文档库 最新最全的文档下载
当前位置:文档库 › 多晶硅制备技术的研究现状

多晶硅制备技术的研究现状

多晶硅制备技术的研究现状
多晶硅制备技术的研究现状

多晶硅制备技术的研究现状

作者:段昊

院系:化学化工学院

学号:1502070117

日期:2009/10/24

多晶硅制备技术的研究现状

段昊,中南大学,化学化工学院,1502070117

摘要:多晶硅是当今社会在能源和信息产业的重要无机材料,他具备单

晶硅和非晶硅的诸多优点,广泛用于制造太阳能电池及半导体。高纯多

晶硅是电子工业和太阳能光伏产业的基础原料,在短期内,还不可

能有其他材料能够替代硅材料而成为电子和光伏产业主要原材料。

目前多晶硅生产制备的多种生产工艺路线并存,本文主要讨论了制

备多晶硅的不同方法及差异。

关键字:多晶硅,制备,晶化,气象沉积。

引言:

自从半导体工业发展以来,硅作为性能优良的半导体材料受到人们的重视。硅有单晶硅,多晶硅和非晶硅等形态,多晶硅兼具单晶硅和非晶硅的大部分优点于一身,以及相对较成熟的单晶硅制造工艺被沿用到多晶硅的制备中,人们对多晶硅制备的研究兴趣愈发浓厚。多晶硅主要应用于半导体工业及制造太阳能电池上,占多晶硅总需求的90%以上。目前有两个应用方向有发展潜力:一是大晶粒多晶硅,具有远大于非晶硅,并与单晶硅可相比拟的高载流子迁移率,常代替非晶硅应用于薄膜晶体管(TFT)的有源层,因此不仅可以取代非晶硅用于液晶显示器件(LCD),而且用它制作的互补MOS(CMOS)电路可以实现LCD一体化,即把外围驱动电路和显示屏做在同一衬底上;另一方面,多晶硅薄膜在光照下,无非晶硅薄膜材料在受到长时间的光照之后,光电导和暗电导的性能均有所降低的光致亚稳效应(S-W效应),而且带隙较窄,对可见光能有效吸收,被公认为是高效率和低功耗的光伏材料,因为在太阳电池制作上的应用十分成功。本文总结了多晶硅制备的一些方法。

制备方法:

目前多晶硅制备方法有铸造法[1]和低温合成法[2]两大方法。其中铸造法有浇铸法,定向凝固法,电磁感应加热连续铸造法等;低温合成则分为化学气象沉积(CVD)和非晶硅薄膜晶化两类。非晶硅薄膜晶化又有金属诱导横向晶化,准分子激光诱导等方法;化学气象沉积则有触媒化学气象沉积(CAT-CVD),电感耦合等离子体化学气象沉积(ICP-CVD),等离子体增强气象沉积(PECVD),热丝化学气象沉积(HWCVD)等。

铸造法:有浇铸法,定向凝固法,电磁感应加热连续铸造法等。制备的多

晶硅多是较大的颗粒。

浇铸法是将预熔的硅倒入准备好的凝固坩埚结晶制备多晶硅的方法。该方法工艺成熟,简单,可以实现半连续生产。但是在高温下坩埚会与熔融态的硅发生反应,引入杂志,并且倾倒到另一坩埚中同样会引入杂质,造成二次污染,因此制的的多晶硅纯度不高。

定向凝固法在一个坩埚中熔炼,通过控制和保持坩埚内温度梯度的方向和大小,会沿温度梯度方向凝固,从而形成一个柱状晶体组织。该方法熔融和结晶在同一个坩埚内进行,不会产生二次污染;但是由于熔态和固态同时存在,定向结晶时固液两相中杂质含量不同,导致所的多晶硅的杂质含量不均匀。因此徐切除两边的部分,降低了原料的利用率。同时该方法也存在能耗高等缺陷。

电磁感应加热连续铸造法(EMCP)[3]利用电磁感应加热融化硅原料,融化部分相信的区域转移时其余部分凝固结晶。该方法不使用坩埚,有避免了杂质的二次污染,同时可实现连续生产,减小能耗等优点。

低温合成[4]:该方法主要用于合成多晶硅薄膜,有非晶硅晶化法及气象沉积法两大方法。

非晶硅晶化:该方法需要预先制备非晶硅薄膜,再通过晶化得到所需产物。

快速退火法:该方法有快速热退,火用时短,耗能少,效率高,工业应用前景好等优点。

王红娟,卢景霄,刘萍,王生钊等研究了低温快速热退火晶化法[5]合成多晶硅薄膜,将沉积好的非晶硅薄膜放入特制的快速热退火炉中进行退火。利用’射线衍射仪分析退火后的薄膜晶体结构,用电导率测试仪测试其暗电导率。研究结果表明,利用快速热退火晶化能够使非晶硅薄膜在较低温度下,在较短时间内发生晶化。

张宇翔,王海燕,陈永生,杨仕峨等人研究了快速光热退火法[6]制备多晶硅薄膜,他们用等离子体增强型化学气相沉积先得到非晶硅薄膜,再用卤钨灯照射的方法对其进行快速光热退火,得到了多晶硅薄膜。然后,进行XRD衍射谱、暗电导率和拉曼光谱等的测量。结果发现,a-S i H薄膜在RATA退火中,退火温度在750℃以上,晶化时间需要2min,退火温度在650℃以下,晶化时间则需要2 5h,晶化后,晶粒的优先取向是(111)晶向;退火温度850℃时,得到的晶粒最大,暗电导率也最大;退火温度越高,晶化程度越好;退火时间越长,晶粒尺寸越人;光子激励在RATA退火中起着重要作用。

金属诱导横向晶化法:金属诱导晶化制备多晶硅方法是通过对制备Ni、Al、Au、Ag、Pd等金属与非晶态硅的复合薄膜并使其在低温下退火处理,在金属的诱导作用下使非晶态硅在较低温度下晶化而获得多晶硅。

夏冬林,杨晨,徐慢,赵修建等研究了金属铝诱导制备多晶硅薄膜的方法[7]。他们以氢气稀释的硅烷和硼烷为气源,利用等离子体增强化学气相沉积法(PECVD)制备出p型a-Si薄膜.采用铝诱导晶化技术对不同厚度的铝膜对a-Si薄膜晶化的

影响进行了研完。发现,铝膜溅射为10 s的非晶硅薄膜样品在450℃下退火10 min 后,p型a-Si结构仍为非晶态,铝膜溅射为20s、的非晶硅薄膜在450 0C下退火20 min后,p型a-Si薄膜开始晶化为poly-Si薄膜,并且铝膜厚度越厚,则a-Si 薄膜晶化程度越强。

激光诱导晶化法:激光诱导进化法利用瞬间激光脉冲产生的高能量入射到非晶硅薄膜表面,仅在薄膜表层100 nm厚的深度产生热能效应,使a-Si薄膜在瞬间达到1000 0C左右,从而实现a-Si向Poly-Si的转变。在此过程中,激光脉冲的瞬间(1550 ns)能量被a-Si薄膜吸收并转化为相变能,因此,不会有过多的热能传导到薄膜衬底,合理选择激光的波长和功率,使用激光加热就能够使a-Si薄膜达到熔化的温度且保证基片的温度较低。

廖燕平,黄金英,郜峰利等人研究了激光晶化多晶硅的制备与其XRD谱[8],对氢化非晶硅(aSi·H)进行了脱氢和不同能量密度的准分子激光晶化多晶硅的实验,对所得样品用X射线衍射表征.针对多晶硅(111)面特征峰的强度、晶面间距和宽化信息,分析了激光功率密度对晶化多晶硅结晶度和应力的影响,根据谢乐公式(S ch err er)估算了晶粒的大小,得到用准分子激光晶化多晶硅的较佳工艺参数,并且验证了激光辐射对薄膜材料作用的3种情况。

戴永兵,邹雪城,徐重阳等用准分子激光诱导非晶硅晶化制备了多晶硅薄膜晶体管[9],该方法用XeCl准分子激光器对PECVD法生长的非晶硅薄膜进行了诱导晶化处理,成功制备了多晶硅薄膜晶体管。

低压气象化学沉积法:低压化学气相沉积是一种直接生成多晶硅薄膜的方法。它是集成电路中普遍采用的标准方法,具有生长速度快、成膜致密、均匀、装片容量大等特点。

邱春文,石旺舟等以四氟化硅和氢气为气源PECVD法低温制备了多晶硅薄膜[10],并研究了其机理,采用常规的PECVD法在低温(≤400℃)条件下制得大颗粒(直径>100nm)、高迁移率(~20cm2/vs),择优取向(220)明显的多晶硅薄膜。选用的反应气体为SiH4和H2混合气体。加入少量的SiH4后,沉积速率提高了将近10倍。同时还提出该方法在低温时促使多晶硅结构形成的反应基元应是SiFmHn(m+n≤3),而不可能是SiHn(n≤3)基团。

赵晓锋,温殿忠也对PECVD制备多晶硅薄膜进行了研究研究[11],该实验基于PECVD以高纯硅烷为气源研究制备多晶i硅薄膜,在衬底温度550℃,射频( 13 56M H z)电源功率为20W直接沉积获得多晶硅薄膜。采用X射线衍射仪(XRD)和场发射扫描电子显微镜(sEM)对多个样品薄膜的结晶情况及形貌进行分析,薄膜结淤.粒取向均为<111>、<220 >、<311>晶向。对550℃沉积态薄膜在goo℃、1000℃时进行高温退火处理,硅衍射峰明显加强。结果表明,退火温度越高,退火时间越长,得到多b硅薄膜表面晶粒趋于平坦,择优取向为<111>晶向,晶粒也相对增大。

刘丰珍,朱美芳,冯勇,刘金龙,汪六九,韩一琴采用了等离子体热丝法对多晶硅薄膜进行了合成[12],他们采用热丝化学气相沉积和等离子体增强化学气相沉积相结合的技术制备了多晶硅薄膜,并通过Raman散射、XRD、吸收谱等手段研究了薄膜结构和光学性质。发现与单纯的热丝和等离子体技术相比,等离子体热丝CV D技术在一定条件下有助十薄膜的}钻化和提高薄膜均匀性。Auger谱研究表明等离子体的引入人人降低了硅化物在高温热丝表面的形成。

结果与展望:

等离子体增强化学气相沉积(PECVD)在制备多晶硅薄膜方面有很大的应用潜力,这种方法所需的衬底温度较低,可选用廉价的玻璃作衬底,从而降低器件的成本,另外可大面积均匀成膜的优点使其获得广泛的应用。固相晶化法的优点是能制备大面积的薄膜,晶粒尺寸大于直接沉积的多晶硅。可进行原位掺杂,成本低,工艺简单,易于形成生产线。但是该法制的的多晶硅薄膜晶粒的晶面取向是随机的。相邻晶粒晶面取向不同将形成较高的势垒,需要进行氢化处理来提高SPC多晶硅的性能。激光法制备的多晶硅薄膜晶粒大、空间选择性好、掺杂效率高、晶内缺陷少但晶粒对激光功率敏感,生产成本高,设备维护复杂。总体来看,气象沉积法有望成为大量制备高品质多晶硅的理想方法。

参考文献:

[1].张发云,叶建雄铸造多晶硅制备技术的研究进展材料导报:综述篇

2009年5月(上)第23卷第5期:114

[2].武冠男,张军,刘林,等太阳能级多晶硅定向凝固技术的研究进展铸造技术,2008,29(5):673

[3].杨德仁太阳能电池材料[M].北京:化学工业出版社,2006

[4].杨定宇,蒋孟衡,涂小强低温多晶硅薄膜制备技术应用进展电子元件与材料第26卷第8期

[5].王红娟,卢景霄,刘萍,王生钊,张宇翔,张丽伟低温快速热退火晶化制备多晶硅薄膜可再生能源2006.3总第7期13页

[6].张宇翔,王海燕,陈永生,杨仕峨,部小勇,卢景霄,冯团辉,李瑞,郭敏

用快速光热退火制备多晶硅薄膜的研究人工晶体学报第34卷第2期2005年4月340

[7].夏冬林,杨晨,徐慢,赵修建金属铝诱导法低温制备多晶硅薄膜感光科学与光化学第24卷第2期2006年3月

[8].廖燕平,黄金英,郜峰利,邵喜斌,付国柱,荆海,缪国庆激光晶化多晶硅的制备与XRD谱吉林大学学报(理学版) 第42卷第1期 2 0 0 4年1月[9].戴永兵,邹雪城,徐重阳,李兴教,沈荷生,张志明准分子激光诱导非晶硅晶化制备多晶硅薄膜晶体管微电子学第30卷第5期2000年10月[10].邱春文,石旺舟以四氟化硅和氢气为气源PECVD法低温制备多晶硅薄膜太阳能学报能第25卷第3期2004年6月

[11].赵晓锋,温殿忠基于PECVD制备多晶硅薄膜研究人工晶体学报

第35卷第5期2006年10月

[12].刘丰珍,朱美芳,冯勇,刘金龙,汪六九,韩一琴等离子体-热丝CVD 技术制备多晶硅薄膜半导体学报第24卷第5期2003年5月

多晶硅的传统制备方法

https://www.wendangku.net/doc/7a18644274.html, 多晶硅的传统制备方法 目前世界上多晶硅生产最常见的方法有三种;四氯化硅氢还原法、三氯氢硅氢还原法和硅烷裂解法。三氯氢硅氢还原法是德国西门子公司发明的,因此又被称为西门子法。由于西门子法诞生的时间较早,后来有人又进行了一些新的改良,因此又有人将其称为改良西门子法。其实,改良西门子法还是西门子法,它的主体工艺流程基本没有变,还是利用氢气还原三氯氢硅来生产多晶硅。因此,为简单起见,我们还称它为西门子法。 上诉这三种多晶硅的制备方法格有千秋,从制备的难度和投资额的多少来看,四氯化硅氢还原法生产设备最少,最简单,四氯化硅的合成和提纯不需要冷冻系统,普通水冷即可将四氯化硅气体冷凝为液态的四氯化硅,而且无需将工业硅加工成硅粉,只需是合格的硅块就可以了。因此,四氯化硅还原法的投资额最少,最容易上马。硅烷沸点太低,为-112℃,要想用精馏法提纯硅烷,不仅要有极深度的制冷机,而且设备也极其复杂。因此,硅烷裂解法的投资额最大,最难。从沉积硅的直接回收率上看,硅烷裂解法最高,几乎是100%,最低是四氯化硅氢还原法,不足20%,西门子法高于四氯化硅氢还原法,约为25%左右。从安全上看,硅烷最危险,最容易爆炸,三氯氢硅次之,也容易爆炸,四氯化硅最安全,根本就不会发生爆炸。 从上面的介绍可以看出,硅烷裂解法最难,投资额最大,特别是,硅烷本身是易燃易爆物,容易发生剧烈的爆炸,一旦爆炸,将造成不可挽回的经济损失。20世纪60、70年代玩过曾有人研究过硅烷裂解法,而且也曾生产出品质很高的多晶硅,但由于事故频繁,损失惨重,最终还是停产下马。目前我国已经很少再有人采用此法来生产多晶硅了。虽然如此,也要清楚硅烷裂解法是具有许多优势的,只要解决好防爆问题,它还是非常有前途的。 当前常采用的是四氯化硅氢还原法和三氯氢硅氢还原法(西门子法),而且这两种方法与多晶硅和石英玻璃的联合制备法密切相关。 四氯化硅氢还原法是以四氯化硅和氢气为原料,在还原炉内发生化学反应来生成多晶硅的方法;三氯氢硅氢还原法是以三氯氢硅和氢气为原料,在还原炉内发生化学反应来生成多晶硅的方法。这两种方法基本相同,不同之处只是,一个是以四氯化硅和氢气为原料,另一个是以三氯氢硅和氢气为原料。

国内外光纤光缆现状及发展趋势分析

国内外光纤光缆现状及发展趋势分析 光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤光缆在我国的发展可以分为这样几个阶段:对光缆可用性的探讨;取代市内局间中继线的市话电缆和PCM电缆;取代有线通信干线上的高频对称电缆和同轴电缆。这两个取代应该说是完成了;现正在取代接入网的主干线和配线的市话主干电缆和配线电缆,并正在进入局域网和室内综合布线系统。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信和军用通信等领域。 1 光纤 符合ITU-T G.652.A规定的普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550nm区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITU-T G.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。G.653光纤虽然可以使光纤容量有所增加,但是,原本期望得到的零色散因为不能抑制四波混频,反而变成了采用波分复用技术的障碍。 为了取得更大的中继距离和通信容量,采用了增大传输光功率和波分复用、密集波分复用技术,此时,传输容量已经相当大的G.652普通单模光纤显得有些性能不足,表现在偏振模色散(PMD)和非线性效应对这些技术应用的限制。在10Gb/s及更高速率的系统中,偏振模色散可能成为限制系统性能的因素之一。光纤的PMD通过改善光纤的圆整度和/或采用“旋转”光纤的方法得到了改

善,符合ITU-T G.652.B规定的普通单模光纤的PMDQ通常能低于0.5ps/km1/2,这意味着STM-64系统的传输距离可以达到大约400km。G.652.B光纤的工作波长还可延伸到1600nm区。G.652.A和G.652.B光纤习惯统称为G.652光纤。 光纤的非线性效应包括受激布里渊散射、受激拉曼散射、自相位调制、互相位调制、四波混频、光孤子传输等。为了增大系统的中继距离而提高发送光功率,当光纤中传输的光强密度超过光纤的阈值时则会表现出非线性效应,从而限制系统容量和中继距离的进一步增大。通过色散和光纤有效芯面积对非线性效应影响的研究,国际上开发出满足ITU-T G.655规定的非零色散位移单模光纤。利用低色散对四波混频的抑制作用,使波分复用和密集波分复用技术得以应用,并且使光纤有可能在第四传输窗口1600nm区(1565nm-1620nm)工作。目前,G.655光纤还在发展完善,已有TrueWave、LEAF、大保实、TeraLight、PureGuide、MetroCor等品牌问世,它们都力图通过对光纤结构和性能的细微调整,达到与传输设备的最佳组合,取得最好的经济效益。 为了在一根光纤上开放更多的波分复用信道,国外开发出一种称为“全波光纤”的单模光纤,它属于ITU-T 652.C规定的低水吸收峰单模光纤。在二氧化硅系光纤的谱损曲线上,在第二传输窗口1310nm区(1280nm-1325nm)和第三传输窗口1550nm区(1380nm-1565nm)之间的1383nm波长附近,通常有一个水吸收峰。通过新的工艺技术突破,全波光纤消除了这个水吸收峰,与普通单模光纤相比,在水峰处的衰减降低了2/3,使有用波长范围增加了100nm,即打开了第五个传输窗口1400nm区(即1350nm-1450nm区),使原来分离的两个传

(完整版)@国内外光伏发电发展现状及前景

国内外光伏发电发展现状及前景 《邓州市鑫园光伏电力开发有限公司》与国内知名专家对世界光伏产业现状及发展趋势的调查: 自1839年发现“光生伏打效应”和1954年第一块实用的光伏电池问世以来,太阳能光伏发电取得了长足的进步,但是它的发展仍然比计算机和光纤通讯要慢得多。1973年的石油危机和20世纪90年代的环境污染问题大大促进了太阳能光伏发电的发展。随着人们对能源和环境问题认识的不断提高,光伏发电越来越受到各国政府的重视,科研投入不断加大,鼓励和支持光伏产业发展的政策也不断出台。以1997年美国总统克林顿的“百万太阳能光伏屋顶计划”为标志,日本还有欧洲的德国、丹麦、意大利、英国、西班牙等国也纷纷开始制定本国的可再生能源法案,刺激了光伏产业的高速发展。 2000年以来,全球光伏产业连续6年以30%~~60%以上的速度增长,2002年全球光伏电池产量为560MW/a,到2003年已高达750MW/a,增长了34%。2004年开始,德国对可再生能源法进行了修订,新的补贴法案促成了德国光伏市场随后的爆发,随之而来的是发达国家间新一轮的政策热潮和全球光伏市场的更高速膨胀。2004年世界光伏电池年产量达到1256MW,年增长率高达68%,2005年产量达1818MW,增长率仍有45%(图1-2),2006年,美国加州州长施瓦辛格提出了要在加州实施“百万个太阳能屋顶计划”,在未来10

年内建设3000MW光伏发电系统的提案,这象征着美国光伏政策的新纪元的到来。正是由于欧洲、日本和美国强有力的政策推动,全球太阳能光伏发电系统市场才呈现出今天欣欣向荣的景象,太阳能光伏发电的前景无限光明(图1--3~~图1--7)。

(完整版)多晶硅生产工艺学

多晶硅生产工艺学 绪论 一、硅材料的发展概况半导体材料是电子技术的基础,早在十九世纪末,人们就发现了半导体材料,而真正实用还是从二十世纪四十年代开始的,五十年代以后锗为主,由于锗晶体管大量生产、应用,促进了半导体工业的出现,到了六十年代,硅成为主要应用的半导体材料,到七十年代随着激光、发光、微波、红外技术的发展,一些化合物半导体和混晶半导体材料:如砷化镓、硫化镉、碳化硅、镓铝砷的应用有所发展。一些非晶态半导休和有机半导休材料(如萘、蒽、以及金属衍生物等)在一定范围内也有其半导休特性,也开始得到了应用。 半导休材料硅的生产历史是比较年青的,约30 年。美国是从 1949?1951年从事半导体硅的制取研究和生产的。几年后其产量就翻了几翻,日本、西德、捷克斯洛伐克,丹麦等国家的生产量也相当可观的。 从多晶硅产量来看,就79 年来说,美国产量1620?1670 吨日本420

?440 吨。西德700?800 吨。预计到85 年美国的产量将达到2700 吨、日本1040 吨、西德瓦克化学电子有限公司的产量将达到3000 吨。 我国多晶硅生产比较分散,真正生产由58 年有色金属研究院开始研究,65 年投入生产。从产量来说是由少到多,到七七年产量仅达70?80吨,预计到85年达到300吨左右。 二、硅的应用半导体材料之所以被广泛利用的原因是:耐高压、硅器件体积小,效率高,寿命长,及可靠性好等优点,为此硅材料越来越多地应用在半导体器件上。硅的用途: 1、作电子整流器和可控硅整流器,用于电气铁道机床,电解食盐,有色金属电解、各种机床的控制部分、汽车等整流设备上,用以代替直流发电机组,水银整流器等设备。 2、硅二极管,用于电气测定仪器,电子计算机装置,微波通讯装置等。 3、晶体管及集成电路,用于各种无线电装置,自动电话交换台,自动控制系统,电视摄相机的接收机,计测仪器髟来代替真空管,在各种无线电设备作为放大器和振荡器。 4、太阳能电池,以单晶硅做成的太阳能电池,可以直接将太阳能转变为电能。 三、提高多晶硅质量的措施和途径:为了满足器件的要求,硅材料的质量好坏,直接关系到晶体管的合格率与电学性能,随着大规模集成电路和MOS 集成电路的发展而获得电路的高可靠性,适应性。因此对半导体材料硅的要求越来越高。 1、提高多晶硅产品质量的措施:在生产过程中,主要矛盾是如何稳定产品的质 量问题,搞好工艺卫生是一项最重要的操作技术,在生产实践中要树立

国内外聚乙烯的生产技术、产品开发现状及趋势

国内外聚乙烯的生产技术、产品开发现状及趋势-3 近年来,国内石化企业逐渐加深了对专用料生产开发工作落后于国外同行的认识,各大型石化企业都开始投入大量精力在自己企业已有装置上的技术革新工作,试图改善目前产品品种单一,质量不尽如人意的局面。利用技术革新手段发挥生产装置在某些或某一个方面的领先优势,以此来开拓市场、求得生存,增加企业的生产经营效益。三国内聚乙烯市场的特点 1. 市场容量大,发展快,自给率低随着国内塑料加工业的迅速发展,我国对PE 近年来,国内石化企业逐渐加深了对专用料生产开发工作落后于国外同行的认识,各大型石化企业都开始投入大量精力在自己企业已有装置上的技术革新工作,试图改善目前产品品种单一,质量不尽如人意的局面。利用技术革新手段发挥生产装置在某些或某一个方面的领先优势,以此来开拓市场、求得生存,增加企业的生产经营效益。 三国内聚乙烯市场的特点 1. 市场容量大,发展快,自给率低 随着国内塑料加工业的迅速发展,我国对PE的需求也大幅度增长。相对巨大的市场容量,我国PE的生产能力还远远不能满足市场的需求,自给率一直仅在50%左右,只好进口大量国外产品来满足国内需求。 2. 薄膜制品为PE最大的消费市场 由于其优越的性能,PE一直被广泛应用于薄膜制品这一领域,尤其是包装薄膜。PE的另外两个应用领域为注塑制品和中空制品。 3. 加工制品将逐渐向中高档方向发展 在调查中,我们发现产品向中高档方向发展己成为一种趋势。一些高档产品(如燃气管材、缠绕膜、大型中空制品等)的产量正在逐渐提高;而一些中低档产品,如编织袋、普通包装薄膜等,也正在调整其产品结构,以逐渐缩小其低档制品的生产比例,增加其中档制品的生产比例。

国内外太阳能技术现状及其发展

国内外太阳能技术现状与发展情况 摘要:简析太阳能技术原理,太阳能发电技术分类及发展状况。展现太阳能技术在当今世界发挥的巨大作用及其地位,通过对各种相关技术的介绍分析了解不同发电技术的应用情况及优缺点。 关键词:太阳能太阳能发电技术热发电光伏发电热存储 1.太阳能技术 1.1太阳能简介 太阳能(Solar Energy),一般是指太阳光的辐射能量,在现代一般用作发电。自地球形成生物就主要以太阳提供的热和光生存,而自古人类也懂得以阳光晒干物件,并作为保存食物的方法,如制盐和晒咸鱼等。但在化石燃料减少下,才有意把太阳能进一步发展。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源。广义上的太阳能是地球上许多能量的来源,如风能,化学能,水的势能等等。 1.2太阳能发电技术分类 目前。应用的主要太阳能发电技术分类如表1所示。其中,非聚光类太阳能热发电技术有太阳池热发电、太阳能热气流发电等;聚光类太阳能热发电技术有塔式太阳能热发电、槽式太阳能热发电、碟式太一12一阳能热发电。较为成熟的太阳能发电技术是太阳能光伏发电和太阳能热发电。太阳能热发电技术通过聚光产生高温进而发电。效率较高,更具应用前景。尽管世界各国研究太阳能热发电技术已有多年。但目前只有槽式太阳能热发电站实现了商业化示范运行。而塔式、碟式发电系统仍处于示范阶段。 2.国内外太阳能技术现状

2.1太阳能热发电 太阳热发电是一种很有发展前景的太阳能利用技术。它是将太阳能集光、集热产生高温驱动热机发电的系统。目前世界上已建成9 座大型太阳热电站, 总装机容全30 兆瓦, 主要在美国。收集太阳光提供热能的方法主要有中央接收器、抛物面反射器和抛物面聚焦收集器三种。中央接收器是将地面反射镜聚集到的阳光聚焦到中央接收器上。这种方法在七十年代被人们认为是最有发展前途的。但由于存在中央接收器必须在高温下操作, 体积过大等间题, 使它的前途一度变得暗淡。但专家们认为这种系统容易适应高温热贮存, 它比蓄电池或其他非热贮存有更大的经济潜力, 并且指出, 带有热贮存的中央接收器太阳热发电系统可与化石燃料系统相竞争。抛物面反射器和中央接收器一样, 是用一台反射镜将太阳光聚焦在一台集热器上, 不同之处是每一反射镜加热它自身的集热器。大多数抛物面反射系统都是利用流体传热, 同样也存在接收器的间题。为了解决这些间题, 人们正在恢复外樵机, 其中以“斯特林循环”发电系统效率最佳。这种系统保留了光伏电池的许多优点, 易于安装, 无污染。无论大小型装置效率都很高, 是一种有发展前途的系统。抛物面引聚焦收集器是呈抛物面状的聚焦槽, 它是将太阳光聚焦在槽中央沿槽长方向卧置的管子上, 流体通过管子时被加热, 变成蒸汽或热液体, 从管子另一端出来、可用来驱动涡轮机或其他机械。这种槽设计简单, 只须增减槽的数量, 便能产生较大或较小的电量, 在较低温度下也能顺利运行。专家们预测, 这种技术在今后50 年内将在太阳能市场上占主导地位。此外,我国还与美国合作设计并试制成功功率为5kW的碟式太阳能发电装置样机。并在2005年与以色列合作。在江苏省南京市建成了第一座功率为75kw的太阳能塔式热发电示范电站。并成功运行发电。太阳能热发电具有巨大的潜力,因此对于太阳能热发电未来的发展。应着眼于市场应用的开发。使太阳能热发电真正溶人到我们的生活当中。 2.2太阳能光伏发电 2.2.1太阳能光伏发电系统的组成太阳能光伏发电系统由太阳能光伏电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或llov,还需要配置逆变器。太阳能光伏电池板是太阳能光伏发电系统中的棱心部分。也是太阳能光伏发电系统中价值最高的部分。其作用是将太阳的辐射能转换为电能。或送往蓄电池中存储起来。或推动负载工作。太阳能光伏电池板的质量和成本将直接决定整个系统的质量和成本。太阳能控制器控制着整个系统的工作状态。并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。蓄电池一般为铅酸电池,小微型系统中。也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 2.2.2太阳能光伏电池的原理太阳能电池内部存在P—N结。当P—N结处于平衡状态时,在P—N结处形成耗尽层。存在由N区到P区的势垒电场。当太阳光入射的能量大于硅禁带宽度的时候,射人电池内部的太阳光子。把电子从价带激发到导带,产生一个电子一空穴对。电子一空穴对随即被势垒电场分离,电子和空穴被分别推向N区和P区。并向P—N结交接面处扩散,当到达势垒电场边界时。受势垒电场的作用,电子留在N区,空穴留在P区,形成内建电场。而由于内建电场的作用。N区中的空穴和P区中的。电子被分别推向对方区域。使N区积累了过剩的电子。P区积累了过剩的空穴。即在P_N结两侧形成了与势垒电场方向相反的光生电动势。当接人负载后,就会产生电流流出。

多晶硅生产工艺及其应用

多晶硅生产工艺及其应用 摘要:随着人们对能源需求的不断增长以及面临传统能源日渐枯竭的问题,人们开始关注新能源的研究,而多晶硅作为制备太阳能电池板重要的原材料也被重视起来。本文主要介绍了多晶硅的生产工艺,主要包括改良西门子法、硅烷法、流化床法等,以及多晶硅在能源方面的应用。 关键词:多晶硅生产工艺应用 在传统能源逐渐被消耗殆尽的情况下,人们开始关注其他新型能源的研究,太阳能作为一种最具潜力、最清洁和最普遍的的新型能源被高度重视。在所有的太阳能电池中得到广泛应用的是硅太阳能电池,这主要是由于硅在自然界中的蕴含量极为丰富,并且它还有良好的机械性能和电学性能。此外,硅材料中的晶体硅,是目前所有光伏材料中研究和应用比较成熟的。在过去几十年中被泛应用,而其在商业太阳能电池应用中也有很高的转换率。因此,在以后的光伏产业中,硅材料特别是多晶硅的研究将会有一个广阔的发展空间。 一、多晶硅的性质 多晶硅作为单质硅的一种特殊存在形态,主要是熔融的单质硅在温度较低状态下凝固时,硅原子会以金刚石晶格形式排列成很多晶核,如果这些晶核生长成不同晶面取向的晶粒时,那么这些晶粒就会结合起来,便结晶形成多晶硅。多晶硅可作为拉制单晶硅的原料,单晶硅与多晶硅的不同主要表现在物理性质方面,例如,在光学性质、热学性质和力学性质等向异性方面;在电学性质方面,单晶硅的导电性也比多晶硅明显。但在化学性质方面,两者则没有明显区别[1]。 二、多晶硅生产工艺 目前,已经工业上制备多晶硅的化学方法主要有改良西门子法、硅烷法和流化床法。 1、改良西门子法 3、流化床法 另外制备多晶硅的工艺还有:冶金法、气液沉积法、高纯金属还原法等。 三、多晶硅的应用 高纯度多晶硅作为重要的电子信息材料,被称为“微电子大厦的基石”。多品硅有比较广泛的用途,除信息产业外,多晶硅还被用来制备太阳能电池板以及生产可控硅元件。基于硅材料质量好、原料丰富、价格较低、工艺较成熟,因此在未来几十年里,没有其他材料可以代替多晶硅成为光伏产业和电子信息产业的原

世界聚乙烯工业的发展状况

世界聚乙烯工业的发展 状况 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

世界聚乙烯工业的发展状况 特约作者石公 摘要介绍了聚乙烯的供需状况及技术发展特点,对世界聚乙烯的市场前景进行了分析和预测。同时指出,由于我国聚乙烯产品品种单一,且专用料品种偏少,限制了市场占有率。因此,国内企业应积极应对市场需求,努力提 高产品质量,提高聚乙烯的产品竞争力。 关键词聚乙烯产品技术市场预测 1前言 聚乙烯(PE)是通用合成树脂中产量最大的品种,主要包括低密度聚乙烯(LDPE)、线性低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)及一些具有特殊性能的产品。其特点是价格便宜,性能较好,可广泛应用于工业、农业、包装及日常生活中,在塑料工业中占有举足轻重的地位。 2002年,全球聚乙烯生产能力达到67530kt/a,产量为54580kt,消费量为53150kt。除非洲、亚洲、大洋洲、中南美和西欧有缺口外,其他地区基本上是产能大于需求。 从消费结构来看,低密度聚乙烯的主要用途仍将集中在膜、片制品和注塑制品;而在高密度聚乙烯的消费结构中,吹塑制品、注塑和膜片制品仍是其主要应用领域。 近年来,我国聚乙烯的发展也进入了快车道。1995年,我国聚丙烯生产能力为1400kt,产量为1350kt;到2002年,生产能力达到了3650kt/a,产量达到3552kt,分别增长了161%和163%。从国内聚乙烯使用状况来看,薄膜、中空容器、电线电缆、涂层料是目前聚乙烯最主要的用途。 2世界聚丙烯工业发展状况 世界聚乙烯供需状况 上世纪90年代,世界聚乙烯工业经历了快速发展时期,产能平均增幅达到了6%。特别是亚洲和中东地区石化工业的发展,为聚乙烯的发展带来了机遇。1998年亚洲金融危机及后来的世界经济低迷,降低了对石化工业的投资热情。在此情况下,亚洲和中东一些乙烯项目被迫下马和推迟。预计到2007年,世界聚乙烯能力增幅为%,低于需求%的增幅。因此,未来世界聚乙烯装置的开工率将会不断提高。 1997~2012年世界PE供需状况见表1。 表1 1997~2012年世界PE供需状况

多晶硅生产工艺流程定稿版

多晶硅生产工艺流程 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

多晶硅生产工艺流程(简介) -------------------------来自于网络收集 多晶硅生产工艺流程,多晶硅最主要的工艺包括,三氯氢硅合成、四氯化硅的热氢化(有的采用氯氢化),精馏,还原,尾气回收,还有一些小的主项,制氢、氯化氢合成、废气废液的处理、硅棒的整理等等。 主要反应包括:Si+HCl---SiHCl3+H2(三氯氢硅合成);SiCl4+H2---SiHCl3+HCl(热氢化);SiHCl3+H2---SiCl4+HCl+Si(还原)多晶硅是由硅纯度较低的冶金级硅提炼而来,由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、用途、产品检测方法、过程安全等方面也存在差异,各有技术特点和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺有:改良西门子法、硅烷法和流化床法。改良西门子法是目前主流的生产方法,采用此方法生产的多晶硅约占多晶硅全球总产量的85%。但这种提炼技术的核心工艺仅仅掌握在美、德、日等7家主要硅料厂商手中。这些公司的产品占全球多晶硅总产量的90%,它们形成的企业联盟实行技术封锁,严禁技术转让。短期内产业化技术垄断封锁的局面不会改变。 西门子改良法生产工艺如下: 这种方法的优点是节能降耗显着、成本低、质量好、采用综合利用技术,对环境不产生污染,具有明显的竞争优势。改良西门子工艺法生产多晶硅所用设备主要有:氯化氢合成炉,三氯氢硅沸腾床加压合成炉,三氯氢硅水解凝胶处理系统,三氯氢硅粗馏、精馏塔提纯系统,硅芯炉,节电还原炉,磷检炉,硅棒切断机,腐蚀、清洗、干燥、包装系统装置,还原尾气干法回收装置;其他包括分析、检测仪器,控制仪表,热能转换站,压缩空气站,循环水站,变配电站,净化厂房等。 (1)石英砂在电弧炉中冶炼提纯到98%并生成工业硅, 其化学反应SiO2+C→Si+CO2↑

聚乙烯工业发展现状及展望

聚乙烯工业发展现状及 展望 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

作者联系方式:地址:杭州市西湖大道193号定安名都三层 E-mail: 中国聚乙烯工业发展现状及展望 南华期货史明珠 一、聚乙烯市场分析 聚乙烯(PE)是中国通用中应用最广泛的品种,主要用来制造薄膜、电线电缆、注塑、涂层、纤维、管材等。随着业的发展,聚乙烯生产得到迅速发展,产量约占塑料总产量的1/4。 目前,中国的聚乙烯生产能力已具备相当规模,在国内前20家聚乙烯生产商中,产量超过20万吨的有13家,最大的生产企业是茂名石化、赛科、兰州石化、燕山、吉化等,产量前10位的产量合计占全国总产量的81%。尽管如此,国内的产量仍无法满足不断增长的需求,仍有40%以上需要进口,中国仍然是全球最大的聚乙烯进口国。2007年中国聚乙烯产能占全世界的11%,需求则占全世界的20%。 2002-2007年,中国乙烯工业保持快速发展势头,带动了聚乙烯工业始终处于上升态势,生产能力从万吨/年增长至710万吨/年,年均增长率%;产量从万吨增至万吨,年均增长率达%。近三年来,国内新增了上海赛科、扬子巴斯夫、中海壳牌三家聚乙烯供应商,同时中石化和中石油也大量新增了聚乙烯装置。2008年1-7月,PE 产量为万吨,同比增长%,进口万吨。 中国聚乙烯供需状况 近10年中国聚乙烯需求也较快增长,2007年表观消费量达到1162万吨,其中进口万吨,国内自给率为%。2002至2007年间,中国聚乙烯增速明显高于世界水平,

但国内供不应求的局面仍然不会改变,仍需大量进口。中国主要的进口来源是韩国、新加坡、沙特、台湾、日本、美国等地,2007年来自中东的进口量达到了130万吨以上,约占国内进口量的%。 全球的产能也一直在增加,而且产能的增速大于需求的增加速,导致产能过剩、开工率下降。2007年全球产能约为6500万吨,预计到2010年世界聚乙烯的总产能将达到约8800万吨。 二、聚乙烯上下游产业链发展状况 聚乙烯作为化工产业,有着较长的产业链:原油-石脑油-乙烯-聚乙烯-塑料制品,影响价格的因素从原油到塑料制品,纷繁复杂。既要考虑到原油价格波动对聚乙烯成本的影响,又要考虑到下游制品的需求,同时还要兼顾产业链中间环节的供需状况。供求关系是决定价格的根本,但市场对终端产品价格的承受能力是上下游成本顺利传导的关键。 上游乙烯工业发展情况:国内供不应求全球逐步过剩 近年来,中国快速的经济增长对乙烯产生了很大的需求。2007年我国乙烯产量突破1000万吨,达到1050万吨,比上年增长11%以上。预计,2010年我国乙烯当量需求量为2500万~2600万吨,供需缺口将保持在1000万吨以上,自给率将提高到%~56%,供不应求的局面仍然不会改变。我国的乙烯产量与需求量相比仍有较大差距,面临装置布局分散,规模小;原料不优、不足的困难。 但全球来看,2009-2010年随着中东和亚洲新增乙烯产能的投产,全球乙烯产能增速将超过需求增速。乙烯产能利用率将从2006年的92%降至87%~88%,这标志着下一个利润低谷期的到来。全球乙烯生产格局正在发生变化,发展重心继续向具有廉价原料优势的中东和消费中心亚洲地区转移。

中国多晶硅行业发展现状分析

332 二 ○一二年第二十三期 华章 M a g n i f i c e n t W r i t i n g 孙翌华,延安大学西安创新学院。 作者简介:中国多晶硅行业发展现状分析 孙翌华 (延安大学西安创新学院,陕西西安710100) [摘要]中国多晶硅行业外部环境已出现明显变化,多晶硅供求平衡矛盾仍未得到彻底缓解,多晶硅行业发展趋 势是进一步集约化。 [关键词]多晶硅;成本;供求1、中国多晶硅行业外部环境分析 目前,除保利协鑫、大全新能源等少数企业较好的生产状态,九成以上的中国多晶硅企业均处于停产状态。中国多晶硅行业发展外部环境异常严峻,主要体现在以下几点: 1.1光伏产业调整期尚未结束。2011年下半年以来,光伏产业进入调整期,组件产品价格快速下滑,最终引致上游的多晶硅价格大跌。2011年全球光伏新增装机为29.67GW ,较2010年增长76.4%。尽管光伏终端市场依然保持了高速增长,但由于供给端增长过快,例如中国组件产能超过40GW ,多晶硅、硅片、电池等环节也出现产能相对过剩局面。 2012年上半年,光伏产业调整进入深化阶段,原本还在30%毛利率以上的多晶硅环节深受影响,价格大幅跳水。 1.2中国多晶硅企业正面临国外厂商的低价竞争。截止2012年6月29日,中国商务部已经收到了保利协鑫等国内多晶硅厂商的申请,希望来自美韩的多晶硅出口倾销行为进行调查、征收反倾销税,中国商务部尚未正式进行立案调查。Hemlock 、REC 、OCI 等美韩多晶硅价格已经跌至20美元/公斤左右,低于国内多晶硅厂商的市场价格,即使是身为国内多晶硅领头羊的保利协鑫也难以长期承受如此的价格竞争。 1.3多晶硅下游市场需求增长前景不确定。全球光伏产业经历了多年的高速增长后,增速趋缓,传统的光伏市场大国德国将稳定在6GW 左右,而意大利财政经济基础较之德国薄弱,受到欧债危机的冲击较大,光伏市场也难以再现高速增长态势。新兴市场国家已经启动,中国、美国、日本等有望逐渐成为光伏市场新的亮点,但受到国际国内多方面因素的影响,新兴市场国家短时间内难以取代欧洲的光伏市场地位。全球光伏市场增速放缓、增长前景不确定给中国多晶硅行业发展带来多重变数。 2、中国多晶硅供求现状 笔者预测,中国多晶硅行业的供求状况将在2013年下半年以后得以彻底改观,届时光伏产业链各环节也将达到相对平衡状态。 2.1多晶硅供求情况。 2.1.12011全年、2012年1—5月全球多晶硅供应、需求量。2011年,全球多晶硅总产量达到24万吨,预计2012年仍将有30%左右的增长,超过30万吨。 2011年多晶硅需求量大约为19万吨,其中电子级多晶硅需 求量2.7万吨,太阳能级多晶硅需求量16.3万吨,预计2012年太阳能级多晶硅需求量将在18万吨左右。 整体上看,2012年全球多晶硅供给仍处于相对过剩状态。2.1.22011全年、2012年1—5月中国多晶硅进口量。2011 年中国总计进口多晶硅64613.86吨,其中,从韩国进口21361吨,从美国进口17476.32吨。 2012年1—5月份中国累计进口多晶硅34034.74吨。具体来看,5月份,中国从美国进口多晶硅3269.37吨,环比增长28.47%,其所占比重为41.40%;从德国进口多晶硅2053.53吨, 环比增长69.04%,其所占比重为26.01%;从韩国进口多晶硅1752.74吨,环比增长15.05%,其所占比重为22.20%。 2.1.3中国主要多晶硅企业产能概况。中国国产多晶硅供应占到本国光伏产业需求的一半左右,中国主要多晶硅企业产能状况如表1: 2.2多晶硅企业成本竞争力概况。综合各项数据来看,中国多数多晶硅企业成本均在35美元/公斤以上,甚至部分多晶硅小企业成本在50美元/公斤以上。经过技术改造和优化生产管控,保利协鑫多晶硅成本控制在18.6美元/公斤。赛维LDK 和昱辉多晶硅成本均超过30美元/公斤。 从国外多晶硅大厂数据看,OCI 、REC 、瓦克、MEMC 、Hem-lock 等多晶硅生产成本均在25美元/公斤以下,最优水准可以做到15—20美元/公斤。中国多晶企业发展历程短,早期企业发展过程中在技术工艺设计上基本处于摸索状态,无法做到闭环生产,不但造成环保问题,而且造成单位固定资产投资远远高于国外先进水平,甚至是国外先进水平的5—10倍之多,企业因此背上沉重的折旧包袱,生产成本难具竞争力。 3、中国多晶硅行业发展的问题和趋势 中国多晶硅行业是伴随全球光伏产业的飞速发展而发展起来的,从无到有,从弱小到在全球市场占有一席之地,发展道路艰辛。目前,应正视行业发展的三大问题:(1)多晶硅行业集中度不高,企业力量分散;(2)生产工艺与国外先进水平比尚有差距,无法做到闭环生产和化工产物的有效循环利用;(3)生产成本尚不具备国际竞争力。 中国多晶硅行业发展会出现集约化趋势,未来万吨以上具备成本竞争力的多晶硅企业将成为重点培育的企业,3000吨以下的多晶硅企业将不具备规模经济优势,最终被淘汰出市场。从技术发展上,改良西门子法依然是主要技术工艺,低电耗的冷氢化工艺逐渐在更多企业推广,企业将会通过优化技术工艺实现真正的闭环生产和化工产物的有效循环利用。 【参考文献】 [1]郭力方.多晶硅停产潮波及上市公司.市场或加速分化[N ].中国证 券报,2011.12.[2]文泰.多晶硅企业停产增多.行业目前困局难破[J/OL ].证券时报 网,2011.12.

多晶硅生产工艺学

多晶硅生产工艺学

绪论 一、硅材料的发展概况 半导体材料是电子技术的基础,早在十九世纪末,人们就发现了半导体材料,而真正实用还是从二十世纪四十年代开始的,五十年代以后锗为主,由于锗晶体管大量生产、应用,促进了半导体工业的出现,到了六十年代,硅成为主要应用的半导体材料,到七十年代随着激光、发光、微波、红外技术的发展,一些化合物半导体和混晶半导体材料:如砷化镓、硫化镉、碳化硅、镓铝砷的应用有所发展。一些非晶态半导休和有机半导休材料(如萘、蒽、以及金属衍生物等)在一定范围内也有其半导休特性,也开始得到了应用。 半导休材料硅的生产历史是比较年青的,约30年。美国是从1949~1951年从事半导体硅的制取研究和生产的。几年后其产量就翻了几翻,日本、西德、捷克斯洛伐克,丹麦等国家的生产量也相当可观的。 从多晶硅产量来看,就79年来说,美国产量1620~1670吨。日本420~440吨。西德700~800吨。预计到85年美国的产量将达到2700吨、日本1040吨、西德瓦克化学电子有限公司的产量将达到3000吨。 我国多晶硅生产比较分散,真正生产由58年有色金属研究院开始研究,65年投入生产。从产量来说是由少到多,到七七年产

量仅达70~80吨,预计到85年达到300吨左右。 二、硅的应用 半导体材料之所以被广泛利用的原因是:耐高压、硅器件体积小,效率高,寿命长,及可靠性好等优点,为此硅材料越来越多地应用在半导体器件上。硅的用途: 1、作电子整流器和可控硅整流器,用于电气铁道机床,电解食盐,有色金属电解、各种机床的控制部分、汽车等整流设备上,用以代替直流发电机组,水银整流器等设备。 2、硅二极管,用于电气测定仪器,电子计算机装置,微波通讯装置等。 3、晶体管及集成电路,用于各种无线电装置,自动电话交换台,自动控制系统,电视摄相机的接收机,计测仪器髟来代替真空管,在各种无线电设备作为放大器和振荡器。 4、太阳能电池,以单晶硅做成的太阳能电池,可以直接将太阳能转变为电能。 三、提高多晶硅质量的措施和途径: 为了满足器件的要求,硅材料的质量好坏,直接关系到晶体管的合格率与电学性能,随着大规模集成电路和MOS集成电路的发展而获得电路的高可靠性,适应性。因此对半导体材料硅的要求越来越高。 1、提高多晶硅产品质量的措施: 在生产过程中,主要矛盾是如何稳定产品的质量问题,搞好

2017年国内聚乙烯市场发展现状分析

中投顾问产业研究中心 中投顾问·让投资更安全 经营更稳健 2017年国内聚乙烯市场发展现状分析 一、产能产量现状 中投顾问《2017-2021年中国聚乙烯市场投资分析及前景预测报告》中数据指出,截至2017年1月份,国内聚乙烯产能已达到1615.8万吨,年内暂无新产能投产。2017年1月国内PE 产量约136.32万吨,环比2016年12月增长1.35%,同比增长14.05%。其中LLDPE 产量65.4万吨,LDPE 产量21.82万吨,HDPE 产量49.11万吨。 二、装置检修现状 2017年1月,PE 石化装置检修多因计划内停车及装置故障问题。检修涉及石化企业与2016年12月相比有所增加,但检修时间均相对较短,停车检修涉及年产能在268万吨,损失产量在4.7万吨,环比减少0.55万吨。 2017年1月,石化大修涉及装置主要有:兰州石化6万吨老全密度装置继续停车、燕山石化12万吨老高压装置1/2线检修、茂名石化25万吨2#高压装置检修、武汉乙烯30万吨HDPE 装置检修、中沙天津30万吨HDPE 装置检修、四川石化30万吨HDPE 装置检修、大庆石化10万吨HDPE 装置C 线检修、抚顺石化45万吨LLDPE 和35万吨新HDPE 装置检修、上海金菲15万吨HDPE 装置检修和蒲城清洁能源30万吨全密度装置检修。整体来看,2017年1月虽涉及检修企业不少,但检修时间不长,损失量相应环比减少。 2017年2月,国内聚乙烯装置检修涉及企业较少:兰州石化6万吨老全密度装置继续停车;上海金菲15万吨低压装置停车检修,预计2月16日左右重启;抚顺石化春节期间因故障45万吨全密度装置和35万吨低压装置于1月30日停车,分别在2月2日和30日恢复生产;中韩石化30万吨线性装置计划在2月8日至14日检修;另外茂名石化25万吨高压装置2月6日至9日小修,11万吨高压装置预计14日至16日例行小修;扬子石化低压A 线计划18日至21日例行消缺。总体来看2016年2月损失量预计在2.4万吨左右,环比减少。下游需求方面,春节节后归来,地膜处于需求的旺季,厂家开工处于高位,不过棚膜需求逐渐减弱,厂家开工维持低位。整体上仍能给予原料市场一定支撑。 三、新品研发动态 2017年2月,天津石化聚乙烯拳头产品TJZS-2650突破技术瓶颈,连续生产550小时、产量8054吨,优级品率超目标值近3个百分点,较之此前平均240小时的连续生产时间大幅刷新纪录,且产品品质不断提升。

多晶硅制备及工艺

多晶硅制备及工艺 蒋超 材料与化工学院 材料1103班 【摘要】工业硅是制造多晶硅的原料,它由石英砂(二氧化硅)在电弧炉中用碳还原而 成。化学提纯制备高纯硅的方法有很多,其中SiHCl3 氢还原法具有产量大、质量高、成本低等优点,是目前国内外制取高纯硅的主要方法。硅烷法可有效地除去杂质硼和其他金属杂质,无腐蚀性、不需要还原剂、分解温度低和收率高,所以是个有前途的方法。下面介绍SiHCl3 氢还原法(改良西门子法)和硅烷法。 【关键词】改良西门子法硅烷法高纯硅 改良西门子法 1955年,西门子公司成功开发了利用氢气还原三氯硅烷(SiHCl3)在硅芯发热体上沉积硅的工艺技术,并于1957年开始了工业规模的生产,这就是通常所说的西门子法。 在西门子法工艺的基础上,通过增加还原尾气干法回收系统、SiCl4氢化工艺,实现了闭路循环,于是形成了改良西门子法——闭环式SiHCl3氢还原法。 改良西门子法的生产流程是利用氯气和氢气合成HCl(或外购HCl),HCl和冶金硅粉在一定温度下合成SiHCl3,分离精馏提纯后的SiHCl3进入氢还原炉被氢气还原,通过化学气相沉积反应生产高纯多晶硅。具体生产工艺流程见图1。 改良西门子法包括五个主要环节:SiHCl3合成、SiHCl3精馏提纯、SiHCl3的氢还原、尾气的回收和SiCl4的氢化分离。该方法通过采用大型还原炉,降低了单位产品的能耗。通过采用SiCl4氢化和尾气干法回收工艺,明显降低了原辅材料的消耗。 图1:改良西门子法生产工艺流程图

改良西门子法制备的多晶硅纯度高,安全性好,沉积速率为8~10μm/min,一次通过的转换效率为5%~20%,相比硅烷法、流化床法,其沉积速率与转换效率是最高的。沉积温度为1100℃,仅次于SiCl4(1200℃),所以电耗也较高,为120 kWh/kg(还原电耗)。改良西门子法生产多晶硅属于高能耗的产业,其中电力成本约占总成本的70%左右。SiHCl3还原时一般不生产硅粉,有利于连续操作。该法制备的多晶硅还具有价格比较低、可同时满足直拉和区熔要求的优点。因此是目前生产多晶硅最为成熟、投资风险最小、最容易扩建的工艺,国内外现有的多晶硅厂大多采用此法生产SOG硅与EG硅,所生产的多晶硅占当今世界总产量的70~80%。 硅烷法 1956年,英国标准电讯实验所成功研发出了硅烷(SiH4)热分解制备多晶硅的方法,即通常所说的硅烷法。1959年,日本的石冢研究所也同样成功地开发出了该方法。后来,美国联合碳化合物公司采用歧化法制备SiH4,并综合上述工艺且加以改进,便诞生了生产多晶硅的新硅烷法。 硅烷法以氟硅酸、钠、铝、氢气为主要原辅材料,通过SiCl4氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取SiH4,然后将SiH4气提纯后通过SiH4热分解生产纯度较高的棒状多晶硅。硅烷法与改良西门子法接近,只是中间产品不同:改良西门子法的中间产品是SiHCl3;而硅烷法的中间产品是SiH4. 图2:硅烷法生产工艺流程图 硅烷法存在成本高、硅烷易爆炸、安全性低的缺点;另外整个过程的总转换效率为0.3,转换效率低;整个过程要反复加热和冷却,耗能高;SiH4分解时容易在气相成核,所以在反应室内生成硅的粉尘,损失达10%~20%,使硅烷法沉积速率(3~8μm/min)仅为西门子法

(整理)多晶硅行业概况.

2012年上半年中国多晶硅行业概况 一、全球光伏产业政策与市场变化情况 2012年上半年,随着欧洲各国债务额的大幅增长,针对新能源技术政策补贴纷纷缩减。 德国:德国最新的方案计划自2012年3月9日起削减上网电价补贴,以此消除因补贴变动而引发的抢装热潮。其中,10MW以上的光伏系统补贴将在今年7月1日后彻底取消,新建小型系统仅能获得所发电量85%的补贴。自5月起,所有新建光伏系统的补贴将每月削减0.15欧分/千瓦时。自2014年起光伏系统年装机量将持续下降至400MW左右,自2017年起装机量将介于900至1900MW。此次FIT下调基本上未给投资商留下反应时间,减弱了抢装效应。理论上此政策变动可达到政府的调控目的,预计德国全年市场约为5GW。 意大利:2012年上半年和下半年将分两次进行8-12%的进一步下调;2013-2016年,按照每个季度进行4%的下调。2012年下半年将不设立大型光伏电站项目登记处;停止对农业用地的大型光伏系统发放补贴。意大利第五能源法案已于8月27日启动,预算总额不到5.30亿欧元。 西班牙:西班牙政府于1月28日宣布,完全暂停新建可再生能源项目上网电价补贴;。西班牙工业部长Jose Manuel Soria称,这项法令将是暂时的。根据BOS 2010年的文件,2013年后西班牙将划分五类资源区,只有有效日照小时达标的项目才能获得补贴。 其他欧洲国家:以色列下调上网电价补贴23%;希腊下调上网电价补贴12.4%;韩国用可再生能源组合标准代替了上网电价补贴;瑞士削减光伏补贴18%;7月,保加利亚削减光伏补贴达50%。 在欧洲光伏市场一片惨淡的情况下,亚太、美洲地区则表现十分抢眼。 美国:奥巴马2013财政年度预算将延期“1603财政部计划”。根据EuPD 的预测,1603法案若延期1-5年,将使美国市场2012-2016的年增长率达到51%-57%。 中国:《可再生能源电价附加补助资金管理暂行办法》、“光电建筑补贴”、“金太阳”等政策密集出台,其中“金太阳”和国内大型电站装机规划得一再上

国内外发展现状及趋势

二、项目详细内容 1、项目意义与必要性 国内外发展现状及趋势,目标产品处于产业链重要环节的阐述,对实现重大技术突破、促进产业结构调整、提升该产业整体竞争力和水平的重要作用。 1.1国内外发展现状及趋势 研究表明,晶硅材料的少子寿命和光伏电池的转换效率相关性极大。定向凝固生长的多晶硅锭中有着高密度的位错,(位错密度典型值大约在105-6/cm2)和亚晶界等缺陷,一般来说,纯净的位错对多晶硅的电学性能不会造成太大影响,但是由于高浓度的位错会与铸造多晶硅中的杂质发生相互作用,通常氧,碳以及过渡族金属等杂质很容易在这些缺陷处沉淀下来,形成新的电活性中心,从而增强对多晶硅中少子的复合能力,显著地降低多晶硅电池的转换效率。因此,为了减小对少子的复合能力,需要降低位错密度或金属杂质含量,这两条技术途径都被证明是有效的,是目前的国内外研发热点。 太阳能硅片是生产光伏电池的核心材料。随着光伏电池的发展,对硅片的质量要求越来越高,不仅要求硅片有极高的平面度,极小的表面粗糙度,而且要求表面无变质层、无划伤。目前,国外已能采用多线切割的方法生产出面积较大而又较薄的硅片(300mm×300mm),但由于仍属于非刚性切割,在切割过程中切割线必然产生变形从而不断产生瞬间的冲击作用。要使目前的大尺寸硅片厚度进一步降低,并控制硅片切割厚度和切割损耗,实现低成本高效切割,技术难度相当大。因此,研发高效、低成本、适应新型光伏电池需求的硅片及其生产技术迫在眉睫。 目标产品的生产是采用低位错密度的晶硅材料,以独创的电磨削多线切割方法为基础,与砂浆在线回收技术和先进的车间智能监控技术相集成,形成了成套完整的技术路线,并已在公司成功实施。通过该方法生产的产品具有转换效率高、成本低、污染小等特点,居国际领先水平。 1.2目标产品处于产业链重要环节的阐述

相关文档