整个光网络的建设。 目前商用的FSO系统(见图1)通常采用光源直接输出、光电探测器直接耦合的方式,这种系统有以下几点缺点: (l)半导体激光器出射光束在水平方向和垂直方向的发散角不同,且出射光斑较粗,因此我们需要先将出射光束整形为圆高斯光束再准直扩束后发射,这样发射端的光学系统就较为复杂,体积也会相应增大。 (2)在接收端,光斑经光学天线会聚之后直接送入PD 转化为电信号。通常,我们需要提供点到点的,双向的通信系统,这样,FSO系统的每个终端都包括了激光器,探测器,光学系统,电子元器件和其中有源器件所需要的电源。这种系统的体积通常比较大,重量大,成本也比较高。从FSO 系统终端的内部结构图中可以看出,完成一个简单的点到点的链路需要6个OE转换单元。随着人们对带宽的需求越来越高,PD的成本也越来越高,6个O E转换单元大大增加了成本闭。 (3 )FSO终端设备一般安装于楼顶,如果终端中含有大量的有源设备,会给我们的安装带来了很多不方便。 (4)系统的可扩展性很小。如果用户所需要的带宽增加,那么封装在一起的整个FSO系统终端都需要被新的终端取代,安装新设备的过程需要再次对准,整个升级过程所需要的时间很长,给人们带来巨大的损失。 图1 基于PD直接接受的FSO系统 1.2 基于光纤耦合技术的FSO系统 光纤输出、光纤输入的自由空间光通信系统(见图2 ),激光器输出的高斯光束耦合至光纤再经准直出射,传输一定距离后,光束通过合适的聚焦光学系统聚焦在光纤纤芯上,沿着光纤传输后经PD接收还原信号。这样我们通过在发射和接收端都采用光纤连接的方式,只需要在楼顶放置光学天线系统,而将其他的控制系统通过光纤放置于室内就可以实现点到点的连接,整个系统结构简单,易于安装。 图2 基于光纤的FSO系统 这种新型的FSO系统具有以下优点:①减少了不必要的E一O转换,一条链路现在只需要2个O E接口即可,大大降低了成本。②光学系统较为简单,光纤出射的光束一般为圆高斯光,不需要整形,简化了光学系统,减小了体积,易于安装。③易于升级及维护,当用户的带宽增加时,我们只需要对放置在室内的系统进行升级即可,免去了复杂繁琐的对准过程。④基于光纤耦合的空间光通信系统能够很 — 3 6 2 —

激光调制技术习题

3.对于3m 晶体LiNbO3,试求外场分别加在x,y 和z 轴方向的感应主折射率及相应的相位延迟(这里只求外场加在x 方向上) 解:铌酸锂晶体是负单轴晶体,即n x =n y =n 0、n z =n e 。它所属的三方晶系3m 点群电光系数有四个,即γ22、γ13、γ33、γ51。电光系数矩阵为: ?????? ??? ? ????? ?????--=00 0000 00022 51513313221322 γγγγγγγγγij 由此可得铌酸锂晶体在外加电场后的折射率椭球方程为: 12)(2)1()1()1( 22512 33121322202152220=-++++++++-xy E xz E yz E z E n y E E n x E E n x x z z e z y z y γγγγγγγ (1) 通常情况下,铌酸锂晶体采用450 -z 切割,沿x 轴或y 轴加压,z 轴方向通光,即有E z =E y =0,且E x ≠0。晶体主轴x,y 要发生旋转,上式变为: 122225122 222 2=-+++xy E xz E n z n y n x x x z y x γγ (2) 因151??x E γ,且光传播方向平行于z 轴,故对应项可为零。将坐标轴绕z 轴旋转角度α得到新坐标轴,使椭圆方程不含交叉项,新坐标轴取为 ?? ? ???????? ?-=??????''cos sin sin cos y x y x αααα ,z=z ’ (3) 将上式代入2式,取o 45=α消除交叉项,得新坐标轴下的椭球方程为: 1''1'122 2222022220=+??? ? ??++???? ??-e x x n z y E n x E n γγ (4) 可求出三个感应主轴x ’、y ’、z ’(仍在z 方向上)上的主折射率变成: e z x y x x n n E n n n E n n n =-=+ ='223 00'223 00'2 121γγ (5) 可见,在x 方向电场作用下,铌酸锂晶体变为双轴晶体,其折射率椭球z 轴的方向和长度基本保持不变,而x,y 截面由半径为n 0变为椭圆,椭圆的长短轴方向x ’ y ’相对原来的x y 轴旋转了450 ,转角的大小与外加电场的大小无关,而椭圆的长度n x ,n y 的大小与外加电场E x 成线性关系。 当光沿晶体光轴z 方向传播时,经过长度为l 的晶体后,由于晶体的横向电光效应(x-z ),两个正交的偏振分量将产生位相差: l E n l n n x y x 22302)''(2γλ π λ π ?= -= ? (6) 若d 为晶体在x 方向的横向尺寸,d E V x x =为加在晶体x 方向两端面间的电压。通过晶体使光波两分量产生相位差π(光程差λ/2)所需的电压x V ,称为“半波电压”,以πV 表示。由上式可得出铌酸锂晶体在以(x-z )方式运用时的半波电压表示式:

激光通信技术1解析

激光通信经历了大气通信和光波导(光纤)通信两个重要的发展阶段。早期的激光大气通信曾掀起了世界性的研究热潮,许多经济和技术力量雄厚的发达国家在这个阶段投入了大量的人力、财力和物力,对激光大气通信进行了广泛的研究开发。早期的激光大气通信所用光源多数为二氧化碳气体激光器、YAG固体激光器、He-Ne气体激光器等。二氧化碳气体激光器输出激光波长为10.6μm,此波长正好处在大气信道传输的低损耗窗口,是较为理想的通信用光源。与激光大气通信技术研究基本同步展开的还有光纤波导通信,从而在技术上形成了激光通信中与传统通信相对应的激光无线通信(激光空间通信)和激光有线通信(激光光纤通信)。 1975年,世界上第一条光纤通信实验应用线路在美国芝加哥开通,揭开了光纤通信应用的序幕。此后,随着光纤制作技术、半导体器件技术、光通信系统技术的不断完善和成熟,光纤通信从80年代起在全世界掀起了应用的热潮,并迅速被确认为是地面有线通信最有发展潜力的重要的通信手段,以致得到了一日千里的发展和推广应用。与此同时,激光大气通信技术由于器件技术、系统技术和大气信道光传输特性本身的不稳定性等诸多客观因素一时得不到很好的解决和弥补,便在轰轰烈烈的光纤通信热潮中,隐退得几乎无影无踪。 1.存在的主要问题 一段时间以来,激光大气通信技术之所以难以得到应有的发展和推广应用,存在的主要技术问题是: 对大气信道衰减大及误减随机变化量大的补偿技术问题;大气湍流的影响,使信道折射率发生不均匀的随机变化,其结果使接收光斑发生所谓的闪烁现象和漂移现象。要削弱大气湍流的影响,有许多技术工作要做;

驱动功率小、转换效率高、激光输出功率大、调制带宽及伺服系统简单的激光发射器件的制作;灵敏度高、噪声特性好,适合于常温环境下工作的接收器件的制作;体积小、重量轻、光学特性好、便于安装、调校的光学收发天线的制作;背景噪声的滤除技术问题;如果采用窄带光滤波技术,又是存在激光器的频率稳定技术;在机动性要求高和工作平台方位稳定性差的场合应用,自动跟瞄技术也很关键。上述可归纳为:解决全天候、高机动性和高灵活性稳定可靠工作问题。 2.悄然复兴的激光大气通信技术 激光问世后,将激光应用于通信的想法就随之产生了。在国际上,美国、英国、日本、前苏联等国家,广泛开展了对激光大气通信的深入研究。 然而,进入80年代中后期,国际国内大部分从事激光大气通信技术研究的单位相继停止了进一步研究。有的国家甚至还宣布了走激光大气通信研究的路是一条“死胡同”,“走不通”。尽管如此,国内外仍有单位和人员始终在坚持不懈、孜孜探求解决激光大气通信技术问题之路。 1998年,巴西AVIBRAS宇航公司公布了该公司研制的一种便携式半导体激光大气通信系统。这种通过激光器联通线路的军用红外通信装置,其外形如同一架双筒望远镜,在上面安装了激光二极管和麦克风。使用时,一方将双筒镜对准另一方即可实现通信,通信距离为1km,如果将光学天线固定下来,通信距离可达15km。1989年美国FARANT1仪器公司成功地研制出一种短距离、隐蔽式的大气激光通信系统。1990年,美国试验了适用于特种战争和低强度战争需要的紫外光波通信,这种通信系统完全符合战术任务的要求,通信距离为5~2km。如果对光束进行适当处理后,通信距离可达5~10km。

自由空间光通信技术的发展现状与未来趋势

自由空间光通信技术的发展现状与未来趋势 自由空间光通信(Free-Space Optical Columniation,简称FSO)是一种通过激光在大气信道中实现点对点、点对多点或多点对多点间语音、数据、图像信息的双向通信技术,介绍了自由空间光通信的国内外研究现状,分析了应用现状和未来发展趋势。 标签:自由空间;光通信技术;现状;趋势 1 自由空间光通信的研究现状 1.1 基于光电探测器直接耦合的FSO系统 早在30多年前,自由空间光通信曾掀起了研究的热潮,但当时的器件技术、系统技术和大气信道光传输特性本身的不稳定性等诸多客观因素却阻碍了它的进一步发展。与此同时,随着光纤制作技术、半导体器件技术、光通信系统技术的不断完善和成熟,光纤通信在20世纪80年代掀起了热潮,自由空间光通信一度陷入低谷。然而,随着骨干网的基本建成以及最后一公里问题的出现,以及近年来大功率半导体激光器技术、自适应变焦技术、光学天线的设计制作及安装校准技术的发展和成熟,自由空间光通信的研究重新得到重视。 在国外,FSO系统主要在美英等经济和技术发达的国家生产和使用。到目前为止,FSO己被多家电信运营商应用于商业服务网络,比较典型的有Terabeam 和Airfiber公司。在悉尼奥运会上,Terabeam公司成功地使用FSO设备进行图像传送,并在西雅图的四季饭店成功地实现了利用FSO设备向客户提供10OMb/s 的数据连接。该公司还计划4年内在全美建设100个FSO城市网络。而Airfiber 公司则在美国波士顿地区将FSO通信网与光纤网(SONET)通过光节点连接在一起,完成了该地区整个光网络的建设。 目前商用的FSO系统(见图1)通常采用光源直接输出、光电探测器直接耦合的方式,这种系统有以下几点缺点: (l)半导体激光器出射光束在水平方向和垂直方向的发散角不同,且出射光斑较粗,因此我们需要先将出射光束整形为圆高斯光束再准直扩束后发射,这样发射端的光学系统就较为复杂,体积也会相应增大。 (2)在接收端,光斑经光学天线会聚之后直接送入PD转化为电信号。通常,我们需要提供点到点的,双向的通信系统,这样,FSO系统的每个终端都包括了激光器,探测器,光学系统,电子元器件和其中有源器件所需要的电源。这种系统的体积通常比较大,重量大,成本也比较高。从FSO系统终端的内部结构图中可以看出,完成一个简单的点到点的链路需要6个OE转换单元。随着人们对带宽的需求越来越高,PD的成本也越来越高,6个OE转换单元大大增加了成本闭。

各国空间激光通信现状

1,国外 (1)星地: LUCE(前身是第一个星地激光通信终端LCE,1995,速度1.04Mbps ):2006年日本,OICETS卫星与NICT地面站,波长发射847接收819,调制方式OOK,速率接收2.048Mbps 发射50Mbps,误码率10^-7. SLS:2012;俄罗斯航天部门;国际空间站和北高加索地面站;125Mbps; LLCD:2013;美国NASA;月球环境探测器和地面站;距离35000~400000km;地面站:功率40W,波长1550nm,速率10/20Mbps,调制方式4-PPM,1/2码率(turbo码信道编码),4路时分复用,可做到0误码;月球探测器:功率0.5W,波长1550nm,速率40-622Mbps,调制方式16-ppm,1/2码率,40/80/155/311Mbps可做到0误码,622Mbps 误码率小于10^-5。可做到cm级别测距精度。 OPALS:2014;美国NASA;国际空间站与怀特伍地面站;距离700km,调制方式OOK,速率30~ 50Mbps,空间站波长1550nm、功率2.5W,地面站波长976nm,功率5W; (2)星空: LOLA:2006 ;法国;Artemis卫星与某飞机;距离40000km;IM/DD,波长848nm,功率104mW;forward link:调制方式BPPM(二进制PPM),速率2Mbps,downloadlink:调制方式OOK,速率50Mbps,飞机高度9km

(3)星间 SILEX:2001法国,GEO和LEO卫星,4000km,波长797~853,调制方式ppm,速率50Mbps,误码率10^-6, OPTEL:瑞士,短距离到长距离多个卫星终端2000~80000km,速率1.5~2.5Gbps,其中高性能通信终端OPTEL-25,调制方式BPSK,信号光波长1064nm功率1.25W,信标光波长808n LUCE:2005日本欧洲,GEO和LEO,距离48000km,波长发射波长847nm接收819nm,调制方式位非归零码直接强度调制(OOK),速率接收2.048Mbps发射50Mbps,误码率达10^-7。2013日本JAXA建立高级激光通信终端LUCE,速率1.2/2.5Gbps,计划下一步10Gbps LCTSX:2008;德美;TerraSAR-X卫星与NFIRE卫星;二相相移键控/零差相干解调,调制方式BPSK,波长1064nm,距离1000~5100km,速率5.625Gbps,总功率120W(光传输功率0.7W),误码率小于10^-9。 EDRS:2014;欧洲;Sentinel1-Alphasat;距离45000km,调制方式BPSK,速率1.8Gbps,误码率10^-8,功率2.2W TSAT:卫星组网,2016美国,速率10~40Gbps

相关文档