文档库 最新最全的文档下载
当前位置:文档库 › 用于海上风电并网的柔性 直流系统过电压和绝缘配合研究

用于海上风电并网的柔性 直流系统过电压和绝缘配合研究

用于海上风电并网的柔性 直流系统过电压和绝缘配合研究
用于海上风电并网的柔性 直流系统过电压和绝缘配合研究

用于海上风电并网的柔性直流系统过电压和绝缘配合研究

发表时间:2019-08-07T11:10:14.140Z 来源:《基层建设》2019年第15期作者:樊华[导读] 摘要:人们生活水平的提高,用电需求的不断增多,促进了我国电力产业的不断发展。

身份证号码:23011919850617XXXX 摘要:人们生活水平的提高,用电需求的不断增多,促进了我国电力产业的不断发展。近年来,风电建设重心逐步从西部地区转移到电力消纳较好的中东部地区,海上风电得到快速发展。柔性直流系统凭借其独特的技术优势,正逐渐成为大规模远距离海上风电并网的主流方案。本文就用于海上风电并网的柔性直流系统过电压和绝缘配合展开探讨。

关键词:海上风电并网;柔性直流系统;模块化多电平换流器引言

无论是在可开发的资源量上,还是技术政策层面,我国海上风电目前已基本具备大规模开发条件。我国拥有丰富的海上风电资源,中国气象局风能资源调查数据显示,我国5~25m水深线以内近海区域、海平面以上50m高度风电可装机容量约2亿kW,70m以上可装机容量约5亿kW。近年来,我国海上风电发展迅猛,2017年海上风电新增装机达到1.16GW,同比增长97%,累计装机达到2.79GW。 1海上风电场的并网方式

海上风电场的并网方式分别是高压交流并网(简称HV AC)、高压直流输电方式并网(简称HVDC)。HV AC方式具有结构简单、成本较低等特点,发展最为成熟。目前,使用HV AC是绝大多数陆上风电场并网的选择。但对于规模较大的海上风电场,随着并网距离的增加,输电损耗上升较快,如果增大海底电缆截面和提高传输电压等级,将导致投资成本的急剧增加。另外,对于距离岸边较远的海上风电,为了抑制过电压水平,需要加装较大的感性无功设备补偿并网电缆的充电功率。同时,海上风电场交流系统必须与其接入的电网保持同步,受到扰动后仍要维持系统的同步运行。因此实际工程中该方法一般只用于传输容量小、传输距离短的风电接入系统。距离海岸小于50km且建设规模小于200MW海上风电场普遍采用HV AC方式。将HVDC技术应用于风电并网,特别是对于远距离海上风电场,具有明显优势:(1)海上风电采用HVDC方式后,不需要与陆上电网保持同步,因此,海上风电场系统频率的允许变化范围较大,电网的每个联络终端都具有很强的独立性,可以依照自己的控制策略运行。(2)长距离的交流电力电缆受充电电流的影响,电力传输能力受限,而HVDC电缆的充电电流则非常微小,因此,输电距离可以不受限制。(3)能够隔离海上风电系统和陆上电网的故障,某些情况下,HVDC系统还可以参与故障后的状态恢复。(4)可以设定和控制直流传输系统的潮流。(5)传输同样容量的功率HVDC方式损耗低,整个直流系统的运行损耗将低于等效的HV AC系统。(6)在相同的运行条件下,单根HV AC电缆的传输容量高,三相交流线路的传输容量仅为同样规格的一对直流电缆的60%。高压直流方式主要有两类,常规直流输电方式(LCC-HVDC)和柔性直流输电技术(VSC-HVDC)。常规直流输电采用基于线换相换流器,柔性直流输电采用基于自换向的电压源换流器。LCC-HVDC并网方式下为确保换流器正常换相,需要交流侧电网提供连续的换相电压,风电出力的不稳定性会导致发生换相失败故障的概率较高,海上风电场安全稳定运行的能力大大降低。输送功率相同情况下,常规直流工程占地较大,超过交流和柔性直流输电方案占地面积的两倍以上;另外,当风力不够或者风力过大从系统中切除风机后,为保证系统稳定运行同时给风电场处的负荷供电,系统将向风电场有限度地传输有功功率,这时需要对风电侧系统进行无功补偿,但常规直流本身不能够发出无功,而且还需要增加大量的无功补偿装置,换流站的占地面积也会相应的加大,考虑到海上平台的建设难度,因此常规直流输电不适合海上风电场使用。 2用于海上风电并网的柔性直流系统拓扑结构用于远距离大规模海上风电并网的柔性直流系统与常规的柔性直流系统略有不同,用于海上风电并网的柔直系统接线图见图1。其特点主要体现在:(1)考虑到可靠性的要求,从路上换流站开始,交流线路和直流线路都采用可靠性较高的电缆。(2)考虑到电缆的高可靠性以及目前MMC的制造水平,用于海上风电并网的柔性直流换流站通常采用伪双极结构;伪双极结构还可以避免直流接地极的使用,减少换流站主设备。(3)考虑到设备维护等方面的因素,换流站中通常采用2台换流变压器,使得系统基本能够满足N-1原则。(4)通常陆上换流站需要装设直流耗能支路DCchopper(图1中R,及与其串联的开为,当陆上换流站发生交流故障后,海上换流站注人的多余功率可以通过直流耗能支路释放,最大程度避免直流侧过电压。(5)对于一个采用伪双极接线的柔性直流系统而言,理论上只要至少有一个换流站安装接地装置,整个直流系统就可以正常运行。由于接地装置需要占用一定体积,所以在海上换流站中一般不考虑装设接地装置,只考虑在陆上换流站安装接地装置。(6)为了减小换流站的占地面积,通常直流侧不需要安装平波电抗器,但是会把桥臂电抗器移到换流器直流极线和串联子模块的最高/最低点之间。

海上风电输电与并网关键技术研究

龙源期刊网 https://www.wendangku.net/doc/7c124677.html, 海上风电输电与并网关键技术研究 作者:高垚 来源:《河南科技》2018年第19期 摘要:风力发电是新能源领域中最成熟的发电方式之一,相关行业也获得了较快的发 展。海上自身具有丰富的风力资源特征,因此,关于海上风电的输入电能和并网问题逐渐成为风电发展的主要研究方向,并引起了相关专业人士的关注和重视。对此,本文从海上风电输电与并网关键技术的角度出发,对其进行深入、详细的探讨,以便从中寻找更多新颖、高效的方法,从而推动海上风电相关电网行业持续不断向前发展。 关键词:海上风电;并网;关键技术 中图分类号:TM614 文献标识码:A 文章编号:1003-5168(2018)19-0139-02 Research on Key Technologies of Offshore Wind Power Transmission and Grid Connection GAO Yao (Fujian Zhongmin Offshore Wind Power Co., Ltd.,Putian Fujian 351100) Abstract: Wind power generation is one of the most mature power generation modes in the new energy field, and the related industries have also gained rapid development. The sea itself has rich characteristics of wind resources. Therefore, the problem of the input power and grid connection of the offshore wind power has gradually become the main research direction of the development of wind power, and it has aroused the concern and attention of the related professionals. From the point of view of the key technology of offshore wind power transmission and grid connection, this paper made a thorough and detailed discussion on it so as to find more novel and efficient methods, so as to promote the continuous development of the offshore wind power related power grid industry. Keywords: offshore wind power;grid connection;key technologies 伴隨社会经济的快速发展,能源的消耗量也呈现出上升的趋势,以往石油、煤炭等相关资源的过度开发,使得人们不得不积极寻找、探索新能源。新能源种类非常多,如风力资源具有绿色环保的重要作用,是一种可循环使用的能源,因此,风力资源逐渐引起了相关部门的重视。近些年,随着科学技术的不断进步,风力发电开始逐步向海上风电这个方向发展。然而,我国海上风电还处于发展阶段,自身存在很多不足之处,需要对其进行改善,尤其是海上风电并网相关技术,对整个海上风电电网行业的长久发展具有重要作用。

海上风电直流输电的控制策略探索

海上风电直流输电的控制策略探索 发表时间:2018-12-21T10:17:41.000Z 来源:《电力设备》2018年第23期作者:王赫楠[导读] 摘要:当前,电压源型高压直流输电技术,即VSC-HVDC技术在海上风电领域得到了日渐广泛的应用。 (华电重工股份有限公司天津分公司 300010) 摘要:当前,电压源型高压直流输电技术,即VSC-HVDC技术在海上风电领域得到了日渐广泛的应用。海上风电直流输电,是基于高压直流相应的传输结构,借助交流汇聚,对通过变压器的电流进行升压处理,再借助海上换流站对之进行直流转换,并对岸上换流站进行传输,完成电能变化后,对电网进行输入。本文浅析了VSC-HVDC系统原理与数学模型,探究了VSC-HVDC系统控制特性及控制器设计,以期为海上风电直流输电控制策略提供借鉴。 关键词:海上风电;直流输电;控制策略 在海上风电并网中,相对于直流输电的传统技术,VSC-HVDC技术具有更强的可靠性和灵活性,但该技术的运行控制呈现出较强的复杂性。当前,VSC-HVDC技术系统主要对PI控制方式进行采用,能促进电力系统有效提升其运行性能。若系统运行状态出现变化,将大幅度削弱PI控制器实际控制效果。对此,有必要借助先进性较强的控制技术,促进控制器增强其控制性能。 一、VSC-HVDC系统原理与数学模型 环境因素对海上风力发电产生的影响相对较小。同时,海上风力发电具有丰富的风能资源,在近年来取得了巨大的发展成就。海上风电场与海岸距离越大,其风速也相应越大,且风力较为稳定。海上风电场具有更高的输出功率,且稳定性良好。在各类远距离输电方式中,相对于交流输电,高压直流输电更为经济可靠,且具有更强的稳定性[1]。因此,电压源型高压直流输电技术在海上风电中的应用日渐广泛。为加强对海上风电直流输电的有效控制,必须深入理解并全面掌握VSC-HVDC系统原理和数学模型。 1、VSC-HVDC系统原理 VSC-HVDC技术基于全控型功率器件的直流输电技术,该技术以各类可关断器件诸如IGBT、GTO等为特征,并对脉宽调制技术以及电压源控制器进行采用,该技术的优势在于独立调整功率[2]。该技术对电压源控制器进行使用,能将高压直流输电相应优势对配电网进行扩展,促进了HVDC实际应用范围的有效拓宽,在海上风电系统中的应用日益增多[3]。 2、VSC-HVDC数学模型 以VSC-HVDC为基础的高压直流输电系统模型,其整流侧以及逆变侧相应的VSC均对PWM方式进行采用,并实施调制,且二者的拓扑结构相同。为对直流输电系统实际运行状况进行有效改善,并确保输电系统在故障及干扰状态下,保持运行稳定,要对电压源换流器具备的快速调节这一特性进行有效利用。在运行实际过程中,对VSC- HVDC系统中相应的电压换流器进行操作,对交流系统增加其振荡阻尼,并对控制器进行合理设置,增强输电系统的稳定运行[5]。直流输电线路相应的电流动态微分如下式(3)方程所示: (3)

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

海上风电机组要点总结

海上风电机组要点总结 一、概述: 中国已建和在建的海上风电项目有上海东海大桥10万千瓦项目、江苏如东潮间带15万千瓦示范项目以及2010年国家发改委启动的首轮100万千瓦海上风电招标项目 海上风电的优缺点: 二、基础结构的分类 基础结构类型可分为:桩式基础,导管架式基础,重力式基础,浮动式基础等多种结构形式。

1.1单桩基础 单桩基础由大直径钢管组成,是目前应用最多的风力发电机组基础,该中形式基础是用液压撞锤将一根钢管夯入海床或者钻孔安装在海床形成的基础。其重量一般为150t-400t,主要适用于浅水及 20~25 m 的中等水域、土质条件较好的海上风电场项目。这种基础目前已经广泛地应用于欧洲海上风电场,成为欧洲安装风力发电机的“半标准”方法。 优点:是无需海床准备、安装简便。 缺点:移动困难;并且于直径较大需要特殊的打桩船进行海上作业,如果安装地点的海床是岩石,还要增加钻洞的费用。 1.2多桩基础 多桩基础的概念源于海上油气开发,基础由多个桩基打入地基土内,桩基可以打成倾斜

或者竖直,用以抵抗波浪、水流力。 中间以灌浆或成型方式(上部承台/三脚架/四脚架/导管架)连接塔架适用于中等水深到深水区域风场。 优点:适用于各种地质条件、水深,重量较轻,建造和施工方便,无需做任何海床准备; 缺点:建造成本高,安装需要专用设备,施工安装费用较高,达到工作年限后很难移动。 应用情况:2007 年英国Beat rice示范海上风电场,两台5MW的风机均采用的四桩靴式导管架作为基础,作业水深达到了45m,是目前海上风机固定式基础中水深最大的;我国上海东大桥海上风场采用的是多桩混凝土承台型式。 2.三脚桩基础 三脚桩基础采用标准的三腿支撑结构,由中心柱和3根插入海床一定深度的圆柱钢管和斜撑结构组成。钢管桩通过特殊灌浆或桩模与上部结构相连,可以采用垂直或倾斜管套,中心柱提供风机塔架的基本支撑,类似于单桩基础。其重量一般在125~150t左右,适用水深为20~40m。 这种基础由单塔架结构简化演变而来,同时又增强了周围结构的刚度和强度,在海洋油气工业中较为常见。

风电光伏技术标准清单

风力发电工程 序号专用标准名称标准编号备注 一综合管理 1 风力发电工程质量监督检查大纲国能安全[2016]102号2016-04-05实施 2 风力发电工程建设监理规范NB/T 31084-2016 2016-06-01实施 3 风力发电工程施工组织设计规范DL/T 5384-2007 4 风电场工程劳动安全与工业卫生验收规范NB/T 31073-20152015-09-01实施 5 风力发电企业科技文件归档与整理规范NB/T 31021-2012 二社会监督 1 电力业务许可证管理规定国家电监会令第9号2005-10-13实施 关于印发风电场工程竣工验收管理暂行办法和风电场项目后评 2 国能新能[2012]310号 价管理暂行办法的通知 三消防工程 1 风力发电机组消防系统技术规程CECS 391:20142015-05-01实施四风电工程专用标准 1 设计标准 风电场工程勘察设计收费标准NB/T 31007-2011 风电场工程可行性研究报告设计概算经编制办法及计算标准FD 001-2007 风电场工程等级划分及安全标准(试行)FD 002-2007 风电机组地基基础设计规定(试行)FD 003-2007 风电场工程概算定额FD 004-2007 风力发电场设计规范GB 51096-20152015-11-01实施风力发电厂设计技术规范DL/T 5383-2007 风电场设计防火规范NB 31089-20162016-06-01实施风力发电机组雷电防护系统技术规范NB/T 31039-2012 风电机组低电压穿越能力测试规程NB/T 31051-2014 风电机组电网适应性测试规程NB/T 31054-2014 风力发电机组接地技术规范NB/T 31056-2014 风力发电场集电系统过电压保护技术规范NB/T 31057-2014

截至2017年8月我国在建海上风电项目概况

截至2017年8月我国在建海上风电项目概况

————————————————————————————————作者:————————————————————————————————日期:

截至2017年8月我国在建海上风电项目概况 截止2017年8月31日,我国开工建设的海上风电项共19个,项目总装机容量4799.05MW。项目分布在江苏、福建、浙江、广东、河北、辽宁和天津七个省(市、区)海域,其中江苏8个在建项目共计2305.55MW,福建6个在建项目共计1428.4MW,浙江、广东、河北、辽宁和天津分别有1个在建项目。 在建的19个海上风电项目里,使用(拟使用)上海电气机组总容量为2232MW;使用(拟使用)金风科技机组总容量为964.15MW;使用(拟使用)明阳智慧能源机组总容量为567MW;使用(拟使用)远景能源机组总容量为400.8MW;使用中国海装机组总容量为110MW;使用西门子歌美飒机组总容量为90MW。 一、华能如东八角仙300MW海上风电项目 华能如东八角仙300MW海上风电项目 开发商:华能如东八仙角海上风力发电有限责任公司。 项目概况:项目位于江苏省南通市如东县小洋口北侧八仙角海域,分南区和北区两部分,共安装风电70台,总装机容量302.4MW,配套建设两座110千伏海上升压站和一座220千伏陆上升压站。北区项目面积36平方千米,平均岸距15千米,平均水深0-18米,装机容量156MW,安装14台上海电气SWT-4.0-130机组和20台中国海装5.0MW机组(H171-5MW、H151-5MW两种机型都有安装),北区装机共34台;南区项目面积46平方千米,平均岸距25千米,平均水深0-8

海上风电并网关键技术及标准研究分析

海上风电并网关键技术及标准研究分析

我国海上风能资源丰富、利用小时数高,近海可开发量超过7.5亿千瓦。陆上风电开发放缓,海上风电将在我国清洁能源开发中扮演愈发重要的角色。 课题名称:海上风电场送电系统与并网关键技术研究及应用 (2013AA050601) 所属项目:国家863计划 “先进能源” 技术领域 海上风电电力输送、施工和浮动式基础关键技术研究与示范 。 起止时间:2013年02月28日-2017年02月27日 课题总体目标:掌握海上风电场汇集与并网系统优化设计及运 行控制关键技术,建设用于海上风电场集电及送出系统的海缆 过电压和保护试验平台,开发出具有自主知识产权的海上风电 功率预测、远程集群控制和安全防御系统,并实现示范应用。

高压交流海缆电容效应明显,多无功源协调控制复杂,电压精准控制难。研究海上风电场复杂电气环境下的无功/电压分布特征,以电压波动最小和场内有功损耗最小为两阶段控制的优化目标,制定基于预决策+再决策相结合的无功电压精准控制策略,实现运行电压控制精度提高,平均网损降低30%。 (1)海上风电场无功电压精准控制 LC αω=211 cos U k l U α== 首端末端

通过协调分配各台风电机组和动态无功容量,优先发挥风电机组无功调节能力,提出基于场内多无功源的机/场双层无功协调故障穿越控制策略,故障期间提高了暂态支撑能力,故障切除后过电压得到有效抑制。 (2)海上风电场分层自治的故障穿越控制技术 故障期间:低电压穿越 机组层:退出crowbar,转子电流 P、Q分量协调控制 场站层:STATCOM和机组无功协调分配故障切除后:高电压穿越 STATCOM输出感性无功,平衡过剩无功。

风电相关国家标准整理

国家相关标准 风力发电机组功率特性测试 主要依照IEC61400-12-1:2005风电机组功率特性测试是目前唯一一个正式版本电流互感器级别应满足IEC 60044-1 电压互感器级别应满足IEC 60186 功率变送器准确度应满足GB/T 13850-1998要求,级别为0.5级或更高 IEC 61400-12-1 功率曲线 IEC 61400-12-1 带有场地标定的功率曲线 IEC 61400-12-2 机舱功率曲线 IEC 61400-12 新旧版本区别 对于垂直轴风电机组,气象桅杆的位置不同 改变了周围区域的环境要求 改变了障碍物和临近风电机组影响的估算方法 使用具有余弦相应的风速计 根据场地条件将风速计分为A、B、S三个等级 根据高风速切入和并网信号可以得到两条功率曲线 风速计校准要符合MEASNET规定 风速计需要分级 电网频率偏差不超过2HZ 场地标定只能通过测量,不能用数值模拟 场地标定的每一扇区分段至少为10° 可以同步校准风速计 改进了对风速计安装的描述 通过计算确定横杆长度 增加针对小型风机的额外章节 MEASNET标准和旧版IEC61400-12标准区别 使用全部可用的测量扇区,否则在报告中说明 不允许使用数值场地标定 场地标定更详细的描述,包括不确定度分析 只允许将风速计置于顶部 风速计的校准必须符合MEASNET准则 不使用AEP不完整标准 轮毂高度、风轮直径、桨角只能通过测量来判定,不能按照制造商提供的判定报告中必须提供全方位的照片 IEC61400-12-1:Power performance measurement for electricity producing wind turbine(2005)风电机组功率特性测试 可选择:场地标定 IEC61400-12-2:Power curve verification of individual wind turbine,单台风电机组功率曲线验证(未完成)

海上风电

Nysted海上风电场:项目时间表与前期招标 2007-12-06 21:45 Nysted海上风电场:项目时间表与前期招标 供稿人:张蓓文;陆斌供稿时间:2007-6-15 项目时间表 现简单介绍其项目时间表与前期招标情况。 1998年,丹麦政府同生产商达成协议,实施一个大型海上风力发电示范项目,目的在于调查发展海上风力发电场的经济,技术和环境等问题,并为未来风力发电场选择区域。 1999年,丹麦能源部原则上批准安装,并开始了Horns Rev和Nysted初期调研和设计。 2000年夏天,政府得到风力发电场的环境影响评估,于2001年批准了发电场建造的申请。 海上风力发电场的基座建设起始于2002年7月末,基座的建造和安装根据时间表执行,始于承包公布的2002年3月,2003年夏天全部完成,并做好了接收风力涡轮机的准备。第一台涡轮机于年5月9日起开始安装,2003年7月12日开始运行。最后一台涡轮机于2003年9月12日安装并电网,试运行在2003年11月1日结束。 前期招标 ENERGI E2为项目准备了一份技术上非常详细的招标书,其中评价了ENERGI E2在丹麦东部传统火和电网建造,策划和运行方面的经历,以及来自海上风力发电场Vindeby(11×450 kW Bonus)Middelgrunden(10 of 20 x 2MW Bonus)的经验。 涡轮机的选择:选择涡轮机的重要参数有:96%可用性;雷电保护;塔架低空气湿度(为防止腐采用单个起重机用于安装大型部件;能完全打开机舱;在所有电力设备采用电弧监测的防火措施等最后丹麦制造商Bonus(现为Siemens)获得了生产涡轮机的合同,涡轮机额定容量为2.3MW(是机组的升级版),是2004年Bonus所能生产的最大容量涡轮机。 风机叶片的选择:Bonus为Nysted的2.3MW涡轮机开发了一种特殊的叶片(不含胶接接头,一片成此前,叶片先在2000年1.3MW涡轮机预先检测过,运行一年后被拆卸进行全面观察。此外,Bon 专门成立队伍从生产线随机抽取叶片来检测,检测内容包括20年的寿命测试和叶片的断裂测试。基座的选择:海上风机基座设计需要考虑Nysted风力发电场的工作负载、环境负载、水文地理条地质条件。基座适用性包括涡轮机尺寸、土壤条件、水深、浪高、结冰情况等多个技术要素。水力可用于冲刷保护和起重机驳船安装基座的操作研究。基座面积大约为45000m2,占发电场总面积0.2%。水力模型研究包括各项可能的极端事件,如:波浪扰动的数值模拟和海浪,水流和冰受力算。由于Nysted海底石头较多,单桩式基座不可行,重力式基座较为合适。图1: Nysted 风电用的重力型基座,基座运载和安装的过程要求混凝土基座尽可能轻质。为此,该项目的基座采用带个开孔、单杆、顶部冰锥形的六边形底部结构,底部直径15米,最大高度16.25米,单个基座在中重量低于1300吨,适合海上操作。EIDE V号起重机船从运输码头把基座运载过去。然后,通过孔内添加重物和单杆为基座又增加了500吨重量,这些重量可保持基座的稳定性,防止滑移和倾覆刷保护分为两层结构,包括石头外层和一过滤层,材料由驳船上的液力挖掘机放置。 塔架要求:每个塔架有69米高,比陆上涡轮机的塔架低大约10%,这是由于陆上风切高于海上,只要采用较低的塔架就可获得相同的发电量。

重磅!国内最大的海上风电项目将在我市沿海全面建成

重磅!国内最大的海上风电项目将在我市沿海全面建成! 鲁能东台海上风电项目自去年底首批机组并网发电以来,不断加快风机安装速度,从基础桩的施工,风机的吊装,到并网发电前的检测调试,各班组套搭进行,目前整个项目进展顺利,预计9月份将全面竣工投入运行。 在鲁能东台海上风电场项目的陆上集控中心,这里有我国单位容量最大、离岸距离最远、电压等级最高、海况最复杂的海上风电项目。这个项目的50台风机已经有26台并网发电,每个月的发电量达到了2400多万度。 鲁能东台海上风电项目位于东沙沙洲东南部,场区中心离岸距离36公里,总装机容量200兆瓦,共布置50台4兆瓦风机、一座220千伏海上升压站和一座陆上集控中心。该项目于2016年4月开工建设,当年12月首批机组并网发电,创造了“当年开工、当年并网发电”的海上风电建设新速度。 我国海上风电项目还处于起步阶段,鲁能东台项目在国内在建海上风电项目中单体容量最大,自重达2300吨的220千伏海上升压站也是目前国内电压等级最高,项目在施工过程中遇到的困难也是前所未遇。 跟随记者来到位于集控中心二楼的中控室,通过记者身后的大屏,可以清楚的看到海上升压站以及海上风机的一些基本运行情况。就像我们人类的大脑一样,负责控制和维

护整个风电项目的正常运行。 集控中心是整个项目的中枢神经,可实现对海上风机、升压站、220KV海缆远程实时监控,在国内海上风电领域,设备集成度高、技术超前、科技含量高,具有一定的引领和示范效应。项目运行过程中出现的许多隐患都是在这里被及时发现并解决的。 在抓好并网机组运行的同时,鲁能公司抢抓施工有利条件,推进在建项目建设。目前已完成42台桩基施工,27台风机吊装,其中26台已经并网发电,预计9月底可实现50台风机全部并网发电。 鲁能东台海上风电场场长裴波告诉记者,项目建成后,年上网电量将达到亿度,等效满负荷小时数2642小时,年营业收入达亿元,年可节约标准煤万吨。

(非常好)海上风电场经验总结:由ScrobySands、Nysted等建设得到的启发

海上风电场经验总结:由ScrobySands、Nysted等建设得到的启发 作者:张蓓文陆斌发布日期:2008-5-8 18:13:30 (阅270次) 关键词: 风电总结 DS 海上风电场的风速高于陆地风电场的风速,不占用陆地面积,虽然其电网联接成本相对较高,但是海上风 能开发的经济价值和社会价值正得到越来越多的认可,海上风电的发电成本也将越来越低。海上风电场的 建设对于风电行业的进一步发展而言很关键,现已进入到一个重要阶段,进一步发展可以吸引大量项目资 金的进入,其具有震撼力的阵形正在全球范围地受到沿袭[1]。全球海上风力发电场装机容量增长详见图1。欧洲地区的发展目前领先于全球。丹麦于1991年建成第一个海上风力发电场,此后直到2006年末,全球 运行了超过900MW装机容量的海上风电场,几乎所有发电场都在欧洲[2]。 表1.17座离岸1km以外的建成或在建风电场 建设地点始建年 份风电机组数量 (台) 风电机组型号总装机容 量 TunaKnob丹麦1995 10 VestasV39/500kW 5MW Utgrunden瑞典2000 7 EnronWind70/1500kW 10.5MW Middelgrunden丹 麦2001.3 20 Bonus76/2.000MW 40MW HornsRev丹麦2002.12 80 VestasV80/2.000MW 160MW Nysted丹麦2003.11 72 Bonus82,4/2.300MW 165.6MW NorthHoyle英国2003.12 30 VestasV80/2.000MW 60MW KentishFlats英国2005.8 30 VestasV90/3.000MW 90MW Beatrice英国2006.9 2 OWEZ荷兰2006.11 36 VestasV90/3.000MW 108MW 来源:“Off-andNearshoreWindEnergy”,上海科技情报研究所整理 国外海上风力发电场技术正日趋成熟,建成的风电场容量为2.75至165.6MW(详见表1),规划中的风电场容量为4.5至1000MW[3]。而海上风电场产业还处于“做中学”的阶段[5],对于以往的经验教训进行总结对未来产业发展是很有必要的。笔者之前已依据德国专业研究机构公开的 “CaseStudy:Eur opeanOffshoreWindFarms-ASurveyfortheAnalysisoftheExperiencesandLessonsLearntbyDevelope

用于海上风电并网的柔性 直流系统过电压和绝缘配合研究

用于海上风电并网的柔性直流系统过电压和绝缘配合研究 发表时间:2019-08-07T11:10:14.140Z 来源:《基层建设》2019年第15期作者:樊华[导读] 摘要:人们生活水平的提高,用电需求的不断增多,促进了我国电力产业的不断发展。 身份证号码:23011919850617XXXX 摘要:人们生活水平的提高,用电需求的不断增多,促进了我国电力产业的不断发展。近年来,风电建设重心逐步从西部地区转移到电力消纳较好的中东部地区,海上风电得到快速发展。柔性直流系统凭借其独特的技术优势,正逐渐成为大规模远距离海上风电并网的主流方案。本文就用于海上风电并网的柔性直流系统过电压和绝缘配合展开探讨。 关键词:海上风电并网;柔性直流系统;模块化多电平换流器引言 无论是在可开发的资源量上,还是技术政策层面,我国海上风电目前已基本具备大规模开发条件。我国拥有丰富的海上风电资源,中国气象局风能资源调查数据显示,我国5~25m水深线以内近海区域、海平面以上50m高度风电可装机容量约2亿kW,70m以上可装机容量约5亿kW。近年来,我国海上风电发展迅猛,2017年海上风电新增装机达到1.16GW,同比增长97%,累计装机达到2.79GW。 1海上风电场的并网方式 海上风电场的并网方式分别是高压交流并网(简称HV AC)、高压直流输电方式并网(简称HVDC)。HV AC方式具有结构简单、成本较低等特点,发展最为成熟。目前,使用HV AC是绝大多数陆上风电场并网的选择。但对于规模较大的海上风电场,随着并网距离的增加,输电损耗上升较快,如果增大海底电缆截面和提高传输电压等级,将导致投资成本的急剧增加。另外,对于距离岸边较远的海上风电,为了抑制过电压水平,需要加装较大的感性无功设备补偿并网电缆的充电功率。同时,海上风电场交流系统必须与其接入的电网保持同步,受到扰动后仍要维持系统的同步运行。因此实际工程中该方法一般只用于传输容量小、传输距离短的风电接入系统。距离海岸小于50km且建设规模小于200MW海上风电场普遍采用HV AC方式。将HVDC技术应用于风电并网,特别是对于远距离海上风电场,具有明显优势:(1)海上风电采用HVDC方式后,不需要与陆上电网保持同步,因此,海上风电场系统频率的允许变化范围较大,电网的每个联络终端都具有很强的独立性,可以依照自己的控制策略运行。(2)长距离的交流电力电缆受充电电流的影响,电力传输能力受限,而HVDC电缆的充电电流则非常微小,因此,输电距离可以不受限制。(3)能够隔离海上风电系统和陆上电网的故障,某些情况下,HVDC系统还可以参与故障后的状态恢复。(4)可以设定和控制直流传输系统的潮流。(5)传输同样容量的功率HVDC方式损耗低,整个直流系统的运行损耗将低于等效的HV AC系统。(6)在相同的运行条件下,单根HV AC电缆的传输容量高,三相交流线路的传输容量仅为同样规格的一对直流电缆的60%。高压直流方式主要有两类,常规直流输电方式(LCC-HVDC)和柔性直流输电技术(VSC-HVDC)。常规直流输电采用基于线换相换流器,柔性直流输电采用基于自换向的电压源换流器。LCC-HVDC并网方式下为确保换流器正常换相,需要交流侧电网提供连续的换相电压,风电出力的不稳定性会导致发生换相失败故障的概率较高,海上风电场安全稳定运行的能力大大降低。输送功率相同情况下,常规直流工程占地较大,超过交流和柔性直流输电方案占地面积的两倍以上;另外,当风力不够或者风力过大从系统中切除风机后,为保证系统稳定运行同时给风电场处的负荷供电,系统将向风电场有限度地传输有功功率,这时需要对风电侧系统进行无功补偿,但常规直流本身不能够发出无功,而且还需要增加大量的无功补偿装置,换流站的占地面积也会相应的加大,考虑到海上平台的建设难度,因此常规直流输电不适合海上风电场使用。 2用于海上风电并网的柔性直流系统拓扑结构用于远距离大规模海上风电并网的柔性直流系统与常规的柔性直流系统略有不同,用于海上风电并网的柔直系统接线图见图1。其特点主要体现在:(1)考虑到可靠性的要求,从路上换流站开始,交流线路和直流线路都采用可靠性较高的电缆。(2)考虑到电缆的高可靠性以及目前MMC的制造水平,用于海上风电并网的柔性直流换流站通常采用伪双极结构;伪双极结构还可以避免直流接地极的使用,减少换流站主设备。(3)考虑到设备维护等方面的因素,换流站中通常采用2台换流变压器,使得系统基本能够满足N-1原则。(4)通常陆上换流站需要装设直流耗能支路DCchopper(图1中R,及与其串联的开为,当陆上换流站发生交流故障后,海上换流站注人的多余功率可以通过直流耗能支路释放,最大程度避免直流侧过电压。(5)对于一个采用伪双极接线的柔性直流系统而言,理论上只要至少有一个换流站安装接地装置,整个直流系统就可以正常运行。由于接地装置需要占用一定体积,所以在海上换流站中一般不考虑装设接地装置,只考虑在陆上换流站安装接地装置。(6)为了减小换流站的占地面积,通常直流侧不需要安装平波电抗器,但是会把桥臂电抗器移到换流器直流极线和串联子模块的最高/最低点之间。

海上风电场电气系统现状分析

第42卷 第10期 电力系统保护与控制 Vol.42 No.10 2014年5月16日 Power System Protection and Control May 16, 2014 海上风电场电气系统现状分析 黄玲玲1,2,曹家麟2,符 杨1 (1.上海电力学院电气工程学院,上海 200090; 2.上海大学机电工程与自动化学院,上海 200072) 摘要:海上风电发展呈现风电场容量扩大、离岸距离增加、并网要求标准化的特点,这为海上风电场电气系统设计带来重大挑战。大规模海上风电场电气系统与传统电厂相比,具有鲜明的要求与特点。在阐述了现有几种海上风电场电气系统接线方案的基础上,对目前海上电气设备的技术特点与成本状态进行了分析与比较,并就目前海上风电场电气系统研究存在的主要问题与前景进行了展望。 关键词:海上风电场;电气系统;交流;直流 Review of electrical systems for offshore wind farms HUANG Ling-ling 1, 2, CAO Jia-lin 2, FU Yang 中图分类号: TM71 文献标识码:A 文章编号: 1674-3415(2014)10-0147-08 0 引言 海上风电作为拥有巨大潜力的大规模可再生能源,在世界各国节能减排的要求以及各国政府有力的财政政策支持下,已经成为未来风能利用的必然趋势。据全球风能理事会统计,截止到2012年底,全球新增海上风电装机约1 290 MW ,累计约5 410 MW 1 (1. College of Electric Power Engineering, Shanghai University of Electric Power, Shanghai 200090, China; 2. School of Mechanical & Electronic Engineering and Automation, Shanghai University, Shanghai 200072, China) Abstract: The development of offshore wind industry demonstrates the capacity expansion of a single wind farm, the increase of the off-shore distance and the standardization of grid integration. These all bring big challenges for the electrical system designs of offshore wind farms. Comparing with traditional power plants, the big offshore wind farm has its unique characters and requirements. This paper describes several existing electric topologies for offshore wind farms, compares the costs and some technical issues of the offshore electric equipment and discusses the problems and prospects of the electrical systems in application for the real offshore wind projects. This work is supported by National Natural Science Foundation of China (No. 51177098). Key words: offshore wind farm; electrical system; AC; DC [1] 基金项目:国家自然科学基金项目(51177098);上海市科委地方能力项目(Z2013062);上海绿色能源并网工程技术研究中心(13DZ2251900) 作为全球首个大型海上风电场,装机容量为160 MW ,离岸距离为15 km 。截止到目前为止,全球规模最大的并网运行海上风电场是英国的London Array 1海上风电场,其装机容量达到630 MW ,离岸距离超过20 km 。而规划中的超大规模海上风电场装机容量甚至达到2 500 MW ,远海风电场(far offshore wind farm )离岸距离则可能达到50~60 km 。从世界各国海上风电的发展与规划来看,海上风电发展表现出风电场容量逐渐增加与离岸距离不断扩大等特点。 自1991年丹麦建成全球首个海上风电场开始,海上风电场的规模呈现逐年递增的状态。Horns Rev [2]。 大规模远距离海上风电场可能意味着更多数量的风电机组和更长距离的电能传输要求。众所周知,海上环境恶劣,电气设备需要专门的防护措施,价格也远远高于陆上。海上条件特殊,施工需要借助专门的工具与设备,因此,建设与运行维护成本也大大高于陆上[3]。为了实现海上风电场经济可靠地并网运行,就需要对海上风电场的电气系统提出一些特殊要求。

欧洲主要国家海上风电场情况

欧洲主要国家海上风电场情况 发电设备(2006No.5)LDI1-2500 阴, 阳离子交换器故障韵斩殁对策管加套双层网罩. 待买到符合要求的尼龙丝网罩( 原生产厂家或其他同类耐酸碱腐蚀性强, 强度足够的产品)后再完全更换成合格的尼龙丝网罩,同时将橡皮垫片更换为聚四氟乙烯垫片. (3) 将中间排液装置支管固定支架用的螺栓 X17X 2mm改垫片外径加大,厚度增加(由声44 为,/,55 X 21 x 5mm); (4) 将中间排液装置的所有焊缝裂纹打磨后补焊, 并仔细检查其它焊口, 将存在裂纹趋势及可能的母管, 支管焊缝以及法兰结合面等焊口重新 , 以提高其强度. 打磨后加焊 (5) 将离子交换器顶部顶压空气管管道全部 4 结论与建议 (1) 该系列离子交换器的部分阀门可考虑改为调节门, 以进行流量的调整控制. (2) 在反洗或再生时, 应先从中间排液装置或顶部进一定量的水, 淋湿树脂以减少损坏中间排液装置的可能性. (3) 在反洗或再生时应确认顶压空气已进入离子交换器内且压力满足要求后,方可开始反洗和再生工作. (4) 在出现设备故障后, 应详细分析故障原因, 然后将故障消灭在萌芽状态. 杜绝故障的重更换为不锈钢管.. 复发生, 避免大量人力和物力的浪费. 丹麦HomsRev(2002)80x2=160 瑞典 英国 德国

Middelgrund(2001) Tuno(1995) Vindeby(1991) YttreStengrund(2001) Utgrunden(2000) Bockstigen(1998) Norgensund(1990) Drouten(1996) Lely(1994) BlythOffstore(2000) HomsRev(2006)+40---~200MW 最终一416MW 在建7处,规划(2008)建成15处 在建 2 处,Noordzeewind 和Egmond;规划(2010)总容量1500MW 将建成NorthHoyle 和ScrobySands; 在建KentishFlats; 规划15 座总计7000MW (位于利物浦湾,沃什湾和泰晤士河口)(2006)500MW以上 (2010)3oooMW (2030)25000MW为1998年电力装机的15%)(赵旺初供稿) 28 52. m仙:20002加口硏思

海上风电现状与发展计划

全球海上风电现状与发展趋势 一、全球海上风电现状 根据最新数据显示,风能发电仅次于水力发电占到全球可再生资源发电量的16%。在全球高度关注发展低碳经济的语境下,海上风电有成为改变游戏规则的可再生能源电力的潜质。在人口密集的沿海地区,可以快速地建立起吉瓦级的海上风电场,这也使得海上风电可以成为通过经济有效的方式来减少能源生产环节碳排放的重要技术之一。海上风电虽然起步较晚,但是凭借海风资源的稳定性和大发电功率的特点,海上风电近年来正在世界各地飞速发展。在陆上风电已经在成本上能够与传统电源技术展开竞争的情况下,目前海上风电也正在引发广泛关注,它具有高度依赖技术驱动的特质,已经具备了作为核心电源来推动未来全球低碳经济发展的条件。 据全球风能理事会(GWEC)统计,2016年全球海上风电新增装机2,219MW,主要发生在七个市场。尽管装机量比去年同期下降了31%,但未来前景看好,全球14个市场的海上风电装机容量累计为14,384MW。英国是世界上最大的海上风电市场,装机容量占全球的近36%,其次是德国占29%。2016年,中国海上风电装机量占全球装机量的11%,取代了丹麦,跃居第三。其次,丹麦占8.8%,荷兰7.8%,比利时5%,瑞典1.4%。除此之外还包括芬兰、爱尔兰、西班牙、日本、韩国、美国和挪威等市场,共同促进了整个海上风电的发展。

1. 欧洲海上风电现状 欧洲风能协会(WindEurope)日前发布的《欧洲海上风电产业统计报告2016》中指出,2016年欧洲海上风电投资达到182亿欧元,创历史新高,同比增长39%。全年新增并网338台风力发电机,新增装机容量1558MW,较2015年减少了48%;累计共有3589台风力发电机并网,装机总量达12.6GW,分布在10个国家的81个风电场。2016年,比利时、德国、荷兰和英国还有11个风电项目正在建设当中,完成后将增加4.8GW装机,使得累计装机量可达17.4GW。 2. 欧洲海上风电市场展望 虽然2016年欧洲海上风电的并网容量远低于2015年,但大量项目的开工建设意味着,在未来两年,并网容量将会显著增加。 由于第三轮拍卖被延期,在2016年增长出现放缓后,英国海上风电发展速度将明显加快。德国市场将持续增长。比利时也将有新增装机,这主要来自于Nobelwind风电场和两个于2016年8月被核准的项目。未来两年,丹麦和荷兰于2015年和2016年获得特许权的项目也将开始动工。 到2019年,欧洲开工建设的海上风电项目数量将减少,因为彼时欧盟各个成员国此前依据可再生能源指令(Renewable Energy Directive)制定的国家可再生能源行动计划(NationalRenewableEnergy Action Plans,NREAPs)将到期。与2016年相似,到2020

风电并网技术标准

风电并网技术标准 1范围 1 0. 1本标准适用于通过110 (66)千伏及以上电压等级线路接入电网的新建或扩建风电 1 0. 2通过其他电压等级接入电网的风电场,可参照木规定。 10. 3己投运风电场改建参照本规定执行。 2引用标准 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其 随后所有的修改单或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究 是否可使用这些文件的最新版木。 DL/755-2001电力系统安全稳定导则 SD131—1984电力系统技术导则 SDJ161—1985电力系统设计技术规程 SD325-1989电力系统电压和无功电力技术导则 GB/T 12325-2008电能质量供电电压偏差 GB 12326-2008电能质量电压波动和闪变 GB/T 14549-1993电能质量公用电网谐波 GB/T 15945-2008电能质量电力系统频率偏差 GB/T 15543-2008电能质量二相电压不平衡 GB/T 20320-2006风力发电机组电能质量测量和评估方法 DL/T 1040-2007电网运行准则 国家电力监管委员会令第5号《电力二次系统安全防护规定》 国家电力监管委员会电监安全[2006]34号《电力二次系统安全防护总体方案》 3术语和定义 本标准采用下列定义和术语。 3. 0. 1风电机组wind turbine generator system, WTGS 将风的动能转换为电能的系统。 3.0.2风电场wind farm; wind power plant; 由一批风电机组或风电机组群(包括机组单元变压器)、汇集线路、主升压变压器及其 他设备组成的发电站。 3.0.3风电有效容量effective capacity of wind power 根据风电的出力概率分布,综合考虑系统调峰和送出工程,使系统达到技术经济最优的 风电最大出力,为风电有效容量。风电有效容量分为风电场有效容量和风电基地有效容量。 3. 0. 4风电场并网点point of interconnection of wind farm 风电场升压站高压侧母线或节点。 3.0.5风电场有功功率active power of wind farm 风电场输入到并网点的有功功率。 3. 0. 6风电场无功功率reactive power of wind farm 风电场输入到并网点的无功功率。 3.0.7功率变化率power ramp rate 在单位时一间内风电场输出功率最大值与最小值之间的变化量和装机容量的比值。 3. 0. 8公共连接点point of common coupling 风电场并网点和电网连接的第一落点。 3. 0. 9风电机组低电压穿越low voltage ride through of wind turbines 当电网故障或扰动引起风电场并网点的电压跌落时,在一定电压跌落的范围内,风电机 组能够不间断并网运行。 4风电场技术规定 4. 1风电场接入系统 4. 1 1风电场送出线路导线截面按照风电场有效容量选择。风电基地送出线路导线截面按照风电基地有效容量选择。 4.1.2风电场升压站主变压器应采用有载调压变压器,主变容量按照风电场有效容量选择。汇集风电场群的升压变压器容量参考风电基地有效容量选择。

相关文档
相关文档 最新文档