文档库 最新最全的文档下载
当前位置:文档库 › 高速电磁阀驱动控制策略的研究

高速电磁阀驱动控制策略的研究

高速电磁阀驱动控制策略的研究
高速电磁阀驱动控制策略的研究

基于脉宽调制式CNG高速电磁阀驱动性能试验分析

基于脉宽调制式CNG高速电磁阀驱动性能分析 摘要:基于CYFZ型燃气共轨电磁阀用PWM的控制方式进行了试验和分析。试验表明:该驱动电路能够实现高压打通低压保持喷射的功能,符合喷射规律。驱动电压,PWM的周期, PWM的占空比都将对电磁阀的驱动能力以及维持喷射的能力产生不同的影响,三者的有机调节可实现理想的电流波形,可为电控天然气喷嘴电磁阀的驱动提供一定的参考。 关键词:CNG高速电磁阀;PWM;试验和分析 中图分类号:文献标志码:文章编号: CNG High-speed Electromagnetic Valve Drive Test Analysis Based On Pulse Width Modulation WANG Kereng, SUN Renyun, WU Yudong, YAN Haoming (School of Transportation and Automotive Engineering, Xihua University, Chengdu Sichuan 610039,China) Abstract:A PWM drive circuit for CYFZ common rail type gas solenoid valve was designed , tested and a- nalyzed . The result indicates that the drive circuit can realize high pressure to keep low of the injection,complying with the law of injection. Driving voltage,The PWM cycle of the PWM duty cycle will be for electro- magnetic v- alve drive ability and the ability to maintain injection have different impact, the three organic regulation can achi- eve ideal current waveform, and can be electronically controlled natural gas nozzle electromagnetic valve drive to provide certain reference. Keywords: CNG High-speed solenoid valve; Pulse width modulation; Test and analysis 前言: 在电控天然气燃料喷射系统中,高压开启喷射低压维持稳定喷射的理论已经是一个共识(其具体意义与原理就不再赘述),有很多种方法可以实现该理论指导下的喷射要求,比较常见的有可调电阻式驱动电路,双电压式驱动电路,脉宽调制式驱动电路,充电泵式驱动电路[1],其具体原理可参考文献1,而脉宽调制式驱动电路是一种实现高压打通低压维持喷射的最理想的驱动电路[2],然而开启喷射时的驱动电压,PWM的周期,以及PWM 的占空比具体对喷嘴电磁阀的驱动能力以及维持稳定喷射的能力的影响是怎么样的,当三者中的任意一个改变时会对喷嘴电磁阀的驱动电流产生怎么样的影响,很少有论文进行相关的试验说明,因此本文将针对具体的喷嘴进行试验测试说明。 1 PWM驱动电路设计 本文以图1所示的自制驱动电路作为试验电路,其具体原理为:当PWM波产生高电平波时,使三极管Q1导通,从而使三极管Q3随之导通,当三极管Q3导通后由于R5的阻值远远大于R4的阻值,使12V的电源压降几乎全部分配给电阻R5从而达到MOSFET管的开启值,MOSFET管导通,喷嘴电磁阀开启,喷射器开始喷气。当PWM波为低电平时三极管Q1截止(此时MOSFET管就截止了),Q2导通,当Q2导通后三极管Q4也会随之导通。MOSFET管在设计之初,由于结构原因,不可避免

(完整word版)教案-驱动力控制系统教案(朱明zhubob)

一.复习(10') ABS系统具有的故障自诊断功能 二教学过程(60') 一、概述 牵引力控制系统(TRC)也称为驱动力控制系统(TCS)或驱动防滑转控制系统(ASR)。 系统作用: (1)在驱动过程中防止驱动车轮发生滑转, (2)并在起步和加速时,根据路面情况给出一个最佳的驱动力。 (3)在湿滑路面上起步、加速或转向时,能提高车辆的稳定性。 TCS和ABS系统的关系: (1)从控制车轮和路面的滑移率来看,采用了相同的技术, (2)但两者所控制的车轮滑移方向是相反的。 (3)TCS系统与ABS系统常合在一起使用,构成行驶安全系统。 (4)TCS和ABS共用许多电子元件,用共同的系统部件来控制车轮的运动。 1.TCS的控制作用 汽车在冰雪路面上急加速或超车时,ASR的控制效果是很明显的。 在均匀的结冰路面上、压实的雪路和深雪路面上使用TCS和不用TCS装置的驱动力的比较, 在左右轮附着系数不同的路面上,使用TCS和不使用TCS装置的汽车加速性比较的结果。 2.滑转率的控制范围 所谓的汽车打“滑”,有两种情况: 一是汽车制动时车轮的滑移,ABS是防止制动时车轮抱死而滑移;

二是汽车驱动时车轮的滑转。TCS防止驱动车轮原地不动而不停地滑转。 驱动轮滑转:当汽车起步时,驱动轮不停地转动,汽车却原地不动。 TCS与ABC起作用时,二者的制动力与驱动力正好相反, TRC防止驱动时车轮滑转的方法: 适当地控制驱动力,是TCS的作用。 将滑转率Vd控制在10%—30%范围之内,防滑效果较为理想。 3.牵引力控制装置的控制方式 1)发动机输出扭矩控制 发动机输出转矩改变:汽油机根据燃料喷射量、点火时间、节气门开度调整。 2)驱动轮制动控制 这种方法是对发生空转的驱动轮直接加以制动,反应时间最短。为使制动过程平稳,应缓慢升高制动压力。 制动控制方式的ASR的液压系统可分为两大类。

比例电磁阀驱动电源软件设计

比例电磁阀驱动电源软件设计

比例电磁阀驱动电源软件设计

分类号:TP 2 编号:BY 15 5033 10/11/2 14-0703 沈阳化工大学 本科毕业论文 题目:比例电磁阀驱动电源软件设计 院系:信息工程学院 专业:电气工程及其自动化 班级:0703 学生姓名:XXXX 指导教师:XXXX

论文提交日期:2011年6月27日论文答辩日期:2011年6月28日

毕业设计(论文)任务书 电气工程及其自动化专业电气0703班学生:XXX

摘要 本文以国外比例阀电源控制器的功能和技术参数为参考,致力于将外部标准输入信号转换成PWM电压信号,通过控制驱动PWM电压的占空比,实现控制主电路的大信号;通过闭环设计,补偿线圈的温升影响,使比例电磁阀的电流稳定,保持比例阀的开度不变,达到提高流量的控制精度的目的;同时,通过增加频率可调环节,选择适用于比例阀的最优脉动性。由于控制途径是采用电流闭环控制,保证了电流的稳定性。经过仿真与实验分析,完成了单片机控制器的设计。 在硬件电路设计方面,根据本设计控制对象的特点,本文采用了STC12C5A60S2为核心控制器件在使用特殊功能寄存器功能下的PWM驱动电路方案,将理论计算和面包板调试相结合的方法,实现了主电路和驱动控制电路的参数研究,完成了控制主电路,PID调节电路和电流反馈控制电路的设计工作。其中工作主电路部分主要使用单片机直接输出PWM控制信号。 本文设计最后进行了实际测试,实验结果表明本文所设计的电路基本都能满足控制要求,对电磁阀平稳、宽范围内的流量控制有着明显的作用。 关键词:电磁阀;单片机;PWM;PID

高速电磁阀驱动电路设计及试验分析

2005136 高速电磁阀驱动电路设计及试验分析 宋 军,李书泽,李孝禄,乔信起,黄 震 (上海交通大学内燃机研究所,上海 200030) [摘要] 分析了3种电磁阀驱动方式的特点,并基于HEU I 喷油器对PWM 控制方式进行了试验和分析。试验表明,提高线圈电压有助于实现电磁阀快速开启,开启脉冲和PWM 占空比决定了不同阶段电流的大小,三者的有机调节,可以实现理想的电流波形。试验结果为整机的柔性控制提供了可靠依据。 关键词:高速电磁阀,驱动电路,喷油器,PWM Design and Experimental Analysis of Drive Circuit for High 2speed Solenoid Valve Song Jun ,Li Shuze ,Li Xiaolu ,Q iao Xinqi &H uang Zhen Instit ute of Internal Combustion Engi ne ,S hanghai Jiaotong U niversity ,S hanghai 200030 [Abstract] The features of three types of drive circuits are presented and a PWM drive circuit for HEU I injector is designed ,tested and analyzed.The result indicates that increasing the voltage exerted on the winding is conducive to quick response of solenoid ,and the opening pulse and PWM pulse duty factor determine the mag 2nitude of current in different phases.This provides a reliable foundation for flexible control of the engine. K eyw ords :High 2speed solenoid valve ,Drive circuit ,Injector ,PWM 原稿收到日期为2004年8月17日,修改稿收到日期为2004年11月15日。 1 前言 电控共轨式燃油喷射系统能通过高速电磁阀实现对喷油量、喷油正时和喷油速率的精确控制,是最有发展前途的燃油喷射系统。在共轨系统中,为了实现电磁阀快速准确地开启与关闭,除了电磁阀本身精密的制作工艺外,还需要设计一个高效的驱动电路。 2 高速电磁阀的驱动特性 高速电磁阀是发动机电控喷射系统中的一个关键部件,微处理器ECU 通过控制它的吸合和释放来控制喷油时刻及喷油持续时间,以满足不同工况下的喷射要求,电磁阀的动态响应特性直接影响着整个系统的主要性能指标。由于共轨式燃油喷射系统每次喷射的时间很短,电磁铁必须能在很短的时间 内产生很强的吸力来克服复位弹簧的拉力,电磁阀 的快速响应特性为实现最小喷油量和预喷射提供了系统硬件保证。 由公式F =K (IW )2S /δ2 ×9.8×10-8(F 为 电磁吸引力;K 为常数;I 为线圈电流;W 为线圈匝数;S 为铁芯截面积;δ为气隙大小)可知[1],电磁吸力与电磁阀线圈中的电流的平方成正比,要使电磁铁产生足够的吸力必须加大线圈中的电流。而要使线圈电流在短时间内迅速增大,就要求d i/d t 为一个较大的数值。因为电磁线圈在电路形式上为一个几欧的电阻R 和一个几毫亨的电感L 的串连,当施加外电压U 时,线圈中的电流变化规律满足电压平衡方程U =i R +L d i/d t 。在电磁阀结构参数一定的情况下,尽可能提高驱动能量输入,即增大外加电压U 值,可以得到较高的d i/d t ,实现电磁阀的快速开启。但大电流通过线圈必然会造成发热现象,为了避免电磁阀线圈过热,当阀门开启后应迅速将线圈电流下降到一个较小的数值。因为在电磁铁 2005年(第27卷)第5期 汽 车 工 程 Automotive Engineering 2005(Vol.27)No.5

最新驱动力控制系统 TCS资料

驱动力控制系统TCS (又称TRC防滑控制系统TRAC循迹控制系统) 第一节概述 一、TCS的作用 在摩擦力限度内自动调节汽车的驱动力,避免车轮打滑、轮胎磨损,使车辆能正常行驶及维持转向的稳定性和操控性。 汽车行驶时,轮胎会受到两个力,即加速时的驱动力和转向时的向心力,两力之和称为轮胎力。 汽车的驱动力超过摩擦力的限度时轮胎因打滑的关系,将无法有效的将驱动力传至路面,使车辆无法操纵而发生不安全。 二、ABS与TCS的区别 1、ABS是在制动时防止车轮抱死,以免发生滑行现象,而TCS 是在湿滑起步或加速时防止驱动轮打滑或在摩擦系数相差很大的非对称路面防止单侧驱动轮打滑。 2、ABS对驱动轮和非驱动轮都可以控制,而TCS则只控制驱动轮 3、ABS控制期间,各车轮之间的影响不大,而TCS控制期间由于差速器的作用,会使驱动车轮之间产生相互影响 三、TCS的控制方式 1、控制发动机 控制燃油喷射量、节气门开度或点火的时间 2、控制制动(驱动轮)

与ABS调节器共用或另设调节器 3、发动机与制动力同时控制 四、TCS的控制范围 控制范围:滑移率0-35%(B范围) 1、以A范围为目标,可发挥最大的驱动力,但轮胎的向心力不足,转向控制性能变差,若以向心力最大为优先条件,则无法获得有效的见加速力。 2、为兼顾驱动力和向心力,以B范围为控制目标,以路面状况、转向盘转角、车身倾斜度等为据,由TCS ECU计算出最小滑移率目标值,由100%至100%向心力作最佳的调配,使车辆在安全状态下充分发挥其操作性与运动性。 五、TCS系统的控制对象 1、起步加速控制 当驾驶员在光滑路面上过多踩油门时,会造成车轮的滑转。驱动控制系统通过自动施加部分制动或减少发动机输出功率的方式,

电磁阀驱动电路

设计文件 (项目任务书) 一、设计题目 电磁阀驱动电路系统设计全程解决方案 二、关键词和网络热点词 1.关键词 电磁阀驱动光电耦合…… 2.网络热点词 电动开关……….. 三、设计任务 设计一个简单的电池阀驱动电路,通过按钮开关控制市场上的12V常闭电池阀打开和闭合。 基本要求: 1)电路供电为24V; 2)电磁阀工作电压为12V; 3)带有光电耦合控制电路; 4)用发光二极管来区别、显示电磁阀的开关开关状态 四、设计方案 1.电路设计的总体思路 电磁阀驱动电路是各种气阀、油阀、水阀工作的首要条件,其作用是通过适当的电路设计,使电池阀能够按时打开或半打开,有需要控制阀以几分之几的规律打 开之类的要求,应设计较精密的的驱动电路。我做的只是一个简单的驱动常闭电池 阀全打开的简单驱动电路。通过光电耦合器控制三极管的导通,进而控制电磁阀的 打开与闭合。电磁阀导通的同时,与之并联的LED灯也随之亮。来指示电磁阀正 在工作。我们选用大功率管TIP122来控制电路的导通、截止,而且这里必须用大 功率管,因为电磁阀导通时电流特别大。考虑到电磁阀断开时会有大股电流回流,这时则需要设置回流回路,防止烧坏元器件,我们这里采用大功率二极管1N4007 与电磁阀形成回流回路来消弱逆流电流的冲击。具体的电路图如下图1所示:

2、系统组成:

在设计整个电路前,我们应该先有个整体构思,建立一个整体框架,然后根据设计要求再逐步细化、设计每一个模块的具体电路,及工作原理。最后将各部分有机的连接到一起,形成一个完整的电路系统。完成项目任务。系统框图如下图2所示: 图2 系统框图 电磁阀驱动电路整个系统主要分两个部分: 第一个部分:光电耦合器控制电路。我们都知道光电耦合器随着输入端电流的增加,其内部发光二极管的亮度也会增强,紧随着光电耦合器的输出电流就会跟着增大。光电耦合器一般由三部分组成:光的发射、光的接受、及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接受而产生光电流,再进一步放大后输出。这就完成了电-光-电的转换,从而起到输入、输出、隔离的作用。而我们本电路只需要小电流,故我们加了两个10K限流电阻,产生足以驱动或打开后面的三极管的电流即可。具体电路见图3,其中J1接口外接24V正电源给系统供电。 图3 开关电路原理图

电动汽车电机驱动控制策略研究

本科毕业设计(论文) () 论文题目:电动汽车电机驱动控制策略研究 本科生姓名:关海波学号:201211318 指导教师姓名:赵峰职称: 申请学位类别:工学学士专业:电力工程及管理 设计(论文)提交日期:(小四号楷体加黑)答辩日期:(小四号楷体加黑) 本科毕业设计(论文)

电动汽车电机驱动控制策略研究 姓名:关海波 学号:201211318 学院:新能源及动力工程学院专业班级:电力工程及管理1201班

指导教师:赵峰 完成日期: 兰州交通大学LanzhouJiaotongUniversity

摘要 本论文首先介绍了异步电动机的数学模型,通过坐标变换,得到了异步电动机的空间矢量等效电路。并由理想逆变器的8种开关状态入手,得到了理想逆变器的数学模型,建立了空间电压矢量的定义。并在此基础上对定子磁链和电磁转矩及空间电压矢量之间的关系进行了分析,阐述了六边形磁链轨迹和近似圆形磁链轨迹异步电动机直接转矩控制系统的结构和工作原理。 根据异步电动机直接转矩控制的工作原理,本论文在的平台下,分别搭建了六边形磁链轨迹和圆形磁链轨迹直接转矩控制系统模型。并对仿真结果进行了相应的分析,验证了异步电动机直接转矩控制策略的可行性。而且,对两种磁链轨迹直接转矩控制系统的优缺点及应用范围进行了比较。 本论文以电动汽车的电机驱动部分为研究对象,对于异步电动机的直接转矩控制技术进行了较为深入的理论研究,在电动汽车及其他相关领域的应用具有一定的参考价值。 关键词:电动汽车;电机驱动;直接转矩控制

, . . , . . , . a , a , . . :,, 目录 摘要错误!未指定书签。 错误!未指定书签。 1 绪论错误!未指定书签。 1.1国内外电动汽车的发展及现状错误!未指定书签。 2 电动汽车电机驱动系统分析错误!未指定书签。 2.1电动汽车驱动电机的特殊要求错误!未指定书签。 2.2电动汽车电机驱动系统的分类及选择错误!未指定书签。

电磁阀控制电路

电磁阀控制电路 (1)试制作一个电磁阀控制电路 一个参考设计的电磁阀控制电路和印制电路板图[68]如图6.3.8和6.3.9所示,印制电路板的实际尺寸约为65mm×40mm。霍耳传感器U1和小磁铁等构成了铁片检测电路。“555”时基集成电路U2和电位器RP1、电阻器R4、电容器C2等构成了典型单稳态触发电路。交流固态继电器SSR和压敏电阻器RV、限流电阻器R5等构成了交流无触点开关电路,它的负载是一个交流电磁阀。电源变压器T和硅全桥QD,固定式三端集成稳压器U3、滤波电容器C5等构成了电源电路,将220V 交流变换成平滑的9V直流,供控制电路使用。 图6.3.8 电磁阀控制电路电原理图 图6.3.9 电磁阀控制电路印制电路板图 当无铁片插入时,霍耳传感器U1受小磁铁磁力线的作用,其输出端第3脚处于低电平,发光二极管D1亮,晶体三极管Q1截止,与其集电极相接的时基集成电路U2的低电平触发端第2脚通过电阻器R3接电源正极,单稳态电路处于复位状态。此时,U2内部导通的放电三极管(第7脚)将电容器C2短路,U2输出端第3脚为低电平,发光二极管D2不亮,交流固态继电器SSR因无控制电流而处于截止状态,电磁阀无电不吸动,处在闭阀状态。当将铁片投入专门的投票口时,铁片沿着滑槽迅速下滑,在通过检测电路时,小磁铁与U1之间的磁力线被铁片暂时短路,使U1第3脚输出高电平脉冲,经Q1反相后作为U2的触发脉冲。于是,单稳态电路翻转进入暂稳态,U2的第3脚输出高电平,D2发光;同时SSR导通,使控制电磁阀得电自动开阀。这时,U2内部放电三极管截止,延时电路中的C2通过R P和R4开始充电,并使U2的阀值输入端(高电平触发端)第6脚电位不断上升。当。两端充电电压大于号V DD时,单稳态电路复位,U2的第3脚又恢复为低电平,D2熄灭,SSR截止,电磁阀断电关闭。与此同时,U2内部放电三极管导通,C2经第7脚快速放电,电路又恢复到常态。 322

两位五通电磁阀工作原理几种控制方式

两位五通电磁阀工作原理几种控制方式 两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与内部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理。 气动执行机构的几种控制方式 一、引言 气动马达作为一种执行机构,在工业生产和工业控制中起着很重要的作用。气动马达使用空气取代电力和液压来产生动力,可以实现无级变速,可瞬间启动、停滞和换向,具有自动冷却功能,无电火花,可在易燃易爆,如含有化学、易燃性或挥发性等物质湿热和多尘的环境下运行,如矿区、隧道、油漆厂、化学工厂、石化、生物科技、药厂、晶圆、半导体、光纤、兵工厂、船舶、养殖等行业用于驱动,因用空气作为动力,容易获得,用后空气可以直接排入大气无污染,压缩空气还可以进行集中供给和远距离控制。 二、气动阀门执行器工作原理 利用压缩空气推动执行器内多组组合气动活塞运动,传力给横梁和内曲线轨道的特性,带动空芯主轴作旋转运动,压缩空气气盘输至各缸,改变进出气位置以改变主轴旋转方向,根据负载(阀门)所需旋转扭矩的要求,可调整气缸组合数目,带动负载(阀门)工作。 三、气动阀门执行器的控制方式 由于现在的控制方式和手段越来越多,在实际工业生常和工业控制中,用来控制气动执行机构的方法也很多,常用的有以下几种。 (一)基于单片机开发的智能显示仪控制 智能显示仪是用来监测阀门工作状态,并控制阀门执行期工作的仪器,它通过两路位置传感器监视阀门的工作状态,判断阀门是处于开阀还是关阀状态,通过编程记录阀门开关的数字,并且有两路与阀门开度对应的4~20mA输出及两足常开常闭输出触点。通过这些输出信号,控制阀门的开关动作。根据系统的要求,可将智能阀门显示仪从硬件上分为3部分来设计:模拟部分、数字部分、按键/显示部分。 1、模拟电路部分主要包括电源、模拟量输入电路、模拟量输出电路三部分。 电源部分供给整个电路能量,包括模拟电路、数字电路和显示的能源供应。为了实现阀门开读的远程控制,需要将阀门的开度信息传送给其他的控制仪表,同时控制仪表能从远方制定阀门为某一开度,系统需要1路4~20mA的模拟量输入信号

高速电磁阀

高速电磁阀 高速电磁阀也叫高速开关阀、高速电磁开关阀。是很多控制系统的关键执行元件, 例如在汽车制动防抱死系统(ABS) ,电控柴油喷射系统,无凸轮电控液压驱动气门系统上都需要具有大流量,快速响应的开关电磁阀.它通过接受电子控制单元的控制信号实现快速的启闭,额定流量和动作时间是衡量电磁阀的重要指标,其直接影响系统的稳定性和可控性,电磁阀的额定流量越大,响应时间越快,系统的控制精度和稳定性越好. 目录 ?高速电磁阀的发展概况 ?高速电磁阀的分类 ?高速电磁阀的特点 ?高速电磁阀的设计考虑 高速电磁阀的发展概况 ?国外早在50年代末就开始了数字阀的研制工作,但在1975年以前只限于实验室研究。高速电磁开关阀自二十世纪七十年

代问世以来,国内外许多厂家、公司,竞相研制出不少的型式结构,对高速开关阀的研究和应用已经成为液压界的一个重要课题。 英国最先开展高速开关阀研究,开发出两种特殊结构的高速开关阀,分别采用筒状、锥状的结构设计从而提高了阀体结构刚度,克服了传统电磁开关阀电磁作用力越大衔铁加速度越小的矛盾,使得当阀芯行程小于1mm时,阀的响应时间不大于 1ms。 美国公司则于1984年推出了一种三通球形高速电磁开关阀,该阀的响应时间为:开启时间3ms,关闭时间2ms,工作压力10Mpa。 德国一公司成功地开发出一种适用于超高压下工作的高速电磁开关阀,该阀的开启时间为0.3ms,关闭时间为0.65ms。德国另一公司研制响应时间为0.2ms,工作压力为135MPa的超高压高速电磁开关阀。 日本一公司研制的高速电磁开关阀,为三位四通滑阀结构,最高工作压力为50MPa,响应时间为1ms,。此类型高速开关阀的工作流量都甚小,需要的额定电磁力就较小。各有特点,各有不同的实用范围,需要根据系统对电磁阀的性能、安装尺寸的具体要求选择合适的电磁阀结构设计。

IRF540驱动电磁阀电路分析

IRF540 MOS管应用 VDSS=100V RDS<0.077 ID=22A VGS(th)=4V VGS=10. RDS接近0.007 ID=11A 负载电流小的情况下可以5V驱动IRF540,IN4007 MOS管内部等效,100/10W(可用2W)功率电阻, 电磁阀驱动电路原理图 ABS压力调节器的4个常开进油电磁阀的最大起动电流约为3.6 A;4个常闭出油电磁阀最大起动电流约为2.4 A。而L9349的工作电压4.5~32 V,两路通道内阻0.2Ω,最大负载电流3A;另两路内阻0.3Ω,最大负载电流5A,恰好能满足ABS常开和常闭电磁阀的驱动电流要求,而且较低的导通内阻又能保证低功耗,因此L9349非常适合进行ABS电磁阀的驱动控制。电磁阀驱动电路原理图见图。

电磁阀驱动电路原理图 在图中,每片L9349能驱动4个电磁阀工作,属于典型的低端驱动。通过Vs端口给芯片提供12V供电电压;当给输入端IN1~IN4 PWM控制信号,就能方便地控制输出端以驱动4路电磁阀工作,OUT1和OUT2端口的最大驱动能力为5A,应该连接ABS的常闭电磁阀;OUT3和OUT4端口最大驱动能力为3A,应连接ABS常开电磁阀,不可接反;EN 端口为使能端,能通过MCU快速关闭芯片;L9349的数字地和模拟地分开,提高了驱动模块的抗干扰能力。

24V电磁阀驱动电路 8 推荐

说明: 驱动24V直流电磁阀的驱动电路:,此电路已经在实际应用中,稳定,可靠。 此电路虽然在现场已经稳定运行很久,但有不合理的地方,不知道大家有没有发现。 ---2007-07-24 此电路驱动24V的电磁阀,电流只能在2A左右,不能太大,因为 Vgs 只有5V,IRF540没有达到完全的导通状态,如果要增大电流得重新设计驱动电路,使Vgs在10V左右才能充分发挥IRF540的驱动能力。这么久了都没人提出这问题,还是出来补充下,以免大家误解 ---2007-09-07 欢迎大家交流探讨! -------------------------------- 最新更新 2008.04.16 ----------------------------------- 重新设计了驱动电路,已经在实际电路可靠工作,供参考!(如果浏览器不能看到全图,请把图片保存到你的电脑即可)

高速开关电磁阀的研究及测试

文章编号:1000-0925(2004)01-038-05 250010 高速开关电磁阀的研究及测试 刘兴华,李广荣 (北京理工大学机械与车辆工程学院,北京,100081) R esearch and T est of High Speed Switch Electromag netic V alve L IU Xing 2hu a ,L I G u ang 2rong (School of mechanical and Vehicle Engineering ,Beijing Inst.of Technology ,Beijing 100081,China ) Abstract :The high 2speed switch electromagnetic valve is a key equipment in the electromagnetic control sys 2 tem ,whose performance will influence the whole electromagnetic control system greatly.In this paper ,a new kind of high 2speed swicth electromagnetic valve with two loops is designed and tested.Some advise in the design of elec 2tromagnetic valve are given and its application to the control system is introduced. 摘要:高速开关电磁阀在电磁控制系统中是一种结构简单、易于实现计算机控制的关键控制元件,它的性能指标对整个电液系统有很大的影响。本文设计了一种新型的双线圈结构的高速开关阀,并对其性能进行了测试和研究,给出电磁阀设计过程中需注意的几点建议,最后,给出了电磁阀在电控系统中的应用方法。关键词:内燃机;电磁阀;测试;特性 K ey Words :I.C.Engine ;Electromagnetic Valve ;Testing ;Characteristic 中图分类号:T K406 文献标识码:A 1 概述 随着微电子技术的飞速发展,以机、电、液三位 一体为特征的高速数字液压技术也得到了迅速发展,高速数字开关阀(HSV )是该技术成功应用的一个典范。以HSV 为核心的执行器具有快速响应、低成本、抗污染的特点,其应用范围和领域正在不断地扩展。在现代高压开关设备中,电磁阀的响应时间直接影响着整个系统的性能。因此,分析与设计一个快速开关的电磁阀,对于进一步提高液压机构的性能具有重要意义。 电磁阀的响应时间受电、磁、机三项因素影响,如要缩短动作时间,无非是增加电磁力,减小各种机械阻力,减少电与磁的过渡过程时间等三项措施。因此,在设计电磁阀时,必须深刻了解影响其动作时间的各种因素及其相互制约关系。高速开关电磁阀的开关速度是决定阀性能的主要标志。电磁阀在开 关时的阻力直接影响阀的开关时间,因此设计中尽 可能的减小阀芯所受的各种阻力。 电磁阀的运动过程可分为两个阶段,预运动阶段t 1和运行阶段t 2[3]。t 1为动铁芯预动时间,即从线圈得电至动铁芯刚开始起动这一阶段时间;这段时间是由于电与磁的惯性,即由电磁暂态现象引起的滞后时间,这时间决定于电磁铁的结构、材料、线圈电压、电感的大小和弹簧反力大小。t 2为动铁芯运动时间,即从动铁芯开始运动至阀门全打开(或全关闭)所经历的时间,这段时间取决于阀芯所受的各种阻力。本文以北京理工大学设计的滑阀式结构高速开关电磁阀为基础,对其进行工作特性研究。2 高速开关电磁阀的结构和原理 设计的高速开关电磁阀采用了圆柱滑阀式两位三通结构(如图1)。使用一种含少量铝的铁硅合金 收稿日期:2003206230 作者简介:刘兴华(1963-),男,副教授,主要研究方向为内燃机电子控制及排放,E 2m ail :lxh @https://www.wendangku.net/doc/7a11685908.html, 。 第25卷(2004)第1期 内 燃 机 工 程  Neiranji G ongcheng Vol.25(2004)No.1

高速开关阀

车用电控技术有限公司 红林车用电控技术有限公司 贵州红林 HSV系列开关式高速电磁阀 HSV系列开关式高速电磁阀系列产品是我公司与美国BKM公司联合研制、生产的快速响应开关式数字阀,是一种用于机电液一体化中电子与液压机构间理想的接口元件。该系列产品结构紧凑、体积小、重量轻、响应快速、动作准确、重复性好、抗污染能力强、内泄漏小、可靠性高。最显著的特点是该产品能够直接接受数字信号对流体系统的压力或流量进行PWM控制,该特点为数字控制进入液压气动领域提供了有效手段。1992年该产品被评为国家级重点新产品并获得贵州省科学技术进步二等奖。 HSV高速电磁阀系列产品具有两通常开、两通常闭、三通常开、三通常闭四个系列近200个品种;材料有碳钢、不锈钢两种类别;工作方式可采用连续加载、脉冲宽幅调制、频率调制或脉宽——频率混合调制。 HSV高速电磁阀系列产品的上述特点使该电磁阀具有广泛的应用范围,如汽车变速器、燃油喷射、天然气喷射、压力调节、流量控制、宇航控制系统、先导阀、医疗器械、机床、机器人等领域。

性能数据 结构:螺纹插装式,两通常开、两通常闭、三通常开、 三通常闭 额定压力:2、5、7、20、14、20 MPa 流量:2~9L/min(额定压力下) 内泄漏:0 电压:12V 、24V DC 工作方式:连续通电、脉冲宽幅调制、频率调制或脉宽——频率混合调制 脉宽范围(占空比):20%~80% 最大功率:10~50W 平均功率:3~15W 动态响应时间: 脉宽调制:常闭型:开放≤3.5ms,关闭≤2.5ms 常开型:开放≤2.5ms,关闭≤3.5ms 连续通电:常闭型:开放≤6.0ms,关闭≤4ms 常开型:开放≤4.5ms,关闭≤6.0ms 重复精度:±0.05ms 温度范围:-40℃~+135℃ 寿命:设计寿命不小于1×109次 耐久性试验已超过2×109次

最新驱动力控制系统TCS资料

驱动力控制系统TCS (又称TRC 防滑控制系统TRAC 循迹控制系统) 第一节概述 一、TCS 的作用在摩擦力限度内自动调节汽车的驱动力,避免车轮打滑、轮胎磨损,使车辆能正常行驶及维持转向的稳定性和操控性。 汽车行驶时,轮胎会受到两个力,即加速时的驱动力和转向时的向心力,两力之和称为轮胎力。 汽车的驱动力超过摩擦力的限度时轮胎因打滑的关系,将无法有效的将驱动力传至路面,使车辆无法操纵而发生不安全。 二、ABS 与TCS 的区别 1、ABS 是在制动时防止车轮抱死,以免发生滑行现象,而TCS 是在湿滑起步或加速时防止驱动轮打滑或在摩擦系数相差很大的非对称路面防止单侧驱动轮打滑。 2、ABS 对驱动轮和非驱动轮都可以控制,而TCS 则只控制驱动轮 3、ABS 控制期间,各车轮之间的影响不大,而TCS 控制期间由于差速器的作用,会使驱动车轮之间产生相互影响 三、TCS 的控制方式 1、控制发动机 控制燃油喷射量、节气门开度或点火的时间 2、控制制动(驱动轮) 与ABS 调节器共用或另设调节器 3、发动机与制动力同时控制

四、TCS 的控制范围 控制范围:滑移率0-35% (B 范围) 1、以A 范围为目标,可发挥最大的驱动力,但轮胎的向心力不足,转向控制性能变差,若以向心力最大为优先条件,则无法获得有效的见加速力。 2、为兼顾驱动力和向心力,以B 范围为控制目标,以路面状况、转向盘转角、车身倾斜度等为据,由TCS ECU 计算出最小滑移率目标值,由100%至100% 向心力作最佳的调配,使车辆在安全状态下充分发挥其操作性与运动性。 五、TCS 系统的控制对象 1、起步加速控制当驾驶员在光滑路面上过多踩油门时,会造成车轮的 滑转。驱 动控制系统通过自动施加部分制动或减少发动机输出功率的方式,可使车轮的滑移率保持在最佳范围内,由此可防止驾驶员过多踩油门所带来的负作用,获得较好的行驶安全性及良好的起步加速性能。当然,也可减少轮胎

电磁阀驱动电路(完整资料).doc

【最新整理,下载后即可编辑】 设计文件 (项目任务书) 一、设计题目 电磁阀驱动电路系统设计全程解决方案 二、关键词和网络热点词 1.关键词 电磁阀驱动光电耦合…… 2.网络热点词 电动开关……….. 三、设计任务 设计一个简单的电池阀驱动电路,通过按钮开关控制市场上的12V常闭电池阀打开和闭合。 基本要求: 1)电路供电为24V; 2)电磁阀工作电压为12V; 3)带有光电耦合控制电路; 4)用发光二极管来区别、显示电磁阀的开关开关状态 四、设计方案 1.电路设计的总体思路 电磁阀驱动电路是各种气阀、油阀、水阀工作的首要条件,其作用是通过适当的电路设计,使电池阀能够按时打开或半打开,有需要控制阀以几分之几的规律打开之类

的要求,应设计较精密的的驱动电路。我做的只是一个简单的驱动常闭电池阀全打开的简单驱动电路。通过光电耦合器控制三极管的导通,进而控制电磁阀的打开与闭合。电磁阀导通的同时,与之并联的LED灯也随之亮。来指示电磁阀正在工作。我们选用大功率管TIP122来控制电路的导通、截止,而且这里必须用大功率管,因为电磁阀导通时电流特别大。考虑到电磁阀断开时会有大股电流回流,这时则需要设置回流回路,防止烧坏元器件,我们这里采用大功率二极管1N4007与电磁阀形成回流回路来消弱逆流电流的冲击。具体的电路图如下图1所示:

图1

2、系统组成: 在设计整个电路前,我们应该先有个整体构思,建立一个整体框架,然后根据设计要求再逐步细化、设计每一个模块的具体电路,及工作原理。最后将各部分有机的连接到一起,形成一个完整的电路系统。完成项目任务。系统框图如下图2所示: 图2 系统框图 电磁阀驱动电路整个系统主要分两个部分: 第一个部分:光电耦合器控制电路。我们都知道光电耦合器随着输入端电流的增加,其内部发光二极管的亮度也会增强,紧随着光电耦合器的输出电流就会跟着增大。光电耦合器一般由三部分组成:光的发射、光的接受、及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接受而产生光电流,再进一步放大后输出。这就完成了电-光-电的转换,从而起到输入、输出、隔离的作用。而我们本电

高速开关电磁阀的性能分析及优化研究

高速开关电磁阀的性能分析及优化研究 张廷羽张国贤 (上海大学机电工程与自动化学院上海 200072) 摘要:本文建立了高速电磁阀的电、磁、机、液模型,并利用ANSYS、AMESim软件,将上述模型联系起来求解,在此基础上,对影响电磁阀流量和响应时间等性能的各个因素,进行了定性的分析,提出了进一步改进和优化高速电磁阀的方案。 关键词:电磁阀 ANSYS AMESim 仿真 Abstract: In this paper, a mathematical model for solenoid is built, including the magnetic model、current model、mechanical model and hydraulic model. With ANSYS、AMESim software, the model is calculated and the factors which effect the performance of solenoid are analyzed. Keyword : solenoid ANSYS AMESim simulation 1、概述 高速开关电磁阀是很多控制系统的关键执行元件,例如在汽车制动防抱死系统(ABS)、电控柴油喷射系统、无凸轮电控液压驱动气门系统上都需要具有大流量、快速响应的开关电磁阀。它通过接受电子控制单元的控制信号实现快速的启闭,额定流量和动作时间是衡量电磁阀的重要指标,其直接影响系统的稳定性和可控性,电磁阀的额定流量越大,响应时间越快,系统的控制精度和稳定性越好。 目前,具有大流量、高响应的电磁阀只在少数发达国家生产制造,早在20世纪70年代末,英国Lucas公司就研制了Colenoid电磁阀,开启时间为0.75ms,关闭时间为0.8ms,被用于该公司的电控单体泵中,且由于其行程长(最大可达20mm),可达到很高流量;日本Zexel公司的DISOLE电磁阀,当最大行程为0.4mm时,其响应时间为0.74ms,被用于该公司研制的Model-1型电控分配泵中。相比之下,国内的研究起步较晚,研究单位不多,且还处于研究阶段,实际应用更少,清华大学所开发的高速电磁阀开启时间0.56ms,关闭时间1ms,但流量很小,贵阳红林机械厂的螺纹插装式高速开关阀开启时间3ms,关闭时间2ms,额定流量9L/min。国内的研究机构尽管取得了一定的成就,但还有一些关键技术没有解决,特别是快速响应和大流量的问题,因此对高速电磁阀展开研究有着深远的意义。 电磁阀是电、磁、机、液强耦合系统,在电磁阀的设计和分析过程中,特别在设计快速开关阀时,必须建立正确的数学模型,找出影响电磁阀性能特性的各个因素以及其相互之间的制约关系,忽略次要因素,侧重于主要因素,以达到优化设计的目的。 为分析复杂磁路,并迅速有效求解非线性问题,本文应用了ANSYS作为工具,对高速电磁阀的电磁部分进行分析,并在此基础上建立了电磁阀整体仿真模型,对影响电磁阀的各个因素进行了计算和分析,并提出了优化的方案。 2、高速电磁阀的计算模型 2.1高速电磁阀结构及其理论模型 本文以直流驱动的电磁阀作为研究对象,如图所示:

柴油机高速电磁阀驱动特性仿真分析

收稿日期:2005-01-10;修回日期:2005-09-28 作者简介:宋 军(1976)),男,山东省德州市人,在读博士,主要从事发动机电控方面的研究. 柴油机高速电磁阀驱动特性仿真分析 宋 军,黄建平,李孝禄,李书泽,黄 震 (上海交通大学机械与动力工程学院,上海 200030) 摘要:为了降低电磁阀的功率损耗,确保其长期可靠运转,基于H EU I 喷油器,利用M at lab 软件对电磁阀PWM 控制方式进行了仿真分析。仿真结果表明,提高线圈电压有助于实现电磁阀快速开启,开启脉冲和P WM 占空比决定了不同阶段电流的大小,P WM 脉冲频率影响电流的稳定性,几方面的有机调节,可以实现先高后低理想的电流波形。仿真结果为电磁阀的柔性控制提供了可靠依据。 关键词:柴油机;电子控制;高速电磁阀;驱动电路;电控液压泵喷嘴;脉宽调制 中图分类号:T P211.5 文献标识码:B 文章编号:1001-2222(2005)05-0048-04 随着电子控制技术的发展,高速电磁阀的引入, 发动机燃油喷射系统的喷油量、喷油正时和喷油速率可以实现精确控制。为了使电磁阀快速准确地开启与关闭,除了阀体本身制作精密外,还需要一个高效的驱动方式。 1 高速电磁阀的驱动特性 与汽油机电磁阀驱动方式不同,柴油机高速电磁阀阻值低,线圈上电流大,为了降低其功率损耗,线圈的理想电流波形如图1所示。由于燃油喷射系统每次喷射的时间很短,电磁铁必须能在很短的时间内产生强大的吸力来克服复位弹簧的拉力。电磁吸力与线圈电流成正比,在电磁阀结构参数一定的情况下,为了使电流在短时间内迅速增大,应尽可能提高驱动能量输入,即增大线圈电压,以实现电磁阀的快速开启。但大电流通过线圈必然会造成发热,为了避免电磁阀过热,阀门开启后应迅速将线圈电流下降到一个较小的数值,以维持阀门开启状态,这样既利于减小功耗,又便于及时关闭电磁阀,实现快速断油,此时的电流称为维持电流。 电磁阀线圈中这种先高后低的电流波形,可以大幅度降低功率损耗,保证整个喷油系统长期可靠运行。电磁阀开启阶段消耗的功率占总功耗的比例很大,与使用单一大电流工作方式相比,这种分段工作方式节省功率超过50%,并且随着电流维持阶段所占比例的增大, 功率损耗还会进一步降低。 图1 电磁阀线圈理想电流波形 2 电磁阀驱动方式及仿真分析 2.1 电磁阀驱动电路形式 在电控燃油喷射系统中,为了得到理想的电磁阀控制电流波形,一般采用3种电路形式。2.1.1 可调电阻式 通过改变不同阶段电路回路中的电阻值,来实现对电流波形的控制。该电路维持电流调节方便,但在电流维持阶段的功率很大一部分消耗在分压电阻上,造成了功率的无效损耗,而且电阻受额定功率和尺寸的限制,在电路板上布置不便,不符合高集成度的要求。2.1.2 双电压式 控制电路通过改变工作过程不同阶段的工作电压幅值,达到提供较小维持电流,减小能量消耗的目的。因为要提供两种电压,受到电源形式限制,需要进行DC )DC 变换,增加了整个电路的复杂性;而且 第5期(总第159期)2005年10月车 用 发 动 机V EH ICL E EN GIN E N o.5(Serial N o.159) O ct.2005

相关文档