文档库 最新最全的文档下载
当前位置:文档库 › 常用路基沉降预测方法分析对比

常用路基沉降预测方法分析对比

常用路基沉降预测方法分析对比
常用路基沉降预测方法分析对比

常用的地基沉降计算方法

6.3 常用的地基沉降计算方法 这里所讲的地基沉降量是指地基最终沉降量,目前常用的计算方法有:弹性 力学法、 分层总和法、应力面积法和考虑应力历史影响的沉降计算法。所谓最终沉降量是地基在荷载作用下沉降完全稳定后的沉降量,要达到这一沉降量的时间取决于地基排水条件。对于砂土,施工结束后就可以完成;对于粘性土,少则几年,多则十几年、几十年乃至更长时间。 6.3.1 计算地基最终沉降量的弹性力学方法 地基最终沉降量的弹性力学计算方法是以Boussinesq 课题的位移解为依据 的。在弹性半空间表面作用着一个竖向集中力P 时,见图6-5,表面位移w (x, y, o )就是地基表面的沉降量s : E r P s 2 1μπ-?= (6-8) 式中 μ—地基土的泊松比; E —地基土的弹性模量(或变形模量E 0); r —为地基表面任意点到集中力P 作用点的距离,22y x r +=。 对于局部荷载下的地基沉降,则可利用上式,根据叠加原理求得。如图6-6 所示,设荷载面积A N (ξ,η)点处的分布荷载为p 0(ξ,η),则该点微面积上的分布荷载可为集中力P= p 0(ξ,η)d ξd η代替。于是,地面上与N 点距 离r =22)()(ηξ-+-y x 的M (x, y )点的沉降s (x, y ),可由式(6-8)积分 求得: ??-+--=A y x d d p E y x s 22002 )()(),(1),(ηξηξηξμ (6-9) 图6-5 集中力作用下地基表面的沉降曲线 图6-6 局部荷载下的地面沉降

从式(6-9)可以看出,如果知道了应力分布就可以求得沉降;反过来,若 沉降已知又可以反算出应力分布。 对均布矩形荷载p0(ξ,η)=p0=常数,其角点C的沉降按上式积分的结果为: 2 1 bp E s c ω μ - = (6-10) 式中cω—角点沉降影响系数,由下式确定: ? ? ? ? ? ? + + + + + =)1 ln( ) 1 1 ln( 12 2 m m m m m cπ ω (6-11) 式中m=l/b。 利用式(6-10),以角点法易求得均布矩形荷载下地基表面任意点的沉降。例如矩形中心点的沉降是图6-6(b)中的虚线划分为四个相同小矩形的角点沉降之和,即 2 21 )2/ ( 1 4bp E p b E s cω μ ω μ- = - = (6-12) 式中cω ω2 =—中心沉降影响系数。 图6-7 局部荷载作用下的地面沉降 (a)绝对柔性基础;(b)绝对刚性基础 以上角点法的计算结果和实践经验都表明,柔性荷载下地面的沉降不仅产生于荷载面围之,而且还影响到荷载面之外,沉降后的地面呈碟形,见图6-7。但一般基础都具有一定的抗弯刚度,因而沉降依基础刚度的大小而趋于均匀。中心荷载作用下的基础沉降可以近似地按绝对柔性基础基底平均沉降计算,即 A dxdy y x s s A / ) , ( ??= (6-13) 式中A—基底面积, s(x, y)—点(x, y)处的基础沉降。 对于均布的矩形荷载,上式积分的结果为:

路基沉降预测的三点修正指数曲线法_陈善雄

第32卷第11期 岩 土 力 学 V ol.32 No. 11 2011年11月 Rock and Soil Mechanics Nov. 2011 收稿日期:2010-03-10 基金项目:中国科学院知识创新工程重要方向性项目(No. kzcx2-yw -150);岩土力学与工程国家重点实验室重点项目(No. SKLZ08032)。 第一作者简介:陈善雄,男,1965年生,博士,研究员,博士生导师,主要从事特殊土工程特性与灾害防治技术方面的研究工作。E-mail: sxchen@https://www.wendangku.net/doc/7a5012450.html, 文章编号:1000-7598 (2011) 11-3355-06 路基沉降预测的三点修正指数曲线法 陈善雄1,王星运2,许锡昌1,余 飞1,秦尚林1 (1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉430071;2. 湖北省电力勘测设计院,武汉 430024) 摘 要:科学、合理地预测路基工后沉降量是高速铁路建设的关键环节。针对武广高速铁路路基沉降量级小、数据相对波动大的实测数据,探讨了指数曲线法对无砟轨道路基沉降预测的适用性,发现指数曲线法不能直接应用于量级小、数据相对波动较大的沉降预测。把三点法的基本思想引入指数曲线模型,对指数曲线法进行了改进,提出了路基沉降预测的三点修正指数曲线模型。结合武广高速铁路路基沉降观测数据,分析了三点修正指数曲线模型的特性。分析表明,在整个沉降曲线上选取3个关键点作为预测样本,很好地回避了数据波动带来的影响;沉降曲线上“拐点”以后的沉降规律更符合指数曲线模型,因此,应取沉降曲线上“拐点”以后的数据作为样本值,所取三点应能尽量反映沉降发展的趋势。三点修正指数曲线法预测结果稳定、相关系数高,具有一定的工程应用价值。 关 键 词:三点修正指数曲线法;沉降预测;三点法;路基;高速铁路 中图分类号:TU 433 文献标识码:A Three-point modified exponential curve method for predicting subgrade settlements CHEN Shan-xiong 1 ,WANG Xing-yun 2 ,XU Xi-chang 1,YU Fei 1,QIN Shang-lin 1 (1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Hubei Provincial Electric Power Survey & Design Institute, Wuhan 430024 China ) Abstract: Scientific and rational prediction of post-construction settlement is a key link of high-speed railway construction. Based on the field observation data of subgrade settlement of Wuhan-Guangzhou high-speed railway, aiming at measured settlement data being characteristic of small in magnitude, but large relative fluctuation, the suitability of exponential curve method for predicting settlements of subgrade under ballastless track has been studied synthetically. it was found that exponential curve method can't be directly used for predicting subgrade settlements in high-speed railway. The basic idea of three-point method is introduced into exponential curve model, a three-point modified exponential curve method for predicting subgrade settlements has been proposed. Combining the measured settlement data of subgrade in Wuhan-Guangzhou high-speed railway, the characteristics of three-point modified exponential curve model have been analyzed. The analysis shows that selecting three points as forecast sample on settlement-time curve of subgrade can commendably evade the influence brought by data fluctuation; and the settlement regularity after inflection point on settlement-time curve of subgrade more tally with exponential curve, therefore, the samples must be selected after inflection point on settlement-time curve of subgrade; and three samples should reflect the settlement development tendency as far as possible. The prediction results of three point modified exponential curve method are stable with high correlation coefficient. The new prediction method has engineering value. Key words: three-point modified exponential curve method; settlement prediction; three-point method; subgrade; high-speed railway 1 引 言 无砟轨道以其稳定性好、耐久性强、刚度均匀、维修工作量少等综合优势在德国、日本等一些发达国家的高速铁路中得到了广泛的应用,近年来在我 国高速铁路建设中也得到了大力的推广和应用,国内新建的铁路客运专线大多采用无砟轨道型式。 相对于有砟轨道,无砟轨道对结构的刚度、基础的沉降更加敏感。无砟轨道无法进行起道作业,轨道路基一旦发生沉降,只能通过调整扣件才能恢

路基工后沉降分析

路基工后沉降标准资料分析 随着高速铁路的发展,对路基工后沉降的要求越来越高。路基的工后沉降包括:路堤填筑部分的沉降和地基的沉降。一般路基施工完成后的工后沉降,路堤填筑部分的沉降极小,主要是地基的沉降。各国对路基工后沉降的要求是考虑线路维修养护条件及路基不均匀沉降差对线路的影响。 法国高速铁路对于有碴轨道不均匀沉降差为20mm/10m,最大沉降量为5cm;对于无碴轨道不均匀沉降差为30mm/20m,最大沉降量为5cm。 德国高速铁路对于无碴轨道考虑扣件调整范围为20mm,在保证轨道线形的情况下,路基工后最大沉降量为3倍的扣件允许调整量,则路基工后最大沉降量为6cm。 日本高速铁路对于无碴轨道考虑路基工后最大沉降量为3cm。 韩国高速铁路考虑路基工后沉降最大沉降量为7cm。(可能为有碴轨道) 台湾高速铁路考虑路基工后沉降标准是采用法国标准。 目前各国高速铁路在制定路基工后沉降标准时主要是考虑线路的维修养护标准,特别是考虑了无碴轨道结构对路基沉降的高标准要求,其工后沉降较小。从高速铁路线路平顺性考虑,路基应控制沉降差和最大沉降量。我们认为高速铁路路基是免维修的,而实际上高速铁路路基是处于常维护的状态(每天要对线路状况进行检查,按日常养护维修标准对其进行调整)。高速铁路的每2年要进行一次大的维修养

护。高速铁路的养护维修模式与一般铁路有了质的变化。 对于路基工后沉降应提出路基工后沉降差和最大沉降量的标准,供设计和施工考虑。路基工后沉降从轨道养护维修标准考虑,路基工后沉降差应考虑线路短波不平顺和扣件可调值,路基工后最大沉降量应考虑线路长波不平顺和钢轨位置的可调整量。 着国民经济的发展和人民生活水平的不断提高,旅客对于乘坐车辆舒适度和速度的要求越来越高,具体到客运专线而言,即是对路桥结构变形和强度指标的要求越来越高。从德、法、日三国针对我国高速铁路设计咨询结果来看,德、法强调控制路基的不均匀沉降,其追求沉降的目标是不均匀沉降为零;工后沉降5cm或3cm的指标相对而言较为严格,如何确保路基沉降变形满足质量标准要求成为路基工程的重点课题。我国很早开始对高速铁路基础关键技术进行了一系列的研究,在借鉴国外高速铁路大量理论、试验和建设实践的基础上,相继制定了有关设计暂行规定和设计指南,初步形成了我国客运专线技术体系。为保证列车高速、平稳、舒适、安全运行,我国相关规定路基工后沉降量不应大于5cm,沉降速率应小于2cm/年,桥台台尾过度段路基工后沉降量不应大于3cm;无蹅轨道路基工后沉降量不大于15mm,不均匀沉降变形20mm/20m。详见表1-1。 二、路基沉降的概念 1.工后沉降:在铺轨工程完后(指有蹅轨道工程竣工或无蹅轨道道床工程完后,下同)以后,基础设施产生的沉降量。工后沉降标准与项目建设速度目标、轨道类型、施工类型、施工日期、轨道维修养护标准和维修周期、工程投资大小等因素相关,同时也与地质勘探试验、沉降计算、沉降观测、工后沉降预测等的方法和精度密切相关,表1-1正是上述思想的反映。 2.均匀沉降:铺轨工程完成后,一定区域范围内路基沉降量的相同性及其分布。 3.不均匀沉降:铺轨工程完成后,一定区域范围内不同测点路基沉降量的差异大小及其分布。 4.台后沉降:铺轨工程完成后,桥台台尾过渡段路基工后沉降量。 5.差异沉降:铺轨工程完成后,路基与桥台、隧道等结构物间的沉降变形量差。 三、路基沉降的组成 路基的变形主要由路基本体和地基基础的变形组成;路基本体的变形通常指机床表层、机床底层和基床下路堤的变形。路堤结构各部的沉降组成见表3-1。 1、基床表层:通常由级配碎石或级配砂砾石组成。基床表层的变形在填筑完成约1周后基本自调完毕,该变形量可以忽略不计。

地基沉降实用计算方法

第三节 地基沉降实用计算方法 一、弹性理论法计算沉降 (一) 基本假设 弹性理论法计算地基沉降是基于布辛奈斯克课题的位移解,因此该法假定地基是均质的、各向同性的、线弹性的半无限体,此外还假定基础整个底面和地基一直保持接触。 布辛奈斯克是研究荷载作用于地表的情形,因此可以近似用来研究荷载作用面埋置深度较浅的情况。当荷载作用位置埋置深度较大时,则应采用明德林课题的位移解进行弹性理论法沉降计算。 (二) 计算公式 建筑物的沉降量,是指地基土压缩变形达固结稳定的最大沉降量,或称地基沉降量。 地基最终沉降量:是指地基土在建筑物荷载作用下,变形完全稳定时基底处的最大竖向位移。 基础沉降按其原因和次序分为:瞬时沉降d S ;主固结沉降c S 和次固结沉降s S 三部分组成。 瞬时沉降:是指加荷后立即发生的沉降,对饱和土地基,土中水尚未排出的条件下,沉降主要由土体测向变形引起;这时土体不发生体积变化。(初始沉降,不排水沉降) 固结沉降:是指超静孔隙水压力逐渐消散,使土体积压缩而引起的渗透固结沉降,也称主固结沉降,它随时间而逐渐增长。(主固结沉降) 次固结沉降:是指超静孔隙水压力基本消散后,主要由土粒表面结合水膜发生蠕变等引起的,它将随时间极其缓慢地沉降。(徐变沉降) 因此:建筑物基础的总沉降量应为上述三部分之和,即 s c s s s s s ++= 计算地基最终沉降量的目的:(1)在于确定建筑物最大沉降量;(2)沉降差;(3)倾斜以及局部倾斜;(4)判断是否超过容许值,以便为建筑物设计值采取相应的措施提供依据,保证建筑物的安全。 1、 点荷载作用下地表沉降

Er Q y x E Q s πνπν)1() 1(22 22-+-= = 2、 绝对柔性基础沉降 ?? ----=A y x d d p E y x s 2 202 )()(),(1),(ηξηξηξπν 0) 1(2bp s c E c ων-= 3、 绝对刚性基础沉降 (1) 中心荷载作用下,地基各点的沉降相等。 圆形基础:0)1(2dp s c E c ων-= 矩形基础:0)1(2bp s r E c ων-= (2) 偏心荷载作用下,基础要产生沉降和倾斜。 二、分层总和法计算最终沉降 分层总和法都是以无側向变形条件下的压缩量公式为基础,它们的基本假设是: 1.土的压缩完全是由于孔隙体积减少导致骨架变形的结果,而土粒本身的压缩可不计; 2.土体仅产生竖向压缩,而无测向变形; 3.在土层高度范围内,压力是均匀分布的。 目前在工程中广泛采用的方法是以无测向变形条件下的压缩量计算基础的分层总和法。具体分为e-p 曲线和e -lgp 曲线为已知条件的总和法。 1.以e~p 曲线为已知条件的分层总和法 计算步骤: (1)选择沉降计算剖面,在每一个剖面上选择若干计算点。 1)根据建筑物基础的尺寸,判断在计算其底压力和地基中附加应力时是属于空间问题还是采用平面问题; 2)再按作用在基础上的荷载的性质(中心、偏心或倾斜等情况)求出基底压力的大小和分布; 3)然后结合地基中土层性状,选择沉降计算点的位置。 (2)将地基分层:在分层时天然土层的交界面和地下水位应为分层面,同时在同一类土层中分层的厚度不宜过大。分层厚度h 小于0.4b ;或h=2~4m 。

路基沉降原因分析及处理措施

路基沉降原因分析及处理措施 1、路基不均匀沉降的原因 1.1、路基填土压实度不足 由于压实度不足,往往导致填方路基的不均匀沉降变形,路基两侧出现纵向裂缝,路基土体压实度不足的主要原因有以下几点:(1)施工受实际条件的限制。路基施工时,天气太干燥,局部路堤填料粘土土块粉碎不足致使路基压实度不均匀;暗埋式构造物处因构造物长度限制使路基边缘不能超宽碾压,致使路基边缘压实度不够;某些加减速车道与行车道没有同步施工,当拼接处理得不好时,其拼接处也会产生压实度不足的情况。 (2)考虑到施工安全和进度,使得压力或压力作用时间不足,路基压实不充分,致使路基压实度达不到规范要求。 (3)由于填方土体的最佳含水量控制不好,压实效果达不到规范要求。 (4)在填方路堤施工中,当路堤施工到一定高度以后,路堤边缘土体往往存在压实度不足问题,对于较高的填方路基,通常都要做相应的处治。 填方土体压实度不足,其结果是土体前期固结压力小于自重应力和各种附加应力之和,在自重作用下就会发生沉降变形,这些附加应力主要来自以下几个方面: ①车载,尤其超载情况; ②含水量变化造成土体容重的改变;

③地下水位升降而导致浮力作用改变; ④土体饱和度改变,引起负孔隙水压力改变。这些附加应力引起土体中有效应力改变,从而导致土体发生压缩变形。 土体压实度不足还会导致填土路基的侧向变形。目前采用的地基沉降计算方法是假定侧向完全受限,仅有竖向变形,实际路基土中存在有侧向变形,这种侧向变形会引起沉降。 1.2、路堤填料不均匀,控制不当 在公路施工过程中,对填料、级配很难得到有效的控制,填料常常是开挖路堑、隧道掘进产生的废方,这些填料性质差异大、级配也相差很远。一方面,在施工过程中,如果分层碾压厚度过大,小颗粒填料和软弱物质很难得到有效压实,在荷载的长期作用下,回填料会产生不协调沉降变形,路面会产生局部沉陷,刚性路面还可能产生裂纹。另一方面,由于回填料的性质不一样,特别是有的回填料具有膨胀性,在路基排水系统局部失效后,水的渗入会使路面局部隆起,影响行车舒适度,严重的会使路面破坏。 控制不当体现在: (1)选用了稳定性较差的路堤填料,如采用高液限粘土、粉质土或使用淤泥、腐殖质含量较高的土料填筑路堤,会使路堤产生整段或局部的变形。 (2)采用不同土质填筑路堤时,因土的性质不同如填筑方法不当,碾压成型后易造成不均匀性沉降。 1.3、地下水的影响

路基沉降监测方案

江津(渝黔界)经习水至古蔺(黔川界)高速公路 TJ9分部 路基沉降监测方案 编制: 复核: 审批: 四川公路桥梁建设集团有限公司江习古高速TJ9项目 2015年11月

目录 【1】工程概况 (1) 【2】观测依据 (1) 【3】观测流程 (2) 【4】观测目的、内容、仪器及方法 (2) 〖1〗观测项目、仪具、目的 (2) 〖2〗观测方法 (3) 【4】观测仪器及观测方法 (3) 【5】现场施工观测作业计划流程 (4) 【6】测点埋设方法与要求 (5) 〖1〗位移观测边桩 (5) 〖2〗沉降板 (5) 【7】观测项目的观测频率和报警值 (5) 【8】测点布置 (6) 【9】观测资料整理与成果分析 (6) 【10】质量保证和控制 (8) 〖1〗最大限度减小测量误差 (8) 〖2〗观测点的保护 (8) 〖3〗质量保证 (8) 【11】文明生产与安全生产 (9)

路基高填深挖变形与沉降观测施工方案 【1】工程概况 本标段位于习水县境内,沿线途径习水东皇镇图书村、伏龙村和关坪,路线全长7.011511km,起点里程桩号K69+200,止点K76+200。主要工作内容为:路基挖土方23万方、挖石方245万方、三背回填5.15万方,换填片(碎)石9.2万方、利用石填方165万方、碎石桩1.25万米、防护和排水工程共3万方;主线大桥1126.5米/3座、主线互通桥106m/2座、水泥厂赔桥161m/1座,通道493米/11座,涵洞330米/9座;隧道单洞长1775m。 施工区域区内无大的地表水体分布。区内旱、雨季节分明,气候的水平和垂直分带明显。这种降雨集中、气候分带和本区固有的深谷地形、对地下水的交替循环有着明显影响。工程区内地下水按其赋存形式有松散堆积层孔隙水和基岩裂隙水两大类型,主要受大气降水所补给。 【2】观测依据 本工程观测内容主要参考规范如下: 1、江习古高速TJ9分部施工图设计文件; 2、《工程测量规范》GB50026-2007,中华人民共和国国家标准; 3、《孔隙水压力测试规程》(CECS55:93);

路基的沉降控制标准[综述]

路基的沉降控制标准[综述] 1、沉降问题的提出 我国的高速公路有相当部分达不到设计使用年限,与国外相比有很大的差距。造成这种现象的原因很多,路基的差异沉降是其中之一。 我国路面设计仅考虑路基的模量,在路面基层弯拉应力的计算中不考虑因路基的差异沉降变形所引起的附加应力,这种计算方法与国外基本相同,但我国的路基与国外差别很大。我国农村人口占全国的2/3,在高速公路密集的中东部地区,为方便高速路两侧村庄的通行,必须留有一定高度的通道,间距往往只有数百米,为满足纵坡要求,路基高度很难降低,高速公路路基高度一般在2~3M。在南非、欧洲等高速公路发达地区,公路的视线很好,道路基本上是顺着地形贴着地表走,路基的沉降几乎为零,虽然这可能导致道路的纵坡较大,但国外良好的车况抵消了这种影响,这在南非最典型。在意大利北部与奥地利等多山国家,多采用架桥或分离式路基,很少有高填方路基。另外国外以柔性路面居多,柔性路面对路基差异沉降的承受能力明显要高于半刚性基层。因此在国外不必考虑的因素在我国可能必须加以考虑。因路基差异沉降引起路面开裂的例子较多,预想性路面对路基模量值很高,但过大的工后沉降引起了路面十多处开裂,所以说强度与变形是路基的两个同样重要的控制指标。我国传统的观念往往将路基视为简单的土石方工程,这在低级路面时代问题不大,但对高速公路这种观念将带来严重的后果,路基是路面的基础,服务于路面,可以说是路面的一个组成部分。

2、我国路基的沉降控制标准 路基的沉降指标主要有:总沉降量、沉降速率、差异沉降率。所谓差异沉降率是指道路任意两点间在单位时间内的沉降差值与这两点间的距离之比。 我国路基设计规范对软土地区路基变形的控制是彩工后总沉降量(对高速公路则是通车后15年内的总沉降量),即对一般路段的工后沉降量不大于30cm,涵洞、箱涵、通道处不大于20cm,桥台与路堤相邻不大于10cm。从已建高速公路的调查分析,彩总沉降量指标并不能完全消除路面的开裂,在一些鸡爪沟地形的山区,路基的总沉降量也许不大,但其差异沉降率较大引起了路面的开裂,在软土地区也因路基的差异沉降率过大而引起路面开裂与波浪起伏,因此对于路基的变开控制除采用总沉降量外还应考虑采用差异沉降率控制。总沉降量、沉降速率、差异沉降率这三者之间有一定的相关性,但并不完全呈对应关系,总沉降量小并不意味着沉降速率或差异沉降率小,反之亦然。 3、沉降控制标准的确定 对于路基的沉降控制标准,主要从如下3个方面进行探索。 3.1工程经验的总结 交通部公路科研所对太旧路进行全面调查后认为两点间的差异沉降率应控制在0.6%以内,超过此值则有可能引起路面开裂。我国东部沿海地区的许多高速公路存在软土地基,软基深,路基沉降量大,时间长。为了确保新铺筑的路面不因路基沉降而引起开裂,我国各条

高速铁路复合地基沉降预测常用方法对比分析研究

高速铁路复合地基沉降预测常用方法对比分析研究摘要:高速铁路路基的沉降控制与预测,是高速铁路建设中亟待解决的关键问题;本文通过几种常用的沉降预测方法,对某客运专线复合地基的沉降进行预测,并与实测数据进行了对比分析,指出了各种方法的适用性与优缺点,希望能给以后相似的工程问题提供参考。 关键词:沉降预测;曲线拟合;灰色理论;高速铁路路基 summary: the control and prediction of high-speed railway subgrade settlement, the key issues to be solved in the high-speed railway construction; in this paper, several commonly used settlement prediction methods, a passenger line composite foundation settlement forecast and compared with the measured dataanalysis, pointed out that the applicability and advantages and disadvantages of the various methods, reference hope to give future similar engineering problems.keywords: settlement prediction; curve fitting; gray theory; speed railway subgrade 中图分类号:u443文献标识码:a文章编号 一、引言 沉降实测资料中包含了工程的地质条件、荷载特点等信息,基于前期实测数据来估算后期沉降量及最终沉降量的预测方法,与理

浅析公路路基沉降分析及施工技术

浅析公路路基沉降分析及施工技术 发表时间:2018-05-14T15:03:42.313Z 来源:《建筑学研究前沿》2017年第35期作者:武丽芬 [导读] 通过对公路施工的问题分析,我们可以得知,路基路面在沉降地段的施工问题是公路的施工当中的重中之重。 山西省吕梁市交城县交通运输局山西吕梁 030500 摘要:通过对公路施工的问题分析,我们可以得知,路基路面在沉降地段的施工问题是公路的施工当中的重中之重,太多的道路沉降问题都是发生在设计的过程中,最初设计的时候就有了问题,所以,在实际的路面路基的施工的时候可以采取搭板技术,它是缓解沉降地段施工问题的方有效措施,进而使公路的安全质量得到提升,基于此,本文就针对公路沉降段路基路面的施工进行具体分析。 关键词:公路路基;沉降分析;施工技术 引言 路基的沉降问题严重影响着公路的安全运行,对于路基沉降问题的分析以及解决措施都会影响整个公路工程的施工进度、施工质量以及施工安全。在决定路基稳定因素中,地基施工质量起到非常关键的作用。施工技术决定着工程质量、工程进度以及工程经济,严重者还对后期工程的运营质量起到影响。在当今飞速发展的中国,道路交通事业飞速前进,道路已普及各个角落,以前的农村泥泞道路也大都被沥青道路取代。在公路建设中对路基稳定性的要求也越来越高,因此,在道路建设实际工程中也引入了愈来愈多的先进技术。所以,在进行公路建设过程中,对公路建设的施工技术以及施工质量需要大大提升,处理好路基沉降难题,保证公路施工的正常发展。 1、公路路基沉降原因 在公路建设过程中,由于公路路基沉降经常极大程度上影响路面成效,公路路基沉降先是造成对路基损坏形成不良后果,然后因为外力的作用对公路路面结构形成严重破坏。在路基沉降后期,在路面内部填土应变区域发生变形,会引起不同程度上的沉降,导致填充裂缝,因为拉伸强度不够导致填充地方开裂。如果不能及时有效的对路基沉降问题找出解决办法,那么则会造成路面变形。对于应用到的水泥板非常容易碎裂,在路面产生横向或纵向裂纹现象,很容易产生边坡不稳情况。因此不难发现,对于公路路基沉降带来的严重现象是一系列的,更是极大程度上危害公路建设工程的施工质量和安全使用期限。要想对路基沉降问题提出解决措施,首先要找到路基沉降原因,这样才能很好提出措施。对于引起公路路基沉降的原因有很多,除了前期建设中场地地质条件原因等,还有对地理结构以及环境的数据是否完整等因素。总之,在诸多原因导致下,很容易造成公路施工过程中或后期运行中路基沉降问题。如果在施工前期,不能科学合理的计算沉降实际速率、沉降曲线,就会经常引起工程施工中的误差,接着造成公路路基沉降。进行填土施工时,及时分析路基、填土临界高度等,而且还要多留意路基沉降现象。不然会导致软基与临界的距离相近,以及容量也不合格,最终造成路基沉降或者形成开裂。对现实公路路基建设中,需要考虑以上诸多影响因素,并给出相应解决措施,最大程度上降低路基沉降发生的可能。 2、路基沉降施工技术方面的控制措施 2.1、加强下沉地段的结构设计 在公路施工的时候首先我们要在结构上进行科学合理的设计。目前为止,我们国家在对道路施工的有关标准中,几乎没有对沉降的地段在搭板作业上有一个统一的标准,所以,我们在公路正常的地段施工的时候就要对搭板的长度和材质的强度多多重视,一般来说,都是施工方在施工的时候根据设计方案里面的要求进行施工,其实具体的施工设计需要参考桥头路堤以及桥面的沉降数值和项目通车的标准来进行实施。在设计中可以使用土工格栅的施工手法,让土工格栅的抗剪切能力得到充分的发挥,降低在道路填土过程中出现位移和土层出现移动情况的发生,进而提升公路施工中路基路面的稳定性能。第二,设计沉降缓和过渡段落。在公路施工以前我们首先要对现场进行勘测,尤其是在软土层的地段,我们需要对路基和路面进行有效的处理,在设计中,我们要对强度不同的沉降地段用强度渐变的方法来设计,让不一样强度的沉降地段进行平稳的过渡,其中,路堤和桥台的渐变长度要控制在不能超过五十米的地方,处理不同沉降地段在沉降数值上的差距也要控制在五厘米之内,第三,如果从路基路面的角度去分析的话,为了减小沉降发生的可能性,我们可以用钢筋混凝土结构怪做为路堤,从而有效的提升整个路面的荷载能力。 2.2、合理选择填料 施工材料对于公路工程沉降段路基路面施工至关重要。在选择路基材料时要先进行土壤试验,并借助数据对比的方式选择填充性能佳的材料实施填充处理,通常而言,应优先选用渗水性能较佳、含水量较少的材料,保证材料具备一定的渗水能力,比如砂石类,不能采用淤泥、沼泽土等含水量偏高的材料。 2.3、搭板设置 在公路工程沉降段路基路面施工过程中,首先需保证锚栓及拉杆的位置保持在一定的水平线上,这样也能保证相关工作的安全性,而在后期进行支座的选择过程中,对于底层要进行铺垫,一般设置在搭板位置的附近,支座采用橡胶材料,距离应不高于80cm,以便施工人员可通过对距离的掌握来保证施工过程的稳定性。其次,在公路工程桥台与牛腿之间的位置要呈现倒立的状态,保证路面结构的稳定性。如果桥头位置与搭板存在一些缝隙,可将一些填充类的材料用于其中,以保证工程能够顺利实施,避免出现雨水浸泡的情况,而用来填充的材料可以选择沥青或是纤维类材料,并且在进行填充的过程当中,为减少缝隙,施工人员需要进行倒灌,以保证其防水性。 2.4、加强地基处理施工控制 公路工程在施工的程中对地基的合理施工能够减小发生错台问题可能性的出现。比如,对于软土地基进行施工的时候,往往会在路基加入填充料,这样会导致使软土地基向周边挤密移动,从而使基桩的压力加大,这样就比较容易出桥台位移和转动的情况,因此,想要减小这种情的发生,我们就要对针对性的措施,加强地基的刚度。如果在沟壑段对地基进行施工,由于这个路段的含水量大,并且土质孔隙大,我们可以把粘土层进行交换,增加粘土层的强度,进面加大地基的刚度,以此来确保公路的施工质量。 2.5、施工检测控制 检测时,采用科学方式——地表沉降计进行施工测量。进行植土时,把实际测试数据作为参考根据。并且控制植土速度,及时对公路路基的沉稳趋势作出判断评估。合理的掌控植土速度,做到对路面施工进度的安排。在施工中要想达到地表平稳,要测量地表水平位移的

地基沉降计算及预测方法研究

地基沉降计算及预测方法研究 由于建筑物荷载差异和地基不均匀等原因,基础或路堤各部分的沉降或多或少总是不均匀的,使得上部结构之中相应地产生额外的应力和变形。地基不均匀沉降超过了一定的限度,将导致建筑物的开裂、歪斜甚至破坏。所以研究地基土的沉降变形机制,提高计算和预测模型精度具有重要意义。 标签:地基沉降;沉降计算;双曲线法;割线模量法 在工程的设计、施工、工后沉降控制过程中,沉降分析是不可忽视的问题,工程技术人员都给予极大的重视。无论是公路工程,建筑工程,还是水利工程,地基沉降分析常被人们视作工程成败的关键。如果对地基变形估计不足小则影响工程的使用,大则引发严重工程事故造成巨大的经济损失。 1 路基沉降机理分析 1.1 土的变形性质 作为自然历史产物,所有的土都经过了十分漫长的变化过程,具有漫长的历史。并且依照年代、环境以及地点的差异,土质结构也不同,而形成方式的不同,导致了土体的变形特性会具有差异。 土体水重的变化引发因素主要由以下几种因素的变化组成:土粒重度、水的重度、孔隙比、饱和度等。为了对土中水重进行深入分析,可以进一步的定量分析水重变化率,可以将常见的土性指标带入土粒与水细化方程,进一步采用土骨架应变-应力关系,便可以得出土体变形特征。 土具有较为复杂的压缩规律以及固结规律,这种规律不仅仅受到土质本身的形状以及类别影响,也受到了外界条件以及荷载方式影响。例如:无粘性土和粘性土之间在变形机理上就具有差异;二相土同三相土之间在固结上具有差异,三相土中由于含气因而不容易确定其中变形指标,对于其状态的计算较为复杂。天然土体的构成相对较为复杂,因而如何对其变形影响因素进行确定,还需要进一步的研究。 1.2 路基沉降机理 通过密实度不同的土石可以构成路基,作为道路最基本的土工结构,强度相对大于一般的土体,受到荷载的影响,一般的土体所发生的形变以及强度变化机制,从本质上进行分析是土体内部的总体结构演化以及要素调整。所以,对路基沉降的内因进行分析,可以发现是由于土层中的空隙受到荷载的作用而发生了压缩变形,因而这种变形是竖直方向的;而对路基变形的外因进行分析,主要由于地基受到了外界作用力,因而在各个应力作用的方向上便出现了竖向变形、横向变形以及剪切变形,从而是的地基的不同点向着侧向、竖向等发生位移,在竖向

路基沉降观测方法

路基沉降观测方法集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

目录 目录 路基沉降观测实施方法 1.编制依据 根据铁道部京沪高速铁路建设总指挥部2008年5月《京沪高速铁路线下工程沉降变形观测及评估实施方案》,结合本工班管段路基工程的具体情况制定实施细则。 2.任务范围及工作内容 2.1任务范围: 商合杭一分部管段路基总长614.11米,分为三段如下表: 第一段:DK674+162.92-DK674+433.98路基全长271.08。 第二段:DK680+980.19-DK681+101.27路基全长121.08。

2.1工作内容: 路基工程沉降变形观测。 3.参照执行的标准及规范 (1)《客运专线铁路无砟轨道铺设条件评估技术指南》(铁建设[2006]158号); (2)《客运专线铁路无砟轨道测量技术暂行规定》(铁建设[2006]189号); (3)《国家一、二等水准测量规范》(GB12897—2006); (4)《建筑沉降变形测量规程》(JGJ/T8-2007); (5)《铁路客运专线竣工验收暂行办法》(铁建设[2007]183号); (6)《客运专线无砟轨道铁路施工技术指南》(TZ216-2007); (7)《工程测量规范》(GB0026-93); (8)《全球定位系统(GPS)铁路测量规程》(TB10054-97); (9)《客运专线无砟轨道铁路设计指南》(铁建设函[2005]754号); (10)路基工程设计图纸 沉降变形监测网建立及测量技术要求 沉降监测网的建立、精度要求等符合《客运专线无碴轨道铁路工程测量暂行规定》的要求;根据《商杭合铁路线下工程沉降变形观测及评估实施方案》规定,沉降变形测量点分为基准点、工作基点和沉降变形观测点。其布设按下列要求: (1)每段路基均建立独立的监测网,设置1个稳固可靠的基准点。基准点设在沉降变形 影响范围以外便于长期保存的稳定位置,与相邻桥梁共用。 (2)工作基点选在比较稳定的位置。工作点除使用普通水准点外,按照国家二等水准测 量的技术要求进一步加密水准基点或设置工作基点至满足工点垂直位移监测需要。加密后的水准基点(含工作基点)间距200m左右时,可基本保证线下工程垂直位移监测需要。(3)沉降变形观测点设立在沉降变形体上能反映沉降变形特征的位置,具体点位布设详 见5.2。 4.1沉降变形监测测量工作基本要求 水准基点使用时首先作稳定性检验,并以稳定或相对稳定的点作为沉降变形的参考点。

软土地基沉降预测方法比较分析

6 福建建设科技 20101No12■地基基础工程 软土地基沉降预测方法比较分析 李成虎(福州城市地铁有限责任公司 福州 350001) [摘 要] 对工程中软土地基沉降的四种预测方法进行了分析比较,从预测曲线和实测曲线以及误差曲线的比较可以看出,每种方法既有优点也有缺点,预测方法的选用要结合具体的工程实际。本文为软土地基沉降预测方法的选用提供了参考。 [关键词] 软土地基 沉降预测 比较分析 A nal ysis an d compa r ison of set tlement predict ion met hods of soft soil ground Abstract:The ground settlement of a project on sof t soil was predicted by four met hod a nd t he corre spo nding results were com2 pared with the te st value s,it is shown that eac h method has bot h advantages a nd disadvantage s,t he selectio n of p redictio n method must combine wit h t he actual nee d of the specific p roject.This re searc h provides ref erence s on met hod op tio n of p re-estimate in sof t soil ground settlement. K e y words:sof t soil ground;settlement pre diction;co mparative analysis 1引言 在软土地区修建建筑物或者构筑物最关键的问题就是控 制地基的沉降,合理的预测分析工后沉降,对正确施工,节省 工程投资,具有十分重要的现实意义。由于地基沉降分析中 存在大量不确定性因素,这些不确定性因素往往对地基沉降 的计算结果影响很大。目前,软土地基沉降预测和实际沉降 情况相差甚远[1]。因此有必要对软基沉降预测及其产生的误 差进行分析探讨,从而提出较为适用性的预测方法。 文中通过几种预测方法对同一工程进行模拟预测的结果 比较,分析各种方法的优缺点,从而为今后软土沉降预测方法 的选用提供参考。 2方法简介 2.1对数曲线法 对数曲线法(三点法)是工程中较为常用的地基最终沉降 量推算方法,曾国熙(1959)[2]建议地基固结度采用下式计算: U t=1-αexp(-βt)(1) 式(1)中α,β为固结参数。 某时刻的沉降可表示为: S t =(S∞-S d)[1-αe xp(-βt)]+S d(2) 式中:S t—t时刻的实测沉降; S d,S∞—分别为瞬时沉降和最终固结沉降。 为求t时刻的沉降,可以采用三点法分别求解S∞、β、S d 与α值。将所求得的S d、S∞、α、β分别代入式中就可以得到 任意时刻的沉降量。 2.2指数曲线法 指数曲线法[2]就是根据现场实测的统计结果,近似认为 沉降量S是时间t的指数函数,可以表示为: S(t)=S∞-(S∞-S0)e t0-t η t≥t0(3) 式中t—某一观测时刻; S(t)—推算的某一时刻的沉降值; S0—对应于t的沉降量; S∞—最终沉降量,为待定值; η—参数,为待定值。 求得η,S∞后,就可以得到最终沉降量和任意时刻的沉降量。 2.3Asao ka曲线法 Asaoka法是由日本学者Asaoka.于(1978)[3]年提出的,又称图解法。它是以垂直单向固结理论为主,根据实测的沉降量推算工后沉降量和最终沉降量的一种方法。 他指出,由Mikasa(1963)[3]导出的用垂直体积应变表示的固结偏微分方程为可近似地用一个级数形式的普通微分方程来表示为: S+α1dS dt+α2d 2S dx +…+αn d n S dt n =b(4)式中:S———固结沉降量; α1,α2…αn———固结系数; b———取决于固结系数C v和土层边界条件的常数。 式(4)大多数情况下可以简化为下式: S+α1dS dt=b(5) 式中,一阶固结系数α1=5h 2 12C v 。 在固结边界条件下上式的解为: S(t)=S∞-(S∞-S0)exp- t α1(6)式中:S0、S∞———分别为土层的初始沉降量和最终沉降量; 2.4Logistic曲线法 宰金眠、梅国雄[4]在研究地基沉降一时间规律时发现全过程沉降量与时间关系包含两个方面内容:其一是初始沉降不为零;其二是沉降一时间曲线呈现“S”形。 Logistic模型,也可称之为增长曲线模型,在时间数列中其一般形式如下: S(t)= b1 1+b2exp(-b3t) (7)式中,b1,b2,b3为待定参数。 对参数b1,b2,b3的确定有很多种方法,例如三段计算法、灰色理论法等。 只要计算方法、参数选的合理,Logistic模型曲线可很好地拟合几何中的“S"、“凸”形甚至“凹”形曲线,故适用性较广。 3工程实例及分析 3工程概况 福建省道线沿海大通道泉港段K+5~K3+ .1 20124794

相关文档