文档库 最新最全的文档下载
当前位置:文档库 › 复化辛甫生求积公式的应用

复化辛甫生求积公式的应用

复化辛甫生求积公式的应用
复化辛甫生求积公式的应用

复化梯形公式及复化辛普森公式的精度比较

实验四、复化梯形公式和复化Simpson公式的精度比较 (2学时) 一、实验目的与要求 1、熟悉复化Simpson公式和复化梯形公式的构造原理; 2、熟悉并掌握二者的余项表达式; 3、分别求出准确值,复化梯形的近似值,复化Simpson的近似值,并比较后两 者的精度; 4、从余项表达式,即误差曲线,来观察二者的精度,看哪个更接近于准确值。 二、实验内容: 对于函数 sin () x f x x =,试利用下表计算积分1 sin x I dx x =?。 表格如下: 注:分别利用复化梯形公式和复化Simpson公式计算,比较哪个精度更好。其中:积分的准确值0.9460831 I=。 三、实验步骤

1、熟悉理论知识,并编写相应的程序; 2、上机操作,从误差图形上观察误差,并与准确值相比较,看哪个精度更好; 3、得出结论,并整理实验报告。 四、实验注意事项 1、复化梯形公式,程序主体部分: for n=2:10 T(n)=0.5*T(n-1) for i=1:2^(n-2) T(n)=T(n)+(sin((2*i-1)/2^(n-1))/((2*i-1)/2^(n-1)))/2^(n-1); end end 2、复化Simpson公式,程序主体部分: for i=1:10 n=2.^i x=0:1/n:1 f=sin(x)./x f(1)=1 s=0 for j=1:n/2

s=s+f(2*j) end t=0 for j=1:(n/2-1) t=t+f(2*j-1) end S(i)=1/3/n*(f(1)+4*s+2*t+f(n+1)) end 五.实验内容 复化梯形公式和复化辛普森公式的引入 复化梯形公式: 1 10[(()]2 n n k k k h T f x f x -+==+∑; 复化辛普森公式: 1 1102 [(4()()]6n n k k k k h S f x f x f x -++ ==++∑; 根据题意和复化梯形公式、复化辛普森公式的原理编辑程序求解代码如下: Matlab 代码 clc s=quad('sin(x)./x',0,1) p1=zeros(10,1);

三种复化求积分算法的精度分析

【摘要】分别利用复化梯形公式、复化simpson公式和复化gauss-legendre i型公式对定积分进行运算,得到近似数值解,并对各算法的精度和计算复杂度进行了比较与分析。数值举例结果表明,三种复化求积分算法的运算结果均在绝对误差限ε=5e-8内,并且在相同的精度下,复化gauss-legendre i型公式的步长和计算量最小。 【关键词】复化梯形公式;复化simpson公式;gauss-legendre公式 1 引言 数值积分是计算数学的基本内容,在工程技术和科学计算中起着十分重要的作用,当积分的精确值不能不能求出时,数值积分就变得越来越重要。通常数值积分的计算常利用机械积分来实现,其基本思想为: (1) 2 理论模型 复化梯形求积公式 将区间[a,b]划分成n等分,分点xk=a+kh(,k=1,2,3…n),在每个子区间[xk,xk+1] (k=1,2,3 …n-1)上采用梯形式,则得到 (2) 记 (3) 上式(3)为复化梯形公式,其余项可由式 ,(a≤η≤b)(4) 得 ,ηk∈[xk,xk+1] (5) 由于 f(x)∈c2[a,b] 且 ,(0≤k≤n-1)(6) 所以∈(a,b),使 (7) 于是复化梯形公式余项为 (8) 复化simpson求积公式 将区间[a,b]划分为n等分,在每个子区间[xk,xk+1]上采用simpson式,若记,则得 (9) 记 (10) 上式(10)为复化simpson求积公式,其余项可由式 ,(a≤η≤b)(11) 得 ,ηk∈[xk,xk+1] (12) 于是当f(x)∈c4[a,b]时,与复化梯形公式相似有 ,η∈[a,b] (13) 复化gauss-legendre i型求积公式 gauss型求积公式是具有最高代数精度的插值求积公式。通过适当选取求积公式(1)的节点ε=5e-8和求积系数ak≥0和xk∈[a,b] (k=1,2,3…n),可使其代数精度达到最高的2n+1次。利用特殊区间[-1,1]上n+1次legendre正交多项式的根作为节点,我们可以建立gauss-legendre型求积公式。将区间[a,b]划分成n等分,分点xk=a+kh(,

编程MATLAB程序实现复化梯形和辛普森数值积分

数值分析实验报告—— 实验目的[1] 掌握复化梯形和辛普森数值积分法的基本原理和方法; [2] 编程MA TLAB程序实现复化梯形和辛普森数值积分 实验内容与步骤1.编程序实现复化梯形数值积分求积公式 function y=f(x) y=sqrt(x).*log(x); function T_n=F_H_T(a,b,n) h=(b-a)/n; for k=0:n x(k+1)=a+k*h; if x(k+1)==0 x(k+1)=10^(-10); end end T_1=h/2*(f(x(1))+f(x(n+1))); for i=2:n F(i)=h*f(x(i)); end T_2=sum(F); T_n=T_1+T_2;

实验内容与步骤运行结果: >> T_n=F_H_T(0,1,20) T_n = -0.4336 2.编程序实现复化辛普森数值积分求积公式 function y=f(x) y=sqrt(x).*log(x); function S_n=S_P_S(a,b,n) h=(b-a)/n; for k=0:n x(k+1)=a+k*h; x_k(k+1)=x(k+1)+1/2*h; if (x(k+1)==0)|(x_k(k+1)==0) x(k+1)=10^(-10); x_k(k+1)=10^(-10); end

S_1=h/6*(f(x(1))+f(x(n+1))); for i=2:n F_1(i)=h/3*f(x(i)); end for j=1:n F_2(j)=2*h/3*f(x_k(j)); end S_2=sum(F_1)+sum(F_2); S_n=S_1+S_2; 运行结果: >> S_n=S_P_S(0,1,20) S_n = -0.4423 实验心得 通过此次实验的操作,我掌握了复合梯形公式和复合辛普森公式,对编程又有了新的突破!

9个求积公式

第四章共包含9个求积公式,1个余项公式。 1,机械求积公式 f x dx = A k f (x k )n k =0b a 2,插值求积公式 Ln x dx =b a [ l k (x )dx b a L (x k )n k =0] 3,梯形求积公式 f x dx = b ?a b a [f a +f b ] R n x =? b ?a 3f ′′ ξ 4,辛普森求积公式 f x dx = b ?a b a [f a +f (a +b )+f b ] R n x =? b ?a (b ?a )4f (4) ξ 5,复合梯形公式 f x dx =?b a [f a + f x k n?1k =1+f b ] h=(b-a)/n R n x =? b ?a h 2f ′′ ξ 6,复合辛普森公式 f x dx =?b a [f a +4 f x k +12 n?1k =0+2 f x k n?1k =1+f b ] h=(b-a)/n R n x =? b ?a (h )4f (4) ξ 7,高斯求积公式 ρ(x )f x dx = A k f (x k )n k =0b a 其中x k 为高斯点,n+1个节点对应2n+1级代数精度。 高斯点公式:ωn+1=(x-x 0)(x-x 1)…(x-x n )= x n+1 + a 0x n + a 1x n-1+…+a n-1x+a n ,用 ρ(x )ωn +1 x φk (x )dx b a =0(k=0,…,n)求出待定系数a ,解方程ωn+1=0得高斯点。 重新代入 ρ(x )f x dx = A k f (x k )n k =0 b a 中求解方程组得到系数A 。

数值分析作业复化求积公式

数值计算方法上机题目3 计算定积分的近似值: 2 2 1x e xe dx =? 要求: (1)若用复化梯形公式和复化Simpson 公式计算,要求误差限7102 1-?=ε,分别利用他们的余项估计对每种算法做出步长的事前估计; (2)分别利用复化梯形公式和复化Simpson 公式计算定积分; (3)将计算结果与精确解比较,并比较两种算法的计算量。 解: (1) x xe x f =)(,所以x x k xe ke x f +=)()(,x x xe e x f +=2)('',x x xe e x f +=4)()4( x x xe e x f +=6)()6( 对于复化梯形公式: )(12)(''2ηf h a b f R n --=,2max ''4)(e f =η,n h 1= 代入数据可知 722102 1124-?≤n e ,57.7018≥n 取7019=n 对于复化Simpson 公式 )()2(180)()4(4ηf h a b f R n --=,2max )4(6)(e f =η,n h 1= 代入数据可知 742102 128806-?≤n e ,56.23≥n 取24=n (2)复化梯形公式: 函数 function y=fun(x) y=x*exp(x); 程序: clc Clear % 复化梯形计算 format long

a=1;b=2; n=7019;% 区间划分为m等份 h=(b-a)/n;% 步长,根据误差限由该算法的余项作事前估计得到 ty1=fun(a)+fun(b); ty2=0; for i=1:n-1 x=a+i*h1; ty2=ty2+fun(x); end T=h*(ty1+2*ty2)/2; T 对于复化Simpson公式 clc Clear % 复化Simpon计算 format long a=1;b=2; n=24;% 区间划分为n等份 h=(b-a)/(2*n);% 步长,根据误差限由该算法的余项作事前估计得到sy1=fun(a)+fun(b); sy2=0;sy3=0; for j=1:2*n-1 x=a+j*h2; if rem(j,2)==0 sy3=sy3+fun(x); else sy2=sy2+fun(x); end end S=h*(sy1+4*sy2+2*sy3)/3; S % 精确值 Exactanswer=exp(2) 运算结果: T = 7.389056127230221 S = 7.389056126214707 Exactanswer = 7.389056098930650 (3)比较可知复化梯形公式的计算量较大

辛普森求积公式

摘要 在工程实验及研究中,实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系.可以说,曲线拟合模型与我们的生活生产密切相关. 本课题着重介绍曲线拟合模型及其应用,其中包括它的基本思想、模型的建立、以及具体应用.为了更好的了解曲线拟合模型,可以将它分为线性与非线性模型,在模型建立的基础上我们可以用最小二乘法来解决一些我们日常所应用的问题. 关键词曲线拟合;线性与非线性模型;最小二乘发

目录 引言 (1) 第一章曲线拟合 (2) §1.1 基本思想及基本概念 (2) §1.1.1 方法思想 (2) §1.1.2几个基本概念 (2) §1.2辛普森算法基本定义及其应用 (4) §1.2.1辛普森求积公式的定义 (4) §1.2.2辛普森求积公式的几何意义 (5) §1.2.3辛普森求积公式的代数精度及其余项 (5) §1.2.4辛普森公式的应用 (6) 第二章辛普森求积公式的拓展及其应用 (7) §2.1 复化辛普森求积公式 (7) §2.1.1问题的提出 (7) §2.1.2复化辛普森公式及其分析 (7) §2.1.3复化辛普森公式计算流程图 (8) §2.1.4复化辛普森公式的应用 (9) §2.2 变步长辛普森求积公式 (10) §2.2.1变步长辛普森求积公式的导出过程 (10) §2.2.2变步长辛普森求积公式的加速过程 (12) §2.2.3变步长辛普森求积公式的算法流程图 (13) §2.2.4变步长辛普森公式算法程序代码 (14) §2.2.5变步长辛普森求积公式的应用 (14) §2.2.6小结 (14) §2.2.7数值求积公式在实际工程中的应用 (14) 参考文献 (16) 附录A (17)

复化积分法(复化梯形求积-复化Simpson公式-变步长求积法)MATLAB编程实验报告 (1)

复化积分法(复化梯形求积,复化Simpson 公式,变步长求积法) MATLAB 编程实验报告 一、 问题描述: 编写函数实现复化积分法。 二、 实验步骤(过程): (一)复化求积法 (1)复化梯形求积:用复化梯形求积公式求解 dx x x ?10sin function [f]=Tn(a,b,n,y) syms t; h=(b-a)/n; f=0; for k=1:n+1 x(k)=a+(k-1)*h z(k)=subs(y,t,x(k)); end for i=2:n f=f+z(i); end q=subs(y,t,a); if y=='sin(t)/t'&&a==0 q=1; end p=subs(y,t,b); T=h/2*(q+p+2*f); T=vpa(T,7) clc,clear; syms t; a=0;b=1; y=sin(t)/t; n=8; Tn(a,b,n,y); (2)复化Simpson 公式:用复化Simpson 公式求解?211dx e x function [f]=simpson(a,b,n,y)

syms t; h=(b-a)/n; f=0;l=0; for k=1:n+1 x(k)=a+(k-1)*h w(k)=0.5*h+x(k) z(k)=subs(y,t,x(k)); end for i=2:n f=f+z(i); end for i=1:n l=l+w(i); end q=subs(y,t,a); if y=='sin(t)/t'&&a==0 q=1; end p=subs(y,t,b); T=h/2*(q+p+2*f); T=vpa(T,7) clc,clear; syms t; a=1;b=2; y=exp(1/t); n=5; simpson(a,b,n,y); (3)变步长求积法:以书本例4.5为例function [f]=TN(a,b,y,R0) syms t; T=[]; f=0; q=subs(y,t,a); if y=='sin(t)/t'&&a==0 q=1; end p=subs(y,t,b); T(1)=(b-a)/2*(q+p); i=2; n=i-1; h=(b-a)/n; z1=a+h/2; z2=subs(y,t,z1);

数值分析与实验复化辛卜生公式龙贝格算法

数值分析与实验课程设计 班级: 姓名: 学号:

08级应用数学《数值分析与实验(实践)》任务书 一、设计目的 通过《数值分析与实验(实践)》实践环节,掌握本门课程的众多数值解法和原理,并通过编写C语言或matlab程序,掌握各种基本算法在计算机中的具体表达方法,并逐一了解它们的优劣、稳定性以及收敛性。在熟练掌握C语言或matlab语言编程的基础上,编写算法和稳定性均佳、通用性强、可读性好,输入输出方便的程序,以解决实际中的一些科学计算问题。 二、设计教学内容 1、数值方法的稳定性; 2、禾U用牛顿法和割线法程序求出非线性方程的解,并比较它们之间的优 劣; 3、高斯消去法和列主元高斯消去法求解线性方程组; 雅克比法和高斯-赛德尔迭代法解方程组; 4、利用Lagrange插值多项式求未知点的近似值; 5、利用所给数据进行数据的多项式和可转化成多项式形式的函数拟合; 6、编写复化辛卜生公式和龙贝格算法,通过实际计算体会各种方法的精确 \ 度; 7、利用改进Euler方法和四阶Runge-Kutta方法求解初值问题的微分方程组; &利用幕法求矩阵按模最大的特征值及对应特征向量; \ (8个中选取1个) 二、设计时间 2011 —2012学年第1学期:第16周共计一周 教师签名: 2011年12月12日

、八 刖 数值计算方法是一种利用计算机解决数学 .言 问题的数值近似解方法, 特别是无法用人工过计算器计算的数学问题。数值计算方法常用于矩阵高次代数方程矩阵特征值与特征向量的数值解法,插值法,线性方程组迭代法,函数逼近,数值积分与微分,常微分方程初值问题数值解等。 作为数学与计算机之间的一条通道,数值计算的应用范围已十分广泛,作为用计算机解决实际问题的纽带,数值算法在求解线性方程组,曲线拟合、数值积分、数值微分,迭代方法、插值法、拟合法、最小二乘法等应用广泛。 数值计算方法是和计算机紧密相连的,现代计算机的出现为大规模的数值计 算创造了条件,集中而系统的研究适用于计算机的数值方法是十分必要的。数值计算方法是在数值计算实践和理论分析的基础上发展起来的。 通过数值计算方法与实验将有助于我们理解和掌握数值计算方法基本理论和相关软件的掌握,熟练求解一些数学模和运算,并提高我们的编程能力来解决实际问题。

关于辛普森(simpson)公式在线路坐标计算中的应用

关于复化辛普森(simpson)公式在线路坐标计算中的应用 天津西站项目部刘思传 摘要:本文里利用辛普森公式导证了线路坐标计算的公式,并在卡西欧FX-4800P计算器中编写了中边线坐标计算的源程序。 关键词:复化辛普森公式,线路坐标计算,曲率。 一.引言 随着我国道路建设等级和质量水平的飞速发展,公路、铁路建设的机械化和日产量日益提高,促使施工中在满足设计精度的前提下,尽可能快速、准确地进行测量放样和检查工作,本文线路曲率变化的特点,利用复化辛普森公式导证了线路坐标计算的通用公式,并利用卡西欧FX-4800P计算器编写了计算线路中边线坐标的源程序。 二.复化辛普森公式数学模型 把积分区间分成偶数等分,记,其中是节点总数,是积分子区间的总数。 记,,在每个区间上用辛普森数值积分公式计算,则得到复化辛普森公式,记为。 复化辛普森积分计算公式 而,称

(1) 式(1)即为辛普森复化公式。 三.线路坐标计算 2. 回旋曲线上点位坐标方位角的计算 如图1,设回旋曲线起点A 的曲率为A ρ,其里程为DK A ;回旋曲线终点B 的曲率为B ρ,其里程为DK B ,Ax ’'y 为以A 为坐标原点,以A 点切线为'x 轴的局部坐标系;Axy 为线路坐标系。 由此回旋曲线上各点曲率半径为R i 和该点离曲线起点的距离?i 成反比,故此任意点的曲率为 c l R i i i /1==ρ(=为常数). (2) y ' Y B 图1 由式(2)可知,回旋曲线任意点的曲率按线性变化,由此回旋曲线上里程为DK i 点的曲率为

)(A i A B A B A i DK DK DK DK ---+=ρρρρ (3) 当曲线右偏时,取正;当曲线左偏时取负。在图1中有 ???????=== ?I A DK DK i i i dl dl dl R d ρβρβ1 (4) 将式(3)代入式(4)得 πρρβ180 *)(2A i A i i DK DK -+= (5) 若已知回旋曲线起点A 在线路坐标系下切线坐标方位角αA ,则里程为Dk i 点切线坐标方位角为 i A i βαα+= π180 (6) 将式(5)代入式(6)得 *)(2A i A i A i DK DK -++=ρραα π180 (7) 对于式(7) ,当,时,,则a i =a A ,式(7)变成计算直线段上任意点切线坐标方位角计算公式;当,时,, ,则式(7)代表圆曲线上任意点切线坐标方位角 计算公式。 可见,若已知曲线段起点和终点的曲率及起点的切线坐标方位角,式(7)便能计算任意线型点位切线坐标方位角。 3、回旋曲线点位坐标计算 由图1可得回旋曲线上点位在坐标系下坐标计算公式:

计算方法期中测试(二)答案

期中测试(下) 班级: 姓名: 学号: 分数: 一、填空题(20分) 1、计算积分1 ? 2、5个节点的牛顿- 3、求积公式 0()()b n k k k a f x dx A f x =≈∑? 4 、数值积分公式 ()1 1 ()29[(1)8(0)(1)]f x dx f f f -'≈-++? 5、求解一阶常微分方程初值问题00(,),()y f x y y x y '==的改进欧拉公式为 二、选择题(6分) 1、舍入误差是( A )产生的误差。 A. 只取有限位数 B .模型准确值与用数值方法求得的准确值 C . 观察与测量 D .数学模型准确值与实际值 2、用 1+x 近似表示e x 所产生的误差是( C )误差。 A . 模型 B . 观测 C . 截断 D . 舍入 3、解线性方程组的主元素消去法中选择主元的目的是( A )。 A .控制舍入误差 B . 减小方法误差 C .防止计算时溢出 D . 简化计算 4、求解初值问题00(,),()y f x y y x y '==欧拉法的局部截断误差是( A );中心欧拉法的局部截断误差是( B ); 改进欧拉法的局部截断误差是( B );四阶龙格-库塔法的局部截断误差是( D ) A. 2()O h B. 3()O h C. 4()O h D. 5()O h 三、计算题(64分) 1、(10分)试分别推导复化梯形和复化辛普森求积公式。 证明:以积分 ()b f x dx 为例。将积分区间[,]a b 做n 等分,步长()/h b a n =-。

2、(10分) 求A 、B 使求积公式1 1 ()[(1)(1)][(0.5)(0.5)]f x dx A f f B f f -≈-++-+? 的代数精度尽量高, 并求其代数精度; 利用此公式求2 1 1 I dx x = ? (保留4位小数)。 解:2 ,,1)(x x x f =是精确成立,即 3、(12分) 取5个等距节点 ,分别用复化梯形公式和复化辛普森公式计算积分2 201 I dx = ?的近似值(保留4位小数)。

辛普森公式

Simpson算法及其推广形式 摘要:本文研究了辛普森公式的数值积分的计算方法问题,并且更进一步研究了变步长复化的辛普森公式和二重积分的辛普森公式的问题。首先是对 一维辛普森公式和变步长复化辛普森公式以及二维辛普森公式的推导及 其算法,进行误差分析,并且列举了实例。然后,对辛普森公式进行改 进,这里的改进最主要是对辛普森公式的代数精度进行提高,从而使辛 普森公式对积分的计算更加精确。另外,还研究了辛普森公式的推广形 式。最后,在结论的当中列举了一个例子。 关键词:辛普森公式算法改进推广形式二重积分的辛普森公式

Abstract:This paper first studies the calculation methods of the numerical integration in simpson formula, and then study of the long-simpson formula and the double integral simpson formula problem. First, study the algorithm and derived of one-dimensional simpson formula and step-change in simpson formula, as well as two-dimensional simpson formula, and then analysis the error. Finally , list the example. In this , improve the simpson formula. This improved the most important is to incre ase the simpson formula’s accuracy of algebra. Besides, we study the simpson formula’s promotion of forms. At the last, we list a example in the conclusion. Key word:The simpson formula, Algorithm, Improve, Promotion of forms, The simpson formula of the two-dimensional integral.

复化梯形公式,辛普森公式的matlab程序

复化梯形公式与辛普森公式的matlab程序【程序代码】 cclc; disp('1.复化梯形公式求解'); disp('2.simpson公式求解'); disp('请进行选择:'); c=input(' '); if c==1 clc; disp('复化梯形公式'); disp('请输入积分下限'); a=input('a='); disp('请输入积分上限'); b=input('b='); disp('请输入等分的数目'); n=input('n='); h=(b-a)/n; s1=0; for i=1:n-1 s1=s1+fun1(i*h); end disp('复化梯形公式的结果:'); T=h/2*(fun1(a)+2*s1+fun1(b)) else if c==2 clc; disp('simpson公式'); disp('请输入积分下限'); a=input('a='); disp('请输入积分上限'); b=input('b='); disp('请输入等分的数目'); n=input('n='); h=(b-a)/n; s2=0; for i=0:n-1 s2=s2+fun1((i+0.5)*h); end disp('辛普森公式的结果:'); S=h/6*(fun1(a)+4*s2+2*s1+fun1(b)) end end disp('菜单选项'); disp('1.继续运算'); disp('2.退出程序!'); p=input(' '); if p==1 (fuhua); else if p==2 disp('正在退出,请稍候。。。');

复化抛物线积分公式

摘要 求函数在给定区间上的定积分,在微积分学中已给出了许多计算方法,但是,在实际问题计算中,往往仅给出函数在一些离散点的值,它的解析表达式没有明显的给出,或者,虽然给出解析表达式,但却很难求得其原函数。这时我们可以通过数值方法求出函数积分的近似值。 在用近似值代替真实值时,遇到的问题就是近似值的代数精度是否足够。当代数精度不足够时,很显然提高插值函数的次数是一种方法,但是考虑到数值计算的稳定性,当次数过高时,会出现龙格现象,用增大n的方法来提高数值积代数精度是不可取的。因此,提出类似于分段插值,为了减少数值积分的误差,可以把积分区间分成若干个小区间,在每个小区间上采用低阶数值积分公式,然后把这些小区间上的数值积分结果加起来作为函数在整个区间上的近似值,这个就是复化数值积分的思想。 本实验针对在每个小区间上利用抛物线积分公式,即阶数为2,进行实验。 关键词:龙格现象复化数值积分代数精度复化抛物线积分公式

1、实验目的 1)通过本次实验体会并学习复化抛物线积分公式的优点。 2)通过对复化抛物线积分公式进行编程实现,提高自己的编程能力。 3)用实验报告的形式展现,提高自己在写论文方面的能力。 2、算法流程 已知定积分的抛物线积分公式及其误差为 根据数学知识,我们知道积分区间可划分,且不改变积分值,即如下所示:针对上式,在每一个小区间上利用抛物线积分公式有 得到 其中,令

当作为积分的近似值时,其误差为 若,则由介值定理推得 设,得到误差限 由上式可以进行计算精度控制。这样就给出了n+1点复化抛物线积分公式及其误差 3、算法实例 用复化抛物线积分公式计算积分 解:具体程序如下:

3.2复化求积公式习题及解答

3.2-3.5习题 一、填空题 1. 梯形求积公式和复化梯形公式都是插值型求积公式_____(对或错)。 (答案:错) 2.已知(1)1.2,(2)1.4,f f f = ==,则用复合梯形公式计算求得 3 1 ()f x dx ≈? , (答案:2.75) 3. 已知,在[0, 1] 内 ,有一位整数,用复合 梯形求积公式计算要保证有3位有效数字,至少应将[0, 1]( )等分。 A. 4 B. 5 C. 6 D. 7 4、(1)1,(2)2,(3)2f f f -===-,则[1,2,3]f -=_________,三点高斯求积公式 2 ()f x dx ≈? ______________. 答案: )531(95)1(98)531(95,1213+++-- f f f 二、计算题 1.建立Gauss 型求积公式111220 ()()A f x A f x ≈+? 答案 12120.0455363610.6421930581.035301293 0.964698706x x A A ==== 2. 试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的? 答案: , 该数值求积公式具有5次代数精确度,它是Gauss 型的。 3、用Romberg 算法计算积分3 0?(只作两次外推)。 解:取2,0,3t a b === (0)11 (()())14.230249472 T f a f b =+=, 1t =,0 2(1)(0)1 10 1 111 (()11.17136992 222i T T f a b a =??=++ -= ? ?? ? ∑ ,

变步长复化辛普森公式计算积分

2. 编写用变步长复化辛普森公式计算积分()b a f x dx ? 的程序。 用上面编写的程序计算下列积分并分析计算结果 (1)0cos xdx π ? (2)220cos x x dx (3)?10dx x 程序: function S=bianfuhuasimpson(fx,a,b,eps,M) % 变步长复合simpson 求积公式 % 调用方式: S=fuhuasimpson(@fx,a,b,epsilon) % fx -- 求积函数(函数文件) % a, b -- 求积区间 % eps -- 计算精度 % M--最大允许输出划分数 n=1; h=(b-a)/n; T1=h*(feval(fx,a)-feval(fx,b))/2; Hn=h*feval(fx,(a+b)/2); S1=(T1+2*Hn)/3; n=2*n; % 最好与倒数第三行保持一致(变步长) while n<=M T2=(T1+Hn)/2; Hn=0; h=(b-a)/n; for j=1:n x(j)=a+(j-1/2)*h; y(j)=feval(fx,x(j)); Hn=Hn+y(j); end Hn=h*Hn; S2=(T2+2*Hn)/3; fprintf(' n=%2d S2=%-12.9f S2-S1=%-12.9f\n',n,S2,abs(S2-S1)); if abs(S2-S1)

S=S2; % 达到下列条件之一,则运算终止: % (1).abs(S2-S1)M % 输入1:S=bianfuhuasimpson(inline('sqrt(x)*cos(x)'),0,pi,10e-6,2000) % 输入2:S=bianfuhuasimpson(inline('2*x^2*cos(x^2)'),0,sqrt(pi),10e-6,2000) % 输入3:S=bianfuhuasimpson(inline('sqrt(x)'),0,1,10e-6,2000) 输出结果: (1) S=bianfuhuasimpson(inline('sqrt(x)*cos(x)'),0,pi,10e-6,2000) n= 2 S2=-0.016369112 S2-S1=0.944423778 n= 4 S2=-0.450266122 S2-S1=0.433897010 n= 8 S2=-0.669839370 S2-S1=0.219573248 n=16 S2=-0.781318443 S2-S1=0.111479074 n=32 S2=-0.837710689 S2-S1=0.056392245 n=64 S2=-0.866141900 S2-S1=0.028431211 n=128 S2=-0.880440980 S2-S1=0.014299080 n=256 S2=-0.887620063 S2-S1=0.007179083 n=512 S2=-0.891220052 S2-S1=0.003599989 n=1024 S2=-0.893023740 S2-S1=0.001803689 S = -0.8930 (2) S=bianfuhuasimpson(inline('2*x^2*cos(x^2)'),0,sqrt(pi),10e-6,2000) n= 2 S2=1.076354541 S2-S1=2.092222287 n= 4 S2=0.039359358 S2-S1=1.036995183 n= 8 S2=-0.430456535 S2-S1=0.469815894 n=16 S2=-0.662796649 S2-S1=0.232340113 n=32 S2=-0.778823323 S2-S1=0.116026674 n=64 S2=-0.836827971 S2-S1=0.058004648 n=128 S2=-0.865829756 S2-S1=0.029001785 n=256 S2=-0.880330615 S2-S1=0.014500859 n=512 S2=-0.887581042 S2-S1=0.007250427 n=1024 S2=-0.891206256 S2-S1=0.003625214 S =

复化梯形法复化矩形法变步长梯形变步长辛普森

陕西科技大学 机械教改班 用C++的积分 其实积分的思想就是,微分—>求和—>取极限,如果是用纯手工法那就是先对一个函数微分,再求出它的面积,在取极限,因为我们的计算速度和计算量有限,现在有了计算机这个速度很快的机器,我们可以把微分后的每个小的面积加起来,为了满足精度,我们可以加大分区,即使实现不了微分出无限小的极限情况,我们也至少可以用有限次去接近他,下面我分析了四种不同的积分方法,和一个综合通用程序。 一.积分的基本思想 1、思路:微分—>求和—>取极限。 2、Newton —Leibniz 公式 ?-=b a a F b F dx x f ) ()()( 其中,)(x F 被积函数 )(x f 的原函数。 3、用计算机积分的思路 在积分区间内“微分—>求和—>控制精度”。因为计算机求和不可以取极限,也就是不可以无限次的加下去,所以要控制精度。 二.现有的理论 1、一阶求积公式---梯形公式 ?=+-=b a T b f a f a b dx x f )]()([2 )( 他只能精确计算被积函数为0、1次多项式时的积分。 2、二阶求积分公式——牛顿、科特斯公式 ?=+++-=b a S b f a b f a f a b dx x f )]()2(4)([6)( 他只能精确计算被积函数为0、1、2、3次多项式时的积分。 三.四种实现方法 1.复化矩形法 将积分区间[a,b]等分成n 个子区间: ],[],[],[],[],[112322110n n n n x x x x x x x x x x ---、、、 则h=(b-a)/n,区间端点值k x =a+kh

数值积分的辛普森方法

实习七 数值积分的辛普森方法 一、实习目的 1.掌握计算定积分近似值的辛普森方法; 2.理解复化辛普森求积公式。 二、相关知识 抛物线公式(辛普森公式) 将积分区间],[b a 作2n 等分:n i ih a x n a b h i 2,,2,1,0,,2 =+=-=,现在考察由分点22-k x 和k x 2形成的一个小区间],[222k k x x -,(12-k x 为中点),n k ,,2,1 =,在每一个 小区间],[222k k x x -上,作一条抛物线k k k x x y γβα++=2通过三点))(,(2222--k k x f x , ))(,(1212--k k x f x 和))(,(22k k x f x ,这样就产生关于未知系数k α,k β和k γ的线性方程组 ?????=++=++=++------)() ()(222212122122222222k k k k k k k k k k k k k k k k k k x f x x x f x x x f x x γβαγβαγβα (7-1) 显然上述方程组有唯一解(由高等代数知识知)。 现在,以)(x f y =为顶的曲边梯形用以抛物线k k k x x y γβα++=2为顶的曲边梯形来 代替,其面积 dx x x dx x f k k n k x x k b a k k )()(1 2222γβα++≈∑??=-∑=--=n k k k x x 12226]4)(2)2([){(2222222222222222k k k k k k k k k k k k k x x k x x x x x x γβαγβα++++++++----- }222k k k k k x x γβα+++)]()(4)([6212221222k k k n k k k x f x f x f x x ++-=--=-∑ (7-2) 得抛物线公式,记为n S 2,化简后: {})()(4)(2)(4)(2)(4)(6212432102n n n x f x f x f x f x f x f x f n a b S +++++++-=- 在实际求解数值积分时,我们总是采用成倍加密节点的方法,就抛物线公式而言,若n S 2被认为精度不够,则接着计算n S 4,而精度是否达到要求,又以n n S S 24-是否足够小作为判

6.3 复化求积公式

§3 复化求积公式 ● 复化求积法的基本思想: 将积分区间],[b a n 等分,可得到1+n 个求积节 点:kh a x k +=,),,1,0(n k Λ=,其中n a b h -=,对 积分1 1 1 ()()k k n n b x k a x k k I f x dx f x dx I +--==== =∑∑?? 在每一个小区间1[,]k k x x +上利用n 阶牛顿-柯特斯公式计算,然后对每个区间的近似积分值求和,用所得的值近似代替原积分值。如此得到的求积公式称为复化求积公式。 ● 复化梯形公式:(每个小区间上利用梯形公式求积) 1 1 1 110 ()()(()()) 2k k n b x a x k n k k k k k I f x dx f x dx x x f x f x +-=-++===-≈+∑?? ∑ 求和展开得:

011211 1 (()())(()()) 2 (()()) (()2()())2n n n n k k h T f x f x f x f x f x f x h f a f x f b --==++++++=++∑L 其中,n a b h -= 复化辛甫生公式: (每个小区间上用辛甫生公式求积) 1、公式: 1 12 10 1 110 ()()(()4()())6k k n b x a x k n k k k k k k I f x dx f x dx x x f x f x f x +-=-+++===-≈++∑?? ∑ 12 k x +表示为区间1[,]k k x x +的中点。 求和展开得: 1322 12 01121((()4()())(()4()6 ())(()4()())n n n n h S f x f x f x f x f x f x f x f x f x --=+++++++++L

复化梯形求积公式

第二章 1.1 复合梯形求积公式 复合梯形求积公式是复合求积法的一种,在本章中,将从其原理、概念等方面对它做一个详细介绍。在本章的最后,会对复合梯形求积法进行程序设计,使得可以从不同的方面对这种方法有更深的理解。 1.1.1 复合梯形求积公式的理论 当积分区间[a ,b]的长度较大,而节点个数1+n 固定时,直接使用Newton-Cotes 公式的余项将会较大。但是如果增加节点个数,即1+n 增加时,公式的舍入误差又很难得到控制。为了提高公式的精度,又使算法简单易行,往往使用复化方法。 即将积分区间][b a , 分成若干子区间,然后在每个小区间上使用低阶Newton-Cotes 公,最后将每个小区间上的积分的近似值相加,这就叫做复合求 积法。而复合梯形求积公式就是复合求积法的一种。 1.1.2复合求积公式的原理 将区间[]b a ,划分为n 等分,分点,,,1,0,,n k n a b h kh a x k =-= += 在每个子区间[](),1,,1,0,1-=+n k x x k k 上采用梯形公式,则得 []) ()()(2)()(11 1 1 f R x f x f h dx x f dx x f I n k n k k b a n k x x k k ++===+-=-=∑?∑? + 记 ()[()]()[()()]∑∑-=+-=++=+=1 1 110222n k b k k n k k n x f x f a f h x f x f h T , (1.1) 称为复合梯形公式,其余项可由 )(). ,(),(12 ][''3 b a f a b f R ∈-- =ηη 得 ()()() 11 0''3,12+-=∈?? ? ???-=-=∑k k k n k k n n x x f h T I f R ηη 由于[],,)(2b a C x f ∈ 且 ()(),max 1min 1010 ' '' '10-≤≤-=-≤≤≤≤∑n k k n k k n k f n f ηη

复化求积公式的算法及其应用

摘要 在数值计算中,低阶牛顿柯特斯求积方法存在很多缺陷,从余项公式可以看出其要求提高求积公式的代数精度,必须增加结点个数,会导致插值多项式出现龙格现象,且数值稳定性不能保证.基于以上原因,我们往往采用复化求积方法,此方法不仅可以克服以上缺点而且便于在计算机上实现,值得研究和学习. 在本课程设计中,我们首先从复化求积公式的思想引入,然后详细介绍复化梯形求积公式、复化辛普森求积公式和复化柯特斯求积公式的推导过程和相关性质,再对三种求积公式进行比较和总结,其次画出三种求积公式的流程图,最后通过求解例题写出三种求积算法的程序设计. 关键词复化求积算法;流程图;程序设计

目录 引言 (1) 第一章复化求积算法 (2) §1.1复化求积公式 (2) §1.1复化求积公式的思想 (3) §1.2复化求积公式的构造 (3) §1.2复化梯形求积公式 (3) §1.2.1复化梯形求积公式的推导过程 (3) §1.2.2复化梯形求积公式的性质 (3) §1.3复化辛普森求积公式 (4) §1.3.1复化辛普森求积公式的推导过程 (4) §1.3.2复化辛普森求积公式的性质 (4) §1.4复化柯特斯求积公式 (5) §1.4.1复化柯特斯求积公式的推导过程 (5) §1.4.2复化柯特斯求积公式的性质 (5) §1.5三种复化求积公式的比较及总结 (6) 第二章复化求积公式算法的流程图及其应用 (9) §2.1 流程图 (9) §2.2 应用 (12) 参考文献 (15) 附录A (16) 附录B (17) 附录C (18)

引言 积分计算在分析数学领域里是个古老的问题,在数值分析中已被广泛应用.但在计算机上却不能像在分析数学中那样,用原函数[满足)()('x f x F =的函数)(x F 就是函数)(x f 的原函数]计算积分.这是因为在实际问题中,函数关系往往是用列表数据或曲线给出的.即使知道了函数的表达式,求其一个原函数并非一个简单问题.许多函数难以用初等函数表示(如2 ,/sin x e x x -等).在计算机上,通常利用函数的若干个离散值,以代数运算近似计算积分值,这类近似计算法称为数值积分法. 设给定区间],[b a 上的函数)(x f .需要建立计算积分dx x f f I b a ?=)()(的近似方法. 数值积分的基本思想是试图用一个简单又易于积分的函数逼近)(x f ,以计算积分 )(f I .显然插值多项式是一个很好的选择,因为插值多项式可由)(x f 的若干值构造出 来,其积分很容易计算.为此,需将],[b a 分为n 等分n i x x i i ,,2,1],,[1 =+,其中 b x x x x a n =<<<<=+1321 .分割步长h ,因此,1,3,2,/)1(1+=-+=n i h i x x i 对应的函数值)()(,),(),()(121b f x f x f x f a f n ==+ .显然)(f I 可以表示为所有小区间上各函数的积分的和,即 )()(1f I f I n i i ∑== 其中 dx x f I i i x x i ? +=1 )( 通常把为每个)(f I i 建立的计算公式简称为求积公式,而把)(f I 建立的求积公式 称为复化求积公式. 由于在实际计算时,不宜使用高阶的牛顿——柯特斯公式,但若积分区间较大,单独用一个低阶的牛顿——柯特斯公式来计算积分的近似值,显然精度不好,为了提高数值求积的精确度,可利用积分对区间的可加性来解决这个问题,这就是通常采用 的复合求积法.而且使用这种方法之后,求积公式的收敛性和稳定性也得到了改善.

相关文档
相关文档 最新文档