文档库 最新最全的文档下载
当前位置:文档库 › 材料物理性能精选习题

材料物理性能精选习题

材料物理性能精选习题
材料物理性能精选习题

《材料物理性能》思考题

第一章热学性能

1.1 概述

1、材料的热学性能包括、、和等。

2、什么是格波?

3、若三维晶体由N个晶胞组成,每个晶胞中含有S个原子,则晶体中格波数为个,格波支数为个。

4、受热晶体的温度升高,实质是晶体中热激发出的声子的增加。

5、举例说明某一材料热学性能的具体应用。

1.2 热容

1、什么是比热容和摩尔热容(区分:定压摩尔热容和定容摩尔热容)?

3、固体热容的经验定律和经典理论只适用于高温,对低温不适用!

4、由德拜模型可知,温度很低时,固体的定容摩尔热容与温度的三次方成正比(德拜T3定律)。

5、金属热容由热容和热容两部分组成。

6、自由电子对热容的贡献在极高温和极低温度下不可忽视,在常温时与晶格振动热容相比微不足道!

7、一级相变对热容的影响特征是什么?

8、影响无机材料热容的因素有哪些?

9、对于隔热材料,需使用低热容(如轻质多孔)隔热砖,便于炉体迅速升温,同时降低热量损耗。

10、什么是热分析法?DTA、DSA和TG分别是哪三种热分析方法的简称?查文献举例说明热分析法的应用。

1.3 热膨胀

1、什么是线或体膨胀系数?

2、固体材料的热膨胀本质,归结为点阵结构中随温度升高而增大。

3、材料的热膨胀来自原子的非简谐振动。

4、材料热膨胀的物理本质可用曲线或曲线来解释。

5、熔点较高的金属具有较低的膨胀系数。

6、结构对称性较低的单晶体,其膨胀系数具有各向异性,不同的晶向有不同的线膨胀系数。一般来说,弹性模量高的方向将有较小的膨胀系数,反之亦然。(如石墨:平行于C轴方向的热膨胀系数大于垂直于C轴方向的热膨胀系数。)

7、举例说明一级相变对材料膨胀性能的影响。

8、钢的不同组织比容从大到小的顺序为:马氏体、渗碳体、铁素体、珠光体、奥氏体。

9、通常陶瓷制品表面釉层与坯体热膨胀系数的大小关系如何?为什么?

1.4 热传导

1、什么是热导率?

2、固体材料热传导主要有、和三种微观机制,不同材料导热机制有何区别?

3、对于声子热导而言,热阻来源于声子扩散过程中的各种(如声子的碰撞、点缺陷的散射、晶界的散射和位错的散射等)。

4、对于同一种物质,多晶体、单晶体和非晶体的热导率的大小关系如何?

5、分析非晶体的热导率与温度的关系。

6、综合分析影响无机材料热导率的因素。

1.5 热稳定性

1、什么是材料的热稳定性?。

2、材料抗热冲击损坏的两大类型为和。

3、什么是热应力?材料的热应力主要来源于哪三个方面?

4、抗热应力损伤性正比于断裂表面能,反比于应变能的释放率。

5、写出第一、第二和第三热应力断裂抵抗因子的表达式,并指出其中各参数的物理意义。

6、对于密实性陶瓷、玻璃等脆性材料,提高其抗热冲击断裂性能的措施有哪些?

《材料物理性能》试卷B.doc

一、是非题(I 分X1O=10分) 得分 评分人 1、 非等轴晶系的晶体,在膨胀系数低的方向热导率最大。 () 2、 粉末和纤维材料的导热系数比烧结材料的低得多。 () 3、 第一热应力因子/?是材料允许承受的最大温度差。 () 4、 同一种物质,多晶体的热导率总是比单晶的小。 () 5、 电化学老化的必要条件是介质中的离子至少有一种参加电导。() 6、 玻璃中的电导基本上是离子电导。 () 7、 薄玻璃杯较厚玻璃杯更易因冲开水而炸裂。 () 8、 压应力使单晶材料的弹性模量变小。 () 9、 多晶陶瓷材料断裂表面能比单晶大。 () 10、 材料的断裂强度取决于裂纹的数量。 () 二、名词解释(2分X 10=20分) 得分 评分人 题号 -------- - ? ---- * 四 五 六 七 八 九 总分 合分人 得分 材料物理性能课程结束B 试卷 考试形式 闭卷 考试用时120分钟

1、固体电解质: 2、表面传热系数: 3、P型半导体: 4、施主能级: 5、声频支: 6、稳定传热: 7、载流了的迁移率: 8、蠕变: 9、弛豫:

10、滑移系统:

三、简答题(5分X4=20分,任选4题) 得分 评分人 1、导温系数。的物理意义及其量纲? 2、显微结构对材料脆性断裂的影响? 3、写出两个抗热应力损伤因子的表达式并对其含义及作用加以说明。 4、不同材料在外力作用时有何不同的变形特征?

四、问答题(9分X4=36分) 得分 评分人 1、何为裂纹的亚临界生长?试用应力腐蚀理论解释裂纹的亚临界生长? 2、请对图1表示的氧化铝单晶的入-丁曲 线分析说明。o I JI O 0 200 400 600 800 1000 1200 1400 T/K图1氧化铝单晶的热导率随温度的变 化

无机材料物理性能习题库

2、材料的热学性能 2-1 计算室温(298K )及高温(1273K )时莫来石瓷的摩尔热容值,并请和按杜龙-伯蒂规律计算的结果比较。 (1) 当T=298K ,Cp=a+bT+cT -2=87.55+14.96 10-3298-26.68 105/2982 =87.55+4.46-30.04 =61.97 4.18 J/mol K=259.0346 J/mol K (2) 当T=1273K ,Cp=a+bT+cT -2=87.55+14.96 10-31273-26.68 105/12732 =87.55+19.04-1.65 =104.94 4.18 J/mol K=438.65 J/mol K 据杜隆-珀替定律:(3Al 2O 32SiO 4) Cp=21*24.94=523.74 J/mol K 2-2 康宁玻璃(硅酸铝玻璃)具有下列性能参数:λ=0.021J/(cm s ℃); α=4.610?6/℃;σp =7.0Kg/mm 2,E=6700Kg/mm 2,μ=0.25。求其第一及第二热冲击断裂抵抗因子。 第一冲击断裂抵抗因子:E R f αμσ)1(-==666 79.8100.75 4.61067009.810-???????=170℃ 第二冲击断裂抵抗因子:E R f αμλσ) 1(-= '=1700.021=3.57 J/(cm s) 2-3 一陶瓷件由反应烧结氮化硅制成,其热导率λ=0.184J/(cm s ℃),最大厚度=120mm 。如果表面热传递系数h=0.05 J/(cm 2s ℃),假定形状因子S=1,估算可安全应用的热冲击最大允许温差。 h r S R T m m 31.01? '=?=226*0.18405 .0*6*31.01 =447℃ 2-4、系统自由能的增加量TS E F -?=?,又有! ln ln ()!! N N N n n =-,若在肖特基缺 定律所得的计算值。 趋近按,可见,随着温度的升高Petit Dulong C m P -,

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

无机材料物理性能题库(2)综述

名词解释 1.应变:用来描述物体内部各质点之间的相对位移。 2.弹性模量:表征材料抵抗变形的能力。 3.剪切应变:物体内部一体积元上的二个面元之间的夹角变化。 4.滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动,就叫滑移. 5.屈服应力:当外力超过物理弹性极限,达到某一点后,在外力几乎不增加的情况下,变形骤然加快,此点为屈服点,达到屈服点的应力叫屈服应力。 6.塑性:使固体产生变形的力,在超过该固体的屈服应力后,出现能使该固体长期保持其变形后的形状或尺寸,即非可逆性。 7.塑性形变:在超过材料的屈服应力作用下,产生变形,外力移去后不能恢复的形变。 8.粘弹性:一些非晶体和多晶体在比较小的应力时,可以同时变现出弹性和粘性,称为粘弹性. 9.滞弹性:弹性行为与时间有关,表征材料的形变在应力移去后能够恢复但不能立即恢复的能力。 10.弛豫:施加恒定应变,则应力将随时间而减小,弹性模量也随时间而降低。 11.蠕变——当对粘弹性体施加恒定应力,其应变随时间而增加,弹性模量也随时间而减小。 12.应力场强度因子:反映裂纹尖端弹性应力场强弱的物理量称为应力强度因子。它和裂纹尺寸、构件几何特征以及载荷有关。 13.断裂韧性:反映材料抗断性能的参数。 14.冲击韧性:指材料在冲击载荷下吸收塑性变形功和断裂功的能力。 15.亚临界裂纹扩展:在低于材料断裂韧性的外加应力场强度作用下所发生的裂纹缓慢扩展称为亚临界裂纹扩展。 16.裂纹偏转增韧:在扩展裂纹剪短应力场中的增强体会导致裂纹发生偏转,从而干扰应力场,导致机体的应力强度降低,起到阻碍裂纹扩展的作用。 17.弥散增韧:在基体中渗入具有一定颗粒尺寸的微细粉料达到增韧的效果,称为弥散增韧。 18.相变增韧:利用多晶多相陶瓷中某些相成份在不同温度的相变,从而达到增韧的效果,称为相变增韧。 19.热容:分子热运动的能量随着温度而变化的一个物理量,定义为物体温度升高1K所需要的能量。 20.比热容:将1g质量的物体温度升高1K所需要增加的热量,简称比热。 21.热膨胀:物体的体积或长度随温度升高而增大的现象。 热传导:当固体材料一端的温度笔另一端高时,热量会从热端自动地传向冷端。22.热导率:在物体内部垂直于导热方向取两个相距1米,面积为1平方米的平行平面,若两个平面的温度相差1K,则在1秒内从一个平面传导至另一个平面的热量就规定为该物质的热导率。 23.热稳定性:指材料承受温度的急剧变化而不致破坏的能力,又称为抗热震性。 24.抗热冲击断裂性:材料抵抗温度急剧变化时瞬时断裂的性能。 25.抗热冲击损伤性:材料抵抗热冲击循环作用下缓慢破坏的性能。 26.热应力:材料热膨胀或收缩引起的内应力。 27.声频支振动:振动的质点中包含频率甚低的格波时,质点彼此间的位相差不

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

材料无机材料物理性能考试及答案

材料无机材料物理性能考试及答案

————————————————————————————————作者:————————————————————————————————日期:

无机材料物理性能试卷 一.填空(1×20=20分) 1.CsCl结构中,Cs+与Cl-分别构成____格子。 2.影响黏度的因素有____、____、____. 3.影响蠕变的因素有温度、____、____、____. 4.在____、____的情况下,室温时绝缘体转化为半导体。 5.一般材料的____远大于____。 6.裂纹尖端出高度的____导致了较大的裂纹扩展力。 7.多组分玻璃中的介质损耗主要包括三个部分:____、________、____。 8.介电常数显著变化是在____处。 9.裂纹有三种扩展方式:____、____、____。 10.电子电导的特征是具有____。 二.名词解释(4×4分=16分) 1.电解效应 2.热膨胀 3.塑性形变 4.磁畴 三.问答题(3×8分=24分) 1.简述晶体的结合类型和主要特征: 2.什么叫晶体的热缺陷?有几种类型?写出其浓度表达式?晶体中离子电导分为哪几类? 3.无机材料的蠕变曲线分为哪几个阶段,分析各阶段的特点。 4.下图为氧化铝单晶的热导率与温度的关系图,试解释图像先增后减的原因。 四,计算题(共20分) 1.求熔融石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm,弹性模量值从60 到75GPa。(10分) 2.康宁1273玻璃(硅酸铝玻璃)具有下列性能参数: =0.021J/(cm ·s ·℃);a=4.6×10-6℃-1;σp=7.0kg/mm2,

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0816.04.25.2ln ln ln 2 2 001====A A l l T ε真应变) (91710 909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.44500 6 MPa A F T =?= =-σ真应力

无机材料物理性能课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=,V 2=。则有 当该陶瓷含有5%的气孔时,将P=代入经验计算公式E=E 0+可得,其上、下限弹性模量分别变为 GPa 和 GPa 。 1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度 τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

最新无机材料物理性能考试试题及答案

无机材料物理性能考试试题及答案 一、填空(18) 1. 声子的准粒子性表现在声子的动量不确定、系统中声子的数目不守恒。 2. 在外加电场E的作用下,一个具有电偶极矩为p的点电偶极子的位能U=-p·E,该式表明当电偶极矩的取向与外电场同向时,能量为最低而反向时能量为最高。 3. TC为正的温度补偿材料具有敞旷结构,并且内部结构单位能发生较大的转动。 4. 钙钛矿型结构由 5 个简立方格子套购而成,它们分别是1个Ti 、1个Ca 和3个氧简立方格子 5. 弹性系数ks的大小实质上反映了原子间势能曲线极小值尖峭度的大小。 6. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 7. 制备微晶、高密度与高纯度材料的依据是材料脆性断裂的影响因素有晶粒尺寸、气孔率、杂质等。 8. 粒子强化材料的机理在于粒子可以防止基体内的位错运动,或通过粒子的塑性形变而吸收一部分能量,达从而到强化的目的。 9. 复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 10.裂纹有三种扩展方式:张开型、滑开型、撕开型 11. 格波:晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波 二、名词解释(12) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性能等。 电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子的某一电子壳层转移到相邻原子的相似壳层上去,因而电子可以在整个晶体中运动。这种运动称为电子的共有化运动。 平衡载流子和非平衡载流子:在一定温度下,半导体中由于热激发产生的载流子成为平衡载流子。由于施加外界条件(外加电压、光照),人为地增加载流子数目,比热平衡载流子数目多的载流子称为非平衡载流子。 三、简答题(13) 1. 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么? 答:正是因为非长程有序,许多原子并不在势能曲线低谷;在高温下,有一些原子键比较弱,只需较小的应力就能使这些原子间的键断裂;原子跃迁附近的空隙位置,引起原子位移和重排。不需初始的屈服应力就能变形-----粘性流动。因此玻璃在高温时能变形。 2. 有关介质损耗描述的方法有哪些?其本质是否一致? 答:损耗角正切、损耗因子、损耗角正切倒数、损耗功率、等效电导率、复介电常数的复项。多种方法对材料来说都涉及同一现象。即实际电介质的电流位相滞后理想电介质的电流位相。因此它们的本质是一致的。 3. 简述提高陶瓷材料抗热冲击断裂性能的措施。 答:(1) 提高材料的强度 f,减小弹性模量E。(2) 提高材料的热导率c。(3) 减小材料的热膨胀系数a。(4) 减小表面热传递系数h。(5) 减小产品的有效厚度rm。

材料物理性能部分课后习题

课后习题 第一章 1.德拜热容的成功之处是什么? 答:德拜热容的成功之处是在低温下,德拜热容理论很好的描述了晶体热容,CV.M∝T的三次方 2.何为德拜温度?有什么物理意义? 答:HD=hνMAX/k 德拜温度是反映晶体点阵内原子间结合力的一个物理量 德拜温度反映了原子间结合力,德拜温度越高,原子间结合力越强 3.试用双原子模型说明固体热膨胀的物理本质 答:如图,U1(T1)、U2(T2)、U3(T3)为不同温度时的能量,当原子热振动通过平衡位置r0时,全部能量转化为动能,偏离平衡位置时,动能又逐渐转化为势能;到达振幅最大值时动能降为零,势能打到最大。由势能曲线的不对称可以看到,随温度升高,势能由U1(T1)、U2(T2)向U3(T3)变化,振幅增加,振动中心就由r0',r0''向r0'''右移,导致双原子间距增大,产生热膨胀

第二章 1.300K1×10-6Ω·m4000K时电阻率增加5% 由于晶格缺陷和杂质引起的电阻率。 解:按题意:p(300k) = 10∧-6 则: p(400k) = (10∧-6)* (1+0.05) ----(1) 在400K温度下马西森法则成立,则: p(400k) = p(镍400k) + p(杂400k) ----(2) 又: p(镍400k) = p(镍300k) * [1+ α* 100] ----(3) 其中参数: α为镍的温度系数约= 0.007 ; p(镍 300k)(室温) = 7*10∧-6 Ω.cm) 将(1)和(3)代入(2)可算出杂质引起的电阻率p(杂400k)。 2.为什么金属的电阻因温度升高而增大,而半导体的电阻却因温度的升高而减小? 对金属材料,尽管温度对有效电子数和电子平均速率几乎没有影响,然而温度升高会使离子振动加剧,热振动振幅加大,原子的无序度增加,周期势场的涨落也加大。这些因素都使电子运动的自由称减小,散射几率增加而导致电阻率增大 而对半导体当温度升高时,满带中有少量电子有可能被激发

材料物理性能课后习题问题详解_北航出版社_田莳主编

材料物理习题集 第一章 固体中电子能量结构和状态(量子力学基础) 1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3) 计算它对Ni 晶体(111)面(面间距d =2.04×10-10 m )的布拉格衍射角。(P5) 12 34 131 192 1111 o ' (2) 6.610 = (29.110 5400 1.610 ) =1.67102K 3.7610sin sin 2182h h p mE m d d λπ λ θλ λ θθ----=???????=?==?=解:(1)= (2)波数= (3)2 2. 有两种原子,基态电子壳层是这样填充的 ; ; s s s s s s s 226232 2 6 2 6 10 2 6 10 (1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量 子数的可能组态。(非书上内容)

3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级 的能量比费米能级高出多少k T ?(P15) 1()exp[]1 1 ln[1] ()()1/4ln 3()3/4ln 3F F F F f E E E kT E E kT f E f E E E kT f E E E kT = -+?-=-=-=?=-=-?解:由将代入得将代入得 4. 已知Cu 的密度为8.5×103 kg/m 3 ,计算其E 0 F 。(P16) 2 2 03 23426 23 3 31 18(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5 =1.0910 6.83F h E n m J eV ππ---=????????=解: 由 5. 计算Na 在0K 时自由电子的平均动能。(Na 的摩尔质量M=22.99,.0ρ?33 =11310kg/m ) (P16)

无机材料物理性能期末复习题

期末复习题参考答案 一、填空 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。 5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。 6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。 7.无机非金属材料中的载流子主要是电子和离子。 8.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。 11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 15.当温度不太高时,固体材料中的热导形式主要是声子热导。 16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 17.电滞回线的存在是判定晶体为铁电体的重要根据。 18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 20.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 21.晶体发生塑性变形的方式主要有滑移和孪生。 22.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 23.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。 滞弹性:当应力作用于实际固体时,固体形变的产生与消除需要一定的时间,这种与时间有关的弹性称为滞弹性。 格波:处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,格波的一个

材料物理性能考试重点、复习题电子教案

材料物理性能考试重点、复习题

精品资料 1.格波:在晶格中存在着角频率为ω的平面波,是晶格中的所有原子以相同频率振动而 形成的波,或某一个原子在平衡附近的振动以波的形式在晶体中传播形成的波 2.色散关系:频率和波矢的关系 3.声子:晶格振动中的独立简谐振子的能量量子 4.热容:是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K 所需要增加的能量。 5.两个关于晶体热容的经验定律:一是元素的热容定律----杜隆-珀替定律:恒压下元素的 原子热容为25J/(K*mol);另一个是化合物的热容定律-----奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。 6.热膨胀:物体的体积或长度随温度的升高而增大的现象称为热膨胀 7.固体材料热膨胀机理:材料的热膨胀是由于原子间距增大的结果,而原子间距是指晶 格结点上原子振动的平衡位置间的距离。材料温度一定时,原子虽然振动,但它平衡位置保持不变,材料就不会因温度升高而发生膨胀;而温度升高时,会导致原子间距增大。 8.温度对热导率的影响:在温度不太高时,材料中主要以声子热导为主,决定热导率的因 素有材料的热容C、声子的平均速度V和声子的平均自由程L,其中v通常可以看作常数,只有在温度较高时,介质的弹性模量下降导致V减小。材料声子热容C在低温下与温度T3成正比。声子平均自由程V随温度的变化类似于气体分子运动中的情况,随温度升高而降低。实验表明在低温下L值的变化不大,其上限为晶粒的线度,下限为晶格间距。在极低温度时,声子平均自由程接近或达到其上限值—晶粒的直径;声子的热容C则与T3成正比;在此范围内光子热导可以忽略不计,因此晶体的热导率与温度的三次方成正比例关系。在较低温度时,声子的平均自由程L随温度升高而减小,声子的热容C仍与T3成正比,光子热导仍然极小,可以忽略不计,此时与L相比C对声子热导率的影响更大,因此在此范围内热导率仍然随温度升高而增大,但变化率减小。 在较高温度下,声子的平均自由程L随温度升高继续减小,而声子热容C趋近于常数,材料的热导率由L随温度升高而减小决定。随着温度升高,声子的平均自由程逐渐趋近于其最小值,声子热容为常数,光子平均自由程有所增大,故此光子热导逐步提高,因此高温下热导率随温度升高而增大。一般来说,对于晶体材料,在常用温度范围内,热导率随温度的上升为下降。 9.影响热导率的因素:1)温度的影响,一般来说,晶体材料在常用温度范围内,热导率随 温度的上升而下降。2)显微结构的影响。3)化学组成的影响。4)复合材料的热导率 10.热稳定性:是指材料承受温度的急剧变化而不致破坏的能力,所以又称为抗热震性。 11.常用热分析方法:1)普通热分析法2)差热分析3)差示扫描量热法4)热重法 12.光折射:当光依次通过两种不同介质时,光的行进方向要发生改变,这种现象称为折 射 13.光的散射:材料中如果有光学性能不均匀的结构,例如含有透明小粒子、光性能不同 的晶界相、气孔或其他夹杂物,都会引起一部分光束偏离原来的传播方向而向四面八方散开来,这种现象称为光的散射。 14.吸收:光通过物质传播时,会引起物质的价电子跃迁或使原子振动,从而使光能的一 部分转变为热能,导致光能的衰减的现象 15.弹性散射:光的波长(或光子能量)在散射前后不发生变化的,称为弹性散射 16.按照瑞利定律,微小粒子对波长的散射不如短波有效,在可见光的短波侧λ=400nm 处,紫光的散射强度要比长波侧λ=720nm出红光的散射强度大约大10倍 17.色散:材料的折射率随入射光的频率的减小(或波长的增加)而减小的性质,称为材仅供学习与交流,如有侵权请联系网站删除谢谢2

《材料物理性能》课后习题答案.doc

1-1 一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:真应力OY = — = ―"°。—=995(MP Q) A 4.524 xlO-6 真应变勺=In — = In — = In^v = 0.0816 /0 A 2.42 名义应力a = — = ―4°°°_ 一= 917(MPa) A) 4.909x1()2 名义应变£ =翌=& —1 = 0.0851 I。 A 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1- 5 一陶瓷含体积百分比为95%的/\12O3(E = 380 GPa)和5%的玻璃相(E = 84 GPa), 试 计算其上限和下限弹性模量。若该陶瓷含有5%的气孔,再估算其上限和下限弹性模量。 解:令Ei=380GPa, E2=84GPa, V^O. 95, V2=0. 05o则有 上限弹性模量=E]% +E2V2 = 380 X 0.95 +84 X 0.05 =365.2(GP Q) 下限弹性模量战=(¥ +3)T =(?料+誓尸=323.1(GP Q) E]380 84 当该陶瓷含有5%的气孔时,将P二0. 05代入经验计算公式E=E O(1-1. 9P+0. 9P2) 可得,其上、下限弹性模量分别变为331.3 GPa和293. 1 GPa。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0, t = oo和t二£时的纵坐标表达式。 解:Maxwell模型可以较好地模拟应力松弛过程: 其应力松弛曲线方程为:b⑴=贝0光必则有:<7(0) = b(0);cr(oo) = 0;<7(r) = a(0)/e. Voigt模型可以较好地模拟应变蠕变过程: 其蠕变曲线方程为:的)=火(1 -广")=£(00)(1 _g") E 则有:£(0)=0; £(OO)= 21;冶)=%1-(尸).

东南大学-材料物理性能复习题(2008)

材料物理性能复习题 第一章 1、C v 、C p 和c 的定义。C pm 和C vm 的关系,实际测量得到的是何种量?Cvm 与温度(包括ΘD )的关系。自由电子对金属热容的贡献。合金热容的计算。 2、哪些相变属于一级相变和二级相变?其热容等的变化有何特点? 3、撒克斯法测量热容的原理。何谓DTA 和DSC ?DTA 测量对标样有何要求?如何根据DTA 曲线及热容变化曲线判断相变的发生及热效应(吸热或放热)? 4、线膨胀系数和体膨胀系数的表达式及两者的关系。证明c b a v αααα++=(采用与教材不同的方法) 5、金属热膨胀的物理本质。热膨胀和热容与温度(包括ΘD )的关系有何类似之处?为何金属熔点越高其膨胀系数越小?为何化合物和有序固溶体的膨胀系数比固溶体低?奥氏体转变为铁素体时体积的变化及机理。膨胀测量时对标样有何要求? 6、比容的定义(单位重量的体积,为密度的倒数)。奥氏体、珠光体、马氏体和渗碳体的比容相对大小。 7、钢在共析转变时热膨胀曲线的特点及机理。如何根据冷却膨胀曲线计算转变产物的相对量? 8、傅里叶定律和热导率、热量迁移率。导温系数的表达式及物理意义。 9、金属、半导体和绝缘体导热的物理机制。魏德曼-弗兰兹定律。 10、何谓抗热冲击断裂性和抗热冲击损伤性?热应力是如何产生的,与哪些因素有关?提高材料的抗热冲击断裂性可采取哪些措施? 第二章 1、电阻、电阻率、电导率及电阻温度系数的定义及相互关系。 2、电阻的物理意义。为何温度升高、冷塑性变形和形成固溶体使金属的电阻率增加,形成有序固溶体使电阻率下降?马基申定律的表达式及各项意义。为何纯金属的电阻温度系数较其合金大?如何获得电阻温度系数很低的精密电阻合金? 3、对层片状组织,证明教材中的关系式(2.25)和(2.26)。 4、双电桥较单电桥有何优点?用电位差计测量电阻的原理。用电阻分析法测定铝铜合金时效和固溶体的溶解度的原理。 5、何谓本征半导体?其载流子为何?证明关系式J=qnv 和ρ=E/J (J 和E 分别为电流密度和电场强度)。 6、为何掺杂后半导体的导电性大大增强?为何有电子型和空穴型两种半导体。N 型和P 型半导体中的多子和少子。为何PN 结有单向导电性? 7、温差电势和接触电势的物理本质,热电偶的原理。 8、何谓压电效应?电偶极矩的概念。压电性产生的机理。 9、何谓霍尔效应和霍尔系数?推导出教材中的关系式(2.83)~(2.85)。如何根据霍尔效应判断半导体中载流子是电子还是空穴? 第三章 1、M 、P m 的关系。M 、H 的关系。μ0,μ,χ的概念。B 、H 的关系。磁化曲线

材料物理性能试题及其答案

西 安 科 技 大 学 2011—2012学 年 第 2 学 期 考 试 试 题(卷) 学院:材料科学与工程学院 班级: 姓名: 学号:

—2012 学 年 第 2 学 期 考 试 试 题(卷) 学院:材料科学与工程学院 班级: 姓名: 学号:

材料物理性能 A卷答案 一、填空题(每空1分,共25分): 1、电子运动服从量子力学原理周期性势场 2、导电性能介电性能 3、电子极化原子(离子)极化取向极化 4、完全导电性(零电阻)完全抗磁性 5、电子轨道磁矩电子自旋磁矩原子核自旋磁矩 6、越大越小 7、电子导热声子导热声子导热 8、示差热分析仪(DTA)、示差扫描热分析(DSC)、热重分析(TG) 9、弹性后效降低(减小) 10、机械能频率静滞后型内耗 二、是非题(每题2分,共20分): 1、√ 2、× 3、× 4、√ 5、× 6、√ 7、× 8、× 9、× 10、√ 三、名词解释(每题3分,共15分): 1、费米能:按自由电子近似,电子的等能面在k空间是关于原点对称的球面。特别有意义的是E=E F的等能面,它被称为费米面,相应的能量成为费米能。 2、顺磁体:原子内部存在永久磁矩,无外磁场,材料无规则的热运动使得材料没有磁性,当外磁场作用,每个原子的磁矩比较规则取向,物质显示弱磁场,这样的磁体称顺磁体。 3、魏得曼-弗兰兹定律:在室温下许多金属的热导率与电导率之比几乎相同,而不随金属的不同而改变。 4、因瓦效应:材料在一定温度范围内所产生的膨胀系数值低于正常规律的膨胀系数值的现象。

5、弛豫模量:教材P200 四、简答题(每题6分,共30分): 1、阐述导体、半导体和绝缘体的能带结构特点。 答:①导体中含有未满带,在外场的作用下,未满带上的电子分布发生偏移,从而改变了原来的中心堆成状态,占据不同状态的电子所形成的运动电流不能完全抵消,未抵消的部分就形成了宏观电流;②绝缘体不含未满带,满带中的电子不会受外场的作用而产生偏离平衡态的分布,而一些含有空带的绝缘体,也因为禁带间隙过大,下层满带的电子无法跃迁到空带上来形成可以导电的未满带,所以绝缘体不能导电;③本征半导体的情况和绝缘体类似,区别是其禁带能隙比较小,当受到热激发或外场作用时,满带中的电子比较容易越过能隙,进入上方空的允带,从而使材料具有一定的导电能力;④掺杂半导体则是通过掺入异质元素,从而提供额外的自由电子或者额外的空穴以供下层电子向上跨越,使得跨越禁带的能量变低,电子更加容易进入上层的空带中,从而具有导电能力。 2、简述温度对金属电阻影响的一般规律及原因。 答:无缺陷理想晶体的电阻是温度的单值函数,如果在晶体中存在少量杂质和结构缺陷,那么电阻与温度的关系曲线将要变化。 在低温下,电子-电子散射对电阻的贡献显著,其他温度电阻取决于电子-声子散射。 3、何谓材料的热膨胀?其物理本质是什么? 答:①热膨胀:材料在加热和冷却过程中,其宏观尺寸随温度发生变化的现象。 ②物理本质:在非简谐近似下,随温度增加,原子热振动不仅振幅和频率增加,其平衡位置距平均尺寸也增加,即导致振动中心右移,原子间距增大,宏观上变现为热膨胀。 4、物质的铁磁性产生的充要条件是什么? 答:(1) 原子中必须有未填满电子的内层,因而存在未被抵消的自旋磁矩。 (2) 相邻原子间距a与未填满的内电子层半径r之比大于3,即a/r>3。 5、内耗法测定α-Fe中碳的扩散(迁移)激活能H的方法和原理。 答:参考教材P-211 五、论述题(每题10分,共10分):

材料物理性能答案

)(E k → 第一章:材料电学性能 1 如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料? 用电阻率ρ或电阻率σ评价材料的导电能力。 按材料的导电能力(电阻率),人们通常将材料划分为: 2、经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性? 金属导体中,其原子的所有价电子均脱离原子核的束缚成为自由电子,而原子核及内层束缚电子作为一个整体形成离子实。所有离子实的库仑场构成一个平均值的等势电场,自由电子就像理想气体一样在这个等势电场中运动。如果没有外部电场或磁场的影响,一定温度下其中的离子实只能在定域作热振动,形成格波,自由电子则可以在较大范围内作随机运动,并不时与离子实发生碰撞或散射,此时定域的离子实不能定向运动,方向随机的自由电子也不能形成电流。施加外电场后,自由电子的运动就会在随机热运动基础上叠加一个与电场反方向的平均分量,形成定向漂移,形成电流。自由电子在定向漂移的过程中不断与离子实或其它缺陷碰撞或散射,从而产生电阻。 E J →→=σ,电导率σ= (其中μ= ,为电子的漂移迁移率,表示单位场强下电子的漂移速度),它将外加电场强度和导体内的电流密度联系起来,表示了欧姆定律的微观形式。 缺陷:该理论高估了自由电子对金属导电能力的贡献值,实际上并不是所有价电子都参与了导电。(?把适用于宏观物体的牛顿定律应用到微观的电子运动中,并且承认能量的连续性) 3、自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为? 自由电子近似下,电子的本证波函数是一种等幅平面行波,即振幅保持为常数;电子本证能量E 随波矢量的变化曲线 是一条连续的抛物线。 4、根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、简并度、能态密度、k 空间、等幅平面波和能级密度函数。 n 决定,并且其能量值也是不连续的,能级差与材料线度 L 2成反比,材料的尺寸越大,其能级差越小,作为宏观尺度的材料,其能级差几乎趋于零,电子能量可以看成是准连续的。 k 空间内单位体积内能态的数量或倒易节点数称为波矢能态密度。ρ =V/(2π)3,含自旋的能态密度应为2ρ 3,2,1k k k k → →→→的三个分量为单位矢量构筑坐标系,则每个能态在该坐标中都是一个整数点,对于准连续的能级,此坐标系中的每个整数点都代表一个能态。人们把此坐标系常数称为k 空间或状态空间。

材料物理性能试题(研究生ZHONG)

材料物理性能试题 1从物理本质上叙述晶体中电子能量结构的导带、价带和禁带产生的原因,并利用能带理论的初步知识说明材料的一些物理性质(举一例即可) 答:晶体的能带结构与该晶体结构和势能函数决定 具有空能级允带的电子是自由的,称为导带,可以在外电场作用下导电 导体(金属)能带中一定有未满带,称为价带、导带 半导体,绝缘体中能量最高的满带叫价带能量最低的空带叫导带 禁带:离子所造成的势场是不均匀的,能量存在周期性变化,有能隙。称作禁带。k=n π/a 和k=2π/λ(λ为电子波长),可以得到2a=n λ,即。响铃原子的背向散射波干涉相长,使入射波遭到全反射而不能进入晶体内部,应此在自由电子准连续能谱中形成禁带。 导电行,半导体、太阳能电视电池 2 表征超导体性能的三个主要指标是什么?目前氧化物超导体应用的主要弱点是什么? 答:临界转变温度、临界磁场强度、临界电流密度。 主要弱点是临界电流密度低。 3 铂线300 K 时电阻率为1×10-7Ω·m ,假设铂线成分为理想纯。试求1000 K 时的电阻率。 T 0772*******(1)1+T 1+T 5110 2.27101+1+ 2.2 T m T T ρραρααρρραα--=+=?==??=?Ω 解: 4 试说明压电体、热释电体、铁电体各自在晶体结构上的特点。 答:压电晶体的结构是不具有对称中心。铁电晶体也具有压电性,它的晶体结构也不具有对称中心;铁电体一定是离子性晶体,是具有自发极化的一种压电体,但并不是所有的压电体都是铁电体。热释电体也是一种压电体,晶体结构同样不具有对称中心;温度变化可以引起极化强度改变,但不一定所有的压电体都是热释电体,有的铁电体也是热释电体。总之,压电体、铁电体和热释电体都是不具有对称中心的晶体。 5 工厂中发生“混料”现象。假如某钢的淬火试样,又经不同回火后混在一起了。可用何法将每个不同温度回火、淬火试样区分开来(不能损伤试样)。 答:磁性能分析:淬火钢在回火过程中,马氏体和残余奥氏体都要发生分解而引起饱和磁化强度的变化。在回火过程中残余奥氏体分解的产物都是铁磁相,会引起饱和磁化强度的升高,而马氏体分解析出的碳化物是弱铁磁相,会引起饱和磁化强度的降低。回火第一阶段(20~

相关文档
相关文档 最新文档