文档库 最新最全的文档下载
当前位置:文档库 › 原子荧光光谱法

原子荧光光谱法

原子荧光光谱法
原子荧光光谱法

原子荧光光谱法

原子荧光谱(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术,它的基本原理就是:基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。

一、原子荧光光谱法原理

1.1原子荧光的类型以及荧光猝灭

(1)共振荧光

当原子受到波长为λA的光能照射时,处于基态E0(或处于E0邻近的亚稳态E1)的电子跃迁到激发态E2,被激发的原子由E2回到基态E0(或亚稳态E1)时,它就放出波长λF的荧光。这一类荧光称为共振荧光。

(2)直跃线荧光

荧光辐射一般发生在二个激发态之间,处于基态E0的电子被激发到E2能级,当电子回到E1能级时,放出直跃荧光。

(3)阶跃线荧光

当处于激发态E2的电子在放出荧光之前,由于受激碰撞损失部分能量而至E1回到基态时,放出阶跃线荧光。

(4)热助阶跃线荧光

原子通过吸收光辐射由基态E0激发至E2能级,由于受到热能的进一步激发,电子可能跃迁至E2相近的较高能级E3,当其E3跃迁至较低的能级E1(不是基态E0)时所发射的荧光称为热助阶跃荧光。小于光源波长称为反stoke效应。

(5)热助反stokes荧光

(略)

某一元素的荧光光谱可包括具有不同波长的数条谱线。一般来说,共振线是最灵敏的谱线。处于激发态的原子寿命是十分短暂的。当它从高能级阶跃到低能级时原子将发出荧光。

M*→M+hr

除上述以外,处于激发态的原子也可能在原子化器中与其他分子、原子或电子发生非弹性碰撞而丧失其能量。在这种情况下,荧光将减弱或完全不产生,这种现象称为荧光的猝灭。荧光猝灭有下列几类型:

1)与自由原子碰撞

M*+X=M+X

M*→激发原子X、M→中性原子

2)与分子碰撞

M*+AB=M+AB

这是形成荧光猝灭的主要原因。AB可能是火焰的燃烧产物;

3)与电子碰撞

M*+e-=M+E-

此反应主要发生在离子焰中

4)与自由原子碰撞后,形成不同激发态

M*+A=M×+A

M*、M×为原子M的不同激发态

5)与分子碰撞后,形成不同的激发态

M*+AB= M×+AB

6)化学猝灭反应

M*+AB=M+A+B

A、B为火焰中存在的分子或稳定的游离基

2.荧光强度与分析物浓度间关系

原子荧光强度I f与试样浓度C以及激发态光源的辐射强度I0存在以下函数关系

I f=ΦI

根据比尔一朗伯定律

I f=ΦI0[I·e-KLN]

式中:Φ-原子荧光量子效率

I -被吸收的光强

I0-光源辐射强度

K—峰值吸收系数

L—吸收光程

N—单位长度内基态原子数

按泰勒级数展开,当N很小,则原子荧光强度I f表达式可简化为:

I f=ΦI0KIN

当所有实验条件固定时,原子荧光强度与能吸收辐射线的原子密度成正比,当原子化效率固定时,I f与试样浓度C成正比,即

I f=αC

上式线性关系,只在浓度低时成立。当浓度高无论是连续光源或线光源,荧光强度会发生变化,由于自吸作用荧光信号引起变化,荧光谱线变宽,从而减少峰值强度。光源强度越高,测量线性工作范围越宽,线性的下端延至愈来越低浓度值。因此,在痕量分析时,一般不会遇到曲线弯曲现象。

二、原子荧光光谱法的仪器装置

2.1.原子荧光光谱仪器的基本结构

原子荧光光谱法仪器装置由三个主要部分组成;激发光源、原子化器以及检测部分。检测部分主要包括分光系统(某些情况下也可省去)光电转换装置以及放大系统和输出装置如图

2-1

图2-1 原子荧光光谱仪器基本结构

AFS仪器有:单通道、双通道、多通道之分,我国主要产品为,单通道和双通道为主

(见图2-2)

2.2.激发光源

激发光源是AFS仪器主要组成部分,一个合格光源应具有下列条件:(1)强度高、无自吸。(2)稳定性好、噪声小。(3)辐射光谱重复性好。(4)价格便宜、寿命长。(5)发射的谱线要足够纯。

AFS法中所用的各种光源有下列几种:

a.蒸气放电灯:只适用于Zn、Cd、Hg等少数元素由于发射谱线有严重自吸效应,近年来很

少有人再用。

b.连续光源:高压汞氙灯,这种灯检出限差,光散射及光谱干扰比较严重。经改良后短弧高压氙灯,紫外波段能量还不够高。如果配合中阶梯光栅单色仪,检出限有改善,干扰相应减少但只有个别厂使用。

c.空心阴极灯:目前多采用以脉冲方式供电的空心阴极灯。一般AAS的HCL不能激发出足够强的荧光信号。不能用于AFS;空心阴极灯要求:峰值电流不高,没有谱线自吸现象。当峰值电流足够大时,离子线强度增强,原子线的强度相应减弱。目前应用这种HCL较多。高强度空心阴极灯可以得到较强的荧光信号,适用于AFS测定。但结构复杂价格高,有时配备附属设备。应用这种灯不多。

d.无极放电灯:是AFS分析中重要光源之一这种灯结构简单。无电极,所用功率小,能激发足够强荧光信号。但价格较高,使用者不多。

e.电感耦合等离子体:这种光源对某些元素(如Zn、Cd……等)有较好检出限,但应用不广。

f.温梯原子光谱灯:这是一种新光源,没有自吸,发射强度很高,但商品灯性能不够理想应用不广。

g.可调谐染料激光:这是一种十分有希望的光源,对某些元素的检出限可达fg的数量级,目前,染料激光价格太贵,装置复杂,推广应用较困难。

2.3.原子化器

适用于AFS法的理想的原子化器必须具有下列特点:(1)原子化效率高。(2)没有物理或化学干扰。(3)背景发射低。(4)稳定性好。(5)不含高浓度的猝灭剂。(6)在光路中原子有较长寿命。

(a)火焰原子化器:应用不多(略)

(b)电热原子化器:从理论上讲,它是AFS法中比较理想的原子化器,是一种较有前途的原子化器。目前因机理和方法未明朗,应用较少。

(c)固体样品的原子化器:应用较少。(略)

(d)氢化物法原子化器:这是近年来,应用最多一种原子化器,加热方式有两种:(a)石英炉电热原子化器。见图2-3 (b)石英炉红外加热原子化器。

2.4.色散系统与无色散系统

色散系统指用单色器分光。非色散系统不分光,没有单色器(图2-2)为了降低室内光线影响,采用工作波长为160-320nm的目盲倍增营,直接检测荧光。这种系统具有设计简单且便宜。不存在波长漂移。有较好的检出限,目前国产仪器多采用这种系统不足之处是:用目盲倍增营,较易受到散射和光谱干扰,对光源的纯度有较高的要求。

(图2-2)

2.5.电子检测线路

无色散系统,国内的双道AFS系列实际上是采用时间分辩——多路传输方案,安装在原子化器周围的HCL顺序点亮。依次对荧光信号进行检测。(其原理和电路部分,略)

三、氢化物发生进样方法

这种方法是利用某些能产生出生态还原剂或化学反应,将样品溶液中的分析元素还原为挥发性共价氢化物,然后借助载气流将其导入AFS分析系统进行测量方法。该方法优点在于(1)分析元素能够与可能引起干扰的样品基体分离,从而消除干扰。(2)与溶液直接喷雾进样相比它能将待测元素充分预富集,进样效率近于100%(3)连续氢化物发生装置宜于实现自

动化(如与流动注射联用)。(4)不同价态的元素氢化物在不同条件下,可进行价态分析。氢化物发生法有各种各样方式。但概括归纳起来有三大体系;金属——酸还原体系;硼氢化钠(钾)——酸还原体系;电解体系。金属——酸还原体系由于适用元素不多,虽然不断改善仍存在许多缺点,应用不多。硼氢化钠(钾)——酸体系应用较广泛,适合于测定As、Sb、Bi、Ge、Sn、Pb、Se、Hg、Zn、Cd、Te等11种元素:

反应式如下:

NaBH4+3H2O+H+——→H3BO3+Na++8H——EHn+H2↑

硼氢化物的形成决定于二个因素,一是被测定元素于氢化合的速度,二是硼氢化钠在酸性溶液中分解的速度,在进行氢化反应时,必须保持一定酸度,被测元素也要以一定价态存在(例如Se+6、Te+6完全不与硼氢化钠反应)。有时需要在某些价态元素中加入氧化剂,在样液中以锌粉、硼氢化钠作还原剂制备氢化物较好,在室温下,易生成氢化物气体,易从基体分离出来导入原子化器内,这种体系克服或减少了金属——酸还原体系的缺点。在还原能力,反应速度自动化操作,干扰程度以及适用性等方向有极大的优越性。用电化学方法产生氢化物是一种新方法:在KOH碱性介质中电解,在铂电极上还原As和Sn,然后生成AsH3、SnH4导入原子化器中进行测定,只适用于AAS法,AFS法未能推广应用。

3.1.氢化物发生的实际操作

氢化物发生法可分两类:一是直接传输法;二是收集法(略),后者用于AFS较少,目前较常用是直接传输法。(见图3-1)

早期AFS和XDY系列均采用间断法,这种方法在发生器中先加入一定量的样品溶液,然后加入硼氢化钠(钾)溶液其优点是装置简单,但自动化程度差。目前AFS系列的仪器出口产品均用流动注射法。国内产品采用断续流动反应法(装置)见图3-2。

3.2氢化物发生法中干扰

3.2.1干扰的分类

Dedina曾对氢化物发生——原子吸收法中的干扰作了分类:

Dedina提出的氢化物干扰是目前较为系统和细致分类,虽对AAS而言,但这类分类方法原则上也适用于氢化物发生——AFS法。不论液相干扰或是气相干扰。近年来对其机理研究,国内外专家学者正争论和探索之中。没有比较统一完整说法,在这里不作详细介绍。请参阅有关资料。

3.2.2干扰的消除

A.液相干扰的消除:

(1)对于某些干扰元素加入络合剂与干扰元素形成稳定的络合物。

(2)适当增加酸度加大金属微粒溶解度防止金属物产生。

(3)降低硼氢化钠(钾)的浓度。NaBH4的浓度越大越易引起液相干扰。

(4)某些情况下加入氧化还原电位高于干扰离子的元素,减慢干扰元素的生成速度。(5)改变氢化物发生的方式,采用连续流动或间断流动法取代间断法。

(6)通过化学反应改变干扰元素的价态。

(7)分离干扰元素。

表1氢化物法中一些消除干扰实例

(1)在干扰元素的氢化物产生之前除去干扰,阻止干扰元素生成气态化合物。

(2)在传输过程应减小传输效率。(用吸收法除干扰物)

(3)在进入原子化器时,应充分供给氨基(或提高温度)对热稳定性各种不同氢化物在传输管道加热使某些氢化物分解。

(4)让氢化物通过一个气相色谱柱。将干扰元素分析元素分开。

四、AFS系列仪器的推荐分析条件。

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

————————————————————————————————作者:————————————————————————————————日期:

第十章原子吸收光谱分析法 1.共振线与元素的特征谱线 基态→第一激发态,吸收一定频率的辐射能量,产生共振吸收线(简称共振线);吸收光谱。 激发态→基态,发射出一定频率的辐射,产生共振吸收线(也简称共振线);发射光谱。 元素的特征谱线: (1)各种元素的原子结构和外层电子排布不同,基态→第一激发态:跃迁吸收能量不同——具有特征性。 (2)各种元素的基态→第一激发态,最易发生,吸收最强,最灵敏线。特征谱线。 (3)利用特征谱线可以进行定量分析。 2.吸收峰形状 原子结构较分子结构简单,理论上应产生线状光谱吸收线。实际上用特征吸收频率左右范围的辐射光照射时,获得一峰形吸收(具有一定宽度)。 由 I t =I e-Kvb 透射光强度I t 和吸收系数及辐射频率有关。以K v 与v作图得图10一1所示 的具有一定宽度的吸收峰。

3.表征吸收线轮廓(峰)的参数 (峰值频率):最大吸收系数对应的频率或波长; 中心频率v 中心波长:最大吸收系数对应的频率或波长λ(单位为nm); 半宽度:△v 0B 4.吸收峰变宽原因 (1)自然宽度在没有外界影响下,谱线仍具有一定的宽度称为自然宽度。它与激发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。不同谱线有不同的自然宽度,多数情况下约为10-5nm数量级。 多普勒效应:一个运动着的原子发出的光, (2)多普勒变宽(温度变宽)△v 如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。 (3)劳伦兹变宽,赫鲁兹马克变宽(碰撞变宽)△v 由于原子相互碰撞使能 L 量发生稍微变化。 劳伦兹变宽:待测原子和其他原子碰撞。 赫鲁兹马克变宽:同种原子碰撞。 (4)自吸变宽空心阴极灯光源发射的共振线被灯内同种基态原子所吸收产生自吸现象,灯电流越大,自吸现象越严重,造成谱线变宽。 (5)场致变宽场致变宽是指外界电场、带电粒子、离子形成的电场及磁场的作用使谱线变宽的现象,但一般影响较小。 为主。 在一般分析条件下△V 5.积分吸收与峰值吸收 光谱通带0.2 nm,而原子吸收线的半宽度10-3nm,如图10—2所示。 若用一般光源照射时,吸收光的强度变化仅为0.5%。灵敏度极差。

实验一,二 原子荧光光谱法测量条件的选择和水样中总砷的测定

实验一原子荧光光谱法测量条件的选择 一、实验目的 1.了解原子荧光光谱仪的基本结构及使用方法; 2.掌握原子吸收光谱分析测量条件的选择方法及测量条件的相互关系及影响,确定各项条件的最佳值。 二、方法原理 原子荧光光谱仪工作原理: 在一定工作条件下,荧光强度I F与被测元素的浓度c成正比,其关系如下: I F = K c 氢化物发生原理: BH4- + H++ 2As3+ +3H2O →2AsH3↑+H2↑+ BO33-生成的AsH3蒸汽在载气的带动下,经过火焰原子化,As原子接受由低压砷灯发出激发光照射,基态砷原子被激发到高能态,当返回到基态时辐射出共振荧光,此荧光经聚光镜聚焦于光电倍增管,实现光电转换,最后得到信号。 在原子荧光光谱分析中测量条件选择得是否正确,直接影响到分析方法的检出限、精密度和准确度。本实验通过砷的原子荧光光谱分析测量条件的选择,如灯电流、载气流量等,确定这些测量条件的最佳值。 三、仪器设备与试剂材料 1.PF6型原子荧光光谱仪(北京普析通用),砷高强度空心阴极灯。 2.试剂: (1)砷标准贮备液(1000u g?mL-1):国家标准。 (2)砷实验工作溶液(1u g?mL-1):由砷标准贮备液1000u g?mL-1逐级稀释得到。 (3)硫脲溶液(100g?L-1):称取硫脲10g,加入80mL蒸馏水,水浴加热溶解,蒸馏水稀至100mL,摇匀。 (4)硼氢化钠-氢氧化钠溶液(15g?L-1):称取5g氢氧化钠溶于200mL蒸馏水,加入15g硼氢化钠并使其溶解,用蒸馏水稀至1000mL,摇匀。 (5)2% 盐酸溶液(v/v):移取20ml HCl(GR),用蒸馏水稀释至1000mL,摇匀。 (6)(1+1)盐酸溶液(v/v)。 四、测量条件的选择 1.10ng?mL-1标准溶液的配制

1 原子荧光光谱法的基本原理

1 原子荧光光谱法的基本原理 1.1 原子荧光光谱法原理 原子荧光光谱法(AFS)是原子光谱法中的一个重要分支,是介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,它的基本原理就是:固态、液态样品在消化液中经过高温加热,发生氧化还原、分解等反应后样品转化为清亮液态,将含分析元素的酸性溶液在预还原剂的作用下,转化成特定价态,还原剂 KBH 4 反应产生氢化物和氢气,在载气(氩气)的推动下氢化物和氢气被引入原子化器(石英炉)中并原子化。特定的基态原子(一般为蒸气状态)吸收合适的特定频率的辐射,其中部分受激发态原子在去激发过程中以光辐射的形式发射出特征波长的荧光,检测器测定原子发出的荧光而实现对元素测定的痕量分析方法。1.2 原子荧光的类型 原子荧光是一种辐射的去活化(decactivation)过程。当有原子吸收由一合适的激发光源发射出的特征波长辐射后被激发,接着辐射区活化而发射出荧光。基本上,荧光线的波长和激发线的波长相同,也有可能比激发线的波长长,但比激发线波长短的情况也有,但不多。原子荧光有5中基本类型:①共振荧光。即激发波长与产生的荧光波长相同时,这种荧光称为共振荧光,是原子荧光分析中最常用的一种荧光;②直跃线荧光。即激发波长大于产生的荧光波长相同时,这种荧光称为直跃线荧光;③阶跃线荧光。即激发波长小于产生的荧光波长相同 时,这种荧光称为阶跃线荧光;④热助阶跃线荧光.既原子吸收能量由基态E 激发 至E 2能级时,由于受到热能的进一步激发,电子可能跃迁至于E 2 相近的较高能级 E 3,当其由E 3 跃迁到较低能级E 1 时所发射的荧光,称为热助阶跃线荧光;⑤热助 反Stokes荧光。即电子从基态E 0邻近的E 2 能级激发至E 3 能级时,其荧光辐射 过程可能是由E 3回到E 所发出的荧光成为热助反Stokes荧光。 1.3 汞的检测方法 汞及其化合物属于剧毒物质,是国际国内进出口商品中一项重要理化指标。汞在体内达到一定量时,将对人的神经系统、肾、肝脏产生严重的损害。汞测定方法有冷原子吸收光谱法、二硫腙比色法、原子荧光光谱分析法、电热原子吸收

实验40 微波消解-原子荧光光谱法分析测定电池中汞

原子荧光分析法测定电池中的汞 实验目的 (1).了解原子荧光光谱法测定汞的基本原理和实验方法 (2).掌握原子荧光光度计的基本构造和操作 实验原理 在酸性介质中,用强还原剂硼氢化纳将试样中的汞离子还原为汞原子,其反应方程式为Hg(NO3)2+3NaBH4+HNO3+6H2O → Hg+3HBO2+3NaNO3+11H2 由于汞的挥发性,用氩气将汞蒸气带入原子化器进行测定. 汞空心阴极灯发射出特征光束,照射在汞蒸气上,使汞原子激发而发射荧光.在合理条件下,荧光强度与汞原子浓度呈线性关系. 仪器试剂 仪器 AF2-2202a行双道原子荧光光度计(北京)25mL比色管 试剂 (1).汞标准储备液(1.0mg/mL) (2).中间液(含Hg2+10μg/mL):吸取0.50mL储备液于50mL容量瓶中,用5%HNO3稀释至刻度,摇匀. (3).使用液(含Hg2+ 0.01 μg/mL):吸取中间液0.25mL 于25容量瓶中,用5%HNO3稀释至刻度,摇匀.然后吸取此溶液2.5 mL于25mL容量瓶中,用5%HNO3稀释至刻度,摇匀.(4).1%NaBH4 (5). 5%HNO3 仪器工作条件 AF2-2202a行双道原子荧光光度计仪器测量参数

仪器条件 元素光电倍增 管负高压 /V 原子化器 温度/℃ 原子化器 高度/mm 灯电流/mA 载气流量 /ml.min-1 屏蔽气流 量ml.min-1 Hg 300 200 8 30 400 1000 测量条件 读数时间/s 10 标准校正点 1 延迟时间/s 0.5 标准频率 0 注入量/mL 0.5 测量方式 Std.Cure 重复次数 1 读数方式 Peak area 空白判别值 10 分析液单位 mg.L-1 (μg.mL-1) 断流程序 步骤时间/s 泵转速/rpm 读数 1 6 0 No 2 10 100 No 3 6 0 No 4 16 130 Yes 实验步骤 (1).分析校准曲线制作:分别吸取1.0mL、 1.5mL、 2.0mL、 2.5mL汞标准使用液于4个25mL的比色管中,用5%HNO3稀释至刻度,摇匀.按前表中的参数进行测量,以荧光强度对浓度作图制作分析校准曲线. (2).样品测定:在与分析校准曲线相同条件下分别测定试剂空白和样品的荧光强度.

(完整word版)原子吸收光谱定量分析方法

原子吸收定量分析方法 一、定量分析方法(P145) (1)标准曲线法: 配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。 (2) 标准加入法 当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。 取若干份体积相同的试液(cX),依次按比例加入 不同量的待测物的标准溶液(cO): 浓度依次为:cX ,cX+cO ,cX+2cO ,cX+3cO ,cX+4cO … 分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 … 直线外推法:以A对浓度c做图得一直线,图中c X点即待测溶液浓度。 (3)稀释法: (4)内标法: 在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。 内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量 二、灵敏度和检出限 (1)灵敏度 1、定义: 在一定浓度时,测定值(吸光度)的增量(ΔA)与相应的待测元素浓度(或质量)的增量(Δc 或Δm)的比值(即分析校正曲线的斜率) PS:习惯上用特征浓度和特征质量表征灵敏度 2、特征浓度 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度 3、特征质量 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。 (2)检出限 定义: 适当置信度下,能检测出的待测元素的最低浓度或最低质量。用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。

原子荧光光谱仪操作步骤及原理分析2012

氢化物(蒸气)发生 -原子荧光 原子荧光的发展史 ●原子荧光谱法(AFS)是原子光谱法中的一个重要分支。从其发光机理看属于一种原子发 射光谱(AES),而基态原子的受激过程又与原子吸收(AAS)相同。因此可以认为AFS是AES和AAS两项技术的综合和发展,它兼具AES和AAS的优点。 ●1859年Kirchhoof研究太阳光谱时就开始了原子荧光理论的研究,1902年Wood等首 先观测到了钠的原子荧光,到20世纪20年代,研究原子荧光的人日益增多,发现了许多元素的原子荧光。用锂火焰来激发锂原子的荧光由BOGROS作过介绍,1912年WOOD 年用汞弧灯辐照汞蒸气观测汞的原子荧光。Nichols和Howes用火焰原子化器测到了钠、锂、锶、钡和钙的微弱原子荧光信号,Terenin研究了镉、铊、铅、铋、砷的原子荧光。 1934年Mitchll和Zemansky对早期原子荧光研究进行了概括性总结。1962年在第10次国际光谱学会议上,阿克玛德(Alkemade)介绍了原子荧光量子效率的测量方法,并予言这一方法可能用于元素分析。1964年威博尼尔明确提出火焰原子荧光光谱法可以作为一种化学分析方法,并且导出了原子荧光的基本方程式,进行了汞、锌和镉的原子荧光分析。 ●美国佛罗里达州立大学Winefodner教授研究组和英国伦敦帝国学院West教授研究 小组致力于原子荧光光谱理论和实验研究,完成了许多重要工作。 ● 20世纪70年代,我国一批专家学者致力于原子荧光的理论和应用研究。西北大学杜 文虎、上海冶金研究所、西北有色地质研究院郭小等均作出了贡献。尤其郭小伟致力于氢化物发生(HG)与原子荧光(AFS)的联用技术研究,取得了杰出成就,成为我国原子荧光商品仪器的奠基人,为原子荧光光谱法首先在我国的普及和推广打下了基础。 幻灯片3 国外AFS仪器发展史 *1971年Larkins用空心阴极灯作光源,火焰原子化器,采用泸光片分光,光电倍增管检测。测定了A u、B i、Co、H g、M g、N i 等20多种元素; *1976年Technicon公司推出了世界上第一台原子荧光光谱仪AFS-6。该仪器采用空心阴极灯作光源,同时测定6个元素,短脉冲供电,计算机作控制和数据处理。由于仪器造价高,灯寿命短,且多数被测元素的灵敏度不如AAS和ICP-AES,该仪器未能成批投产,被称之为短命的AFS-6。 *20世纪80年代初,美国Baird公司推出了AFS-2000型ICP-AFS仪器。该仪器采用脉冲空心阴极灯作光源,电感耦合等离子体(ICP)作原子化器,光电倍增管检测,12道同时测量,计算机控制和数据处理。该产品由于没有突出的特点,多道同时测定的折衷条件根本无法满足,性能/价格比差,在激烈的市场竞争中遭到无情的淘汰。 *20世纪90年代,英国PSA公司开始生产HG-AFS。

原子荧光光谱法测定奶粉中的硒含量-东西分析

原子荧光光谱法测定奶粉中的硒含量 一、方法提要 硒是人体健康的必需元素,具有重要的生理功能,现代医学已经证明:硒对抗病菌,保肝益肝等起了重要作用,每日补充200微克硒对健康人是安全和有效的,但人体摄入过多的硒对健康也有很大的危害,目前原子荧光光谱法为测Se的通用方法。 本文根据国标GB/T5009.93-2003 《食品中硒的测定第一法氢化物原子荧光光谱法》,并结合本公司仪器使用说明书测定了奶粉中Se的含量。 本方法采用湿消解的方法进行样品前处理后,在6 mol/L盐酸(HCl)介质中,将试样中的六价硒还原成四价硒,用硼氢化钾(KBH4)作还原剂,将四价硒在盐酸介质中还原成硒化氢(SeH2,)由载气(氩气)带入原子化器中进行原子化,在特制硒空心阴极灯的发射灯照射下,基态硒原子被激发至高能态,在去活化回到基态时,发射出特征波长的荧光,其荧光强度与硒含量成正比,与标准系列比较定量。 二、试剂及标准溶液配制 2.1 试剂 盐酸(HCl):优级纯; 硝酸(HNO3):优级纯; 高氯酸(HClO4):优级纯; 硼氢化钾(KBH4):分析纯; 氢氧化钾(KOH):优级纯; 高纯氩气(99.99 %); Se单元素标准溶液(国家钢铁材料测试中心钢铁研究总院) 2.2 溶液配制 2.2.1 硝酸-高氯酸混合酸配制:取16mL硝酸与4 mL高氯酸混合,得到硝酸-高氯酸(4+1)混合酸。 2.2.2 还原剂(硼氢化钾+氢氧化钾) 配制:称取6.0 g硼氢化钾,溶于含有0.5%氢氧化钾的水溶液500 mL中,此溶液现用现配。 2.2.3 载液(盐酸)配制:取250mL浓盐酸稀释至500 mL,配成浓度为50%的盐酸溶液。 2.3 标准溶液配制 2.3.1 硒标准使用溶液配制:吸取50 μL浓度为1000 μg·mL-1的Se单元素标准溶液置于50 mL 容量瓶中,用载液定容至刻度,即为硒标准使用溶液,浓度为1000 ng·mL-1,现用现配。 2.3.2 硒标准系列配制:取5支50 mL容量瓶,分别加入1000 ng·mL-1硒标准使用液0、50、150、250、350 μL,用载液定容到刻度,各相当于硒浓度为0、1、3、5、7 ng·mL-1。

原子吸收光谱法的研究现状及展望

原子吸收光谱法的研究现状及展望 *** 天津科技大学化工与材料学院天津 300457 摘要:本文简要概述了原子吸收光谱法的发展历程,阐述了原子吸收光谱法的优缺点和基本原理,综述了原子吸收光谱法在现代分析检测技术中的最新进展并做了展望。 关键词:原子吸收;分析;现状 自美国Perkin-E1mer公司1961年推出了世界上第一台火焰原子吸收分光光度计到第一台商品石墨炉的推出,从横向交变磁场到纵向交变磁场塞曼背景校正,从纵向加热石墨炉到横向加热无温度梯度石墨炉,从光电倍增管到半导体固态检测器……原子吸收光谱仪的发展跨越了一个又一个的里程碑[1]。 近年来,随着科研水平的不断提升,对仪器分析的高效性、精密性和便捷性提出了更高的要求,仪器分析的水平也在不断提升。原子吸收光谱分析法凭借其诸多优势,已成为普及程度最高的仪器分析方法之一。 1.原子吸收光谱法的特点 原子吸收光谱法以其高效精密的分析方法,成为普及度最高的仪器分析方法之一,它具有以下诸多优点[2-3]: 1)高精密度。火焰原子吸收法的精密度可达1%-2%,石墨炉原子化法的灵敏度高达 10-12g。 2)高灵敏度。火焰原子吸收可测质量浓度mg/L~μg/L级的金属,是目前最灵敏的 分析方法之一。 3)测定元素广泛。采用空气-乙炔火焰可测定近70种元素。 4)谱线简单。干扰少,选择性好,多数情况下可不经分离除去共存成分而直接测定。 5)操作简便快捷。自动进样每小时可测数百个样品,即使手工操作每小时也可测数十 个样品。 原子吸收光谱也存在一定的缺陷。比如,它不能对多种元素同时分析,对难溶元素的测定灵敏度也不十分令人满意,对共振谱线处于真空紫外区的元素,如P、S等还无法测定。

原子荧光光谱仪的操作步骤

原子荧光光谱仪的操作步骤及注意事项 原子荧光光谱法具有原子吸收和原子发射光谱两种技术的优势,克服了单一技术在某些方面的缺点,对一些元素具有分析灵敏度高、干扰少、线性范围宽、可多元素同时分析等特点,这些优点使得该方法在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。 原子荧光是原子蒸气受具有特征波长的光源照射后,其中一些自由原子被激发跃迁到较高能态,然后去活化回到某一较低能态(常常是基态)而发射出特征光谱的物理现象。各种元素都有其特定的原子荧光光谱,根据原子荧光强度的高低可测得试样中待测元素的含量。现将原子荧光光谱仪上机操作步骤和使用注意事项逐一介绍。 一、操作步骤: Ar气→电脑→主机→双泵→水封→As灯/Hg灯→调光→设置参数→点火→做标准曲线→测样→清洗管路→熄火→关主机→关电脑→关Ar气。 二、注意事项: 1.在开启仪器前,一定要注意先开启载气。 2.检查原子化器下部去水装置中水封是否合适。可用注射器或滴管添加蒸馏水。 3.一定注意各泵管无泄露,定期向泵管和压块间滴加硅油。 4.实验时注意在气液分离器中不要有积液,以防液体进入原子化器。 5.在测试结束后,一定在空白溶液杯和还原剂容器内加入蒸馏水,运行仪器清洗管路。关闭载气,并打开压块,放松泵管。 6.从自动进样器上取下样品盘,清洗样品管及样品盘,防止样品盘被腐蚀。 7.更换元素灯时,一定要在主机电源关闭的情况下,不得带电插拔灯。 8.当气温低及湿度大时,Hg灯不易起辉时,可在开机状态下,用绸布反复摩擦灯外壳表面,使其起辉或用随机配备的点火器,对灯的前半部放电,使其起辉。 9.调节光路时要使灯的光斑照射在原子化器的石英炉芯的中心的正上方;要使灯的光斑与光电倍增管的透镜的中心点在一个水平面上。 10.氩气:0.2~0.3 之间。 关机之前先熄火,换灯之前先熄火,退出程序时先熄火。

原子荧光光谱法测定茶叶中的se含量

原子荧光光谱法测定茶叶中的se 含量 1 实验目的 ①握茶叶前处理的方法 ②进一步掌握原子荧光光度计的使用方法 2. 实验原理 3 实验仪器及试剂 AF-610A 原子荧光光度计一台Se 空芯阴极灯一个烘箱 浓HNO3 高氯酸20%HCl 铁氰化钾2%KBH4 (混酸为浓盐酸与高氯酸体积比为4:1) 100ml 容量瓶4 个烧杯若干表面皿一个25ml 比色管9 个(0-6 号标准系列,两个样品,测平行) 4 样品配置过程: 4.1 样品处理 前处理:取一定的茶叶,在60 C烘箱内烘干,用研钵研磨研碎,称取约 0.5 克的粉末,两份,分别放入两个小烧杯中,分别加入8ml 浓硝酸和2ml 高氯酸,另外设置一个空白样,即不加茶叶,只加8ml 浓硝酸和2ml 高氯酸,放置,过夜。 样品的消解:将放置过夜的三个小烧杯放在加热板上加热消解,直到冒出高氯酸的白烟,在加入少量硝酸和双氧水将残渣溶解,在加热沸腾,直到没有气泡。将三个小烧杯的溶液进行过滤,除掉不溶的残渣,将过滤后的溶液分别转移至25ml 容量瓶中标号为样品1 、样品2 和样品空白。 移取10ml 的样品1 放入25ml 的比色管中,定容,移取两份,作为对照。样品2 也是移取两份10ml 于两个25ml 的比色管中,样品空白移取一份。 4.2 标准样系列已经配置好。

4. 3测定标准系列按从小到大的浓度顺序进行测定,然后记录荧光信号值, 在测定样品空白,记录信号值,在分别测定样品,记录荧光信号。 5数据处理及分析. 实验数据如下表 样品信号记录表

结论:实验所用茶叶硒元素含量很低为ng 级,因此可忽略不计,故认为该茶叶中不含硒元素。 总结:此次实验过程我们小组设计的标准系列有点大,应该缩小系列间的浓度梯度,这样可能得出的结果更准确。但是不可否认,这次我们的标准系列做得还是比较好的,这点可以从曲线上看出来。

液相色谱原子荧光光谱联用方法通则

《液相色谱-原子荧光光谱联用方法通则》 (征求意见稿) 编制说明 中国广州分析测试中心 《液相色谱-原子荧光光谱联用方法通则》 广东省地方标准起草小组 2017年10月 《液相色谱-原子荧光光谱联用方法通则》 (征求意见稿)编制说明 一、任务来源和起草单位 本标准根据广东省质监局《关于批准下达2016年省地方标准制修订计划项目(第二批)的通知》(粤质监标函[2017] 106号)立项,要求中国广州分析测试中心承担广东省地方标准《液相色谱-原子荧光光谱联用方法通则》的制定任务。 《液相色谱-原子荧光光谱联用方法通则》标准由广东省分析测试标准化技术委员会(GD/TC22)归口管理,中国广州分析测试中心负责组织制定。 二、标准制订的目的和意义 目前国内重金属污染情况较为严重,受能源及冶金工业影响,进入环境中的砷、汞等重金属已成为全球性的污染物质。其中1956年日本发生甲基汞中毒引起“水俣病”震惊全球,不同形态的砷其毒性也大不同。在各个领域内对重金属污染物以及其形态的分析检

测技术应用迫在眉睫。 同时,液相色谱-原子荧光光谱联用仪(简称:LC-AFS)具备对能形成氢化物或原子蒸气如砷、硒、锑、汞等元素的不同形态进行定性定量分析的能力。 本标准拟研究制订液相色谱-原子荧光光谱联用方法的使用通则,为各应用液相色谱-原子荧光光谱联用仪器进行分析的方法提供依据,以此规范液相色谱-原子荧光光谱联用仪器 三、标准的制定过程 (1)成立《液相色谱-原子荧光光谱联用方法通则》标准制定工作组。 依据项目计划和标准化工作程序,工作组于2017年2月成立,工作组成员中国广州分析测试中心的有关技术人员。 (2)调研和资料收集。 根据粤质监标函[2017] 106号下达的广东省地方标准制修订计划(第二批)任务的通知,中国广州分析测试中心组织标准编制工作小组,查询、收集和认真研究国内外标准及相关资料,并结合实验室的自身条件、仪器特性和方法技术特点,初步设计编制方案。 (3)形成标准草案。 在标准的制定过程中,中国广州分析测试中心结合我国的实际情况,邀请中心和行业内相关专家进行探讨,吸取专业意见建议,并结合液相色谱-原子荧光光谱联用方面相对成熟的检测方法及其相关文献资料,修编形成标准的草案。

总砷的测定——原子荧光光谱法

总砷的测定——氢化物原子荧光光度法 1 范围 本方法规定了乳制品中总砷的测定方法。 2 原理 试样经消解后,加入硫脲使五价砷预还原为三价砷,再加入硼氢化钠或硼氢化钾还原成砷化氢,由氩气载入石英原子化器中分解为原子态砷,在特制砷空心阴极灯的发射光激发下产生原子荧光,其荧光强度在固定条件下与被测液中的砷浓度成正比,与标准系列比较定量。 3 试剂 3.1 盐酸(优级纯)。 3.2 硝酸(优级纯)。 3.3 过氧化氢(30%)。 3.4 氢氧化钠(氢氧化钾)溶液(5g/L)。 3.5 还原剂(硼氢化钠(硼氢化钾)溶液)称取硼氢化钠(硼氢化钾)10.0g,溶于氢氧化钠(氢氧化钾)溶液(5g/L)1000ml中,混匀。此液于冰箱冷藏可保存10天。 3.6 载流液5%HCL(V/V):量取50ml浓盐酸(优级纯),用去离子水定容至1000ml(酸的纯度达不到要求时可适当降低其浓度)。 3.7 5%硫脲+5%抗坏血酸混合溶液:称取硫脲、抗坏血酸各5g溶于100ml水中,现配现用。 3.8 砷标准使用液(100μg/L): 吸取1ml浓度为1000μg/ml的标准储备液于100ml容量瓶中,用5%硝酸定容至刻度,浓度为10μg/ml。 吸取1ml浓度为10μg/ml的标准使用液于100ml容量瓶中,用5%盐酸定容至刻度,浓度为100μg/L。现配现用。 4 仪器 所用玻璃仪器均需以硝酸(1+5)浸泡过夜,用水反复冲洗,最后用去离子水冲洗干净。 4.1 原子荧光光度计(砷阴极空心灯)。 4.2 微波消解仪。 5 分析步骤 5.1 试样消解 称取0.5g奶样于消解罐中,加硝酸(优级纯)3ml,过氧化氢(30%)2ml,按设定程序微波消解。消解结束后取出冷却,将消解好的样品转移至25ml容量瓶,并用超纯水多次润洗,然后再加入5ml硫脲-抗坏血酸(5%),用超纯水定容至刻度。静置30分钟,检测前摇匀。

原子荧光光谱法

原子荧光光谱法 原子荧光谱(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术,它的基本原理就是:基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。 一、原子荧光光谱法原理 1.1原子荧光的类型以及荧光猝灭 (1)共振荧光 当原子受到波长为λA的光能照射时,处于基态E0(或处于E0邻近的亚稳态E1)的电子跃迁到激发态E2,被激发的原子由E2回到基态E0(或亚稳态E1)时,它就放出波长λF的荧光。这一类荧光称为共振荧光。 (2)直跃线荧光 荧光辐射一般发生在二个激发态之间,处于基态E0的电子被激发到E2能级,当电子回到E1能级时,放出直跃荧光。 (3)阶跃线荧光 当处于激发态E2的电子在放出荧光之前,由于受激碰撞损失部分能量而至E1回到基态时,放出阶跃线荧光。 (4)热助阶跃线荧光 原子通过吸收光辐射由基态E0激发至E2能级,由于受到热能的进一步激发,电子可能跃迁至E2相近的较高能级E3,当其E3跃迁至较低的能级E1(不是基态E0)时所发射的荧光称为热助阶跃荧光。小于光源波长称为反stoke效应。 (5)热助反stokes荧光 (略) 某一元素的荧光光谱可包括具有不同波长的数条谱线。一般来说,共振线是最灵敏的谱线。处于激发态的原子寿命是十分短暂的。当它从高能级阶跃到低能级时原子将发出荧光。 M*→M+hr 除上述以外,处于激发态的原子也可能在原子化器中与其他分子、原子或电子发生非弹性碰撞而丧失其能量。在这种情况下,荧光将减弱或完全不产生,这种现象称为荧光的猝灭。荧光猝灭有下列几类型: 1)与自由原子碰撞 M*+X=M+X M*→激发原子X、M→中性原子 2)与分子碰撞 M*+AB=M+AB 这是形成荧光猝灭的主要原因。AB可能是火焰的燃烧产物; 3)与电子碰撞 M*+e-=M+E- 此反应主要发生在离子焰中 4)与自由原子碰撞后,形成不同激发态 M*+A=M×+A M*、M×为原子M的不同激发态 5)与分子碰撞后,形成不同的激发态 M*+AB= M×+AB 6)化学猝灭反应 M*+AB=M+A+B

原子荧光光谱法测定饮用水中锡

原子荧光光谱法测定生活饮用水中锡元素含量 《生活饮用水标准检验》(GB/T5750.1~5750.13-2006)中测定水中锡的方法有:氢化物原子荧光法、苯芴酮分光光度、微分电位溶出法、电感耦合等离子体质谱法。本文应用氢化物原子荧光光谱法测定饮用水中的微量锡,结果令人满意。该方法的灵敏度高、检出限低、线性关系好、重现性好,回收率高,适用于饮用水及其清洁环境水中微量锡的测定。 一、材料与方法 1.1 方法原理 在酸性介质中,以硫脲预还原,抗坏血酸作掩蔽,将样品中的Sn4+预还原为Sn2+,Sn2+与硼氢化钾反应生成挥发性锡的氢化物(SnH2);以氢气为载气,将锡的氢化物导入原子化器中原子化,在特种锡空心阴板灯照射下,基态锡原子被激发至高能态;在去活化回到基态时,发射出特征波长的荧光,其强度与铅含量成正比,根据标准曲线浓度系列定量。 1.2 仪器 AFS-230型双道原子灾光光度计;AS-2锡高性能空心阴极灯,UWP-50SE型超纯水器。 1.3 试剂 实验用水均为超纯水,实验用酸均为优级纯,其他试剂为优级纯或分析纯。 锡标准储备溶液(1000ug/mL)(国家标准物质研究中心); 锡标准使用溶液(0.1ug/mL):以不含量锡的盐酸溶液(0.24mo1/L)逐级稀释而成; 不含量锡的盐酸的制备:用密闭平衡法制取,即在一空干燥器内放入一烧杯盐酸和一杯超纯水,放置一周以上后将超纯水中的盐酸进行标定,便得到不含锡的一定浓度的盐酸。 硫脲(100g/L)-抗坏血酸(100g/L)混合溶液; 硼氰化钾溶液(20g/L):称取2g 硼氢化钾溶解于100mL 氢氧化钾溶液(5g/L)中。 1.4方法 光电倍增管负高压300V,原子化器温度200℃,原子化器高度8mm,灯电流60mA,载气流量500mL/min,屏蔽气流量1000mL/min。 测量条件设置:读数时间10s,延迟时间1s,注入量0.5mL。

原子吸收光谱法的优缺点

主要有以下优点: 1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。 而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。 2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100?l。固体直接进样石墨炉原子吸收法仅需0.05~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10?l 即可。 3 分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。 在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。 4、抗干扰能力强。第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。 5、精密度高。火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为

原子荧光实验报告

原子荧光实验报告 篇一:实验三食品中硒的测定-原子荧光光谱法 光谱技术在食品分析中的应用 实验三食品中硒的测定-原子荧光光谱法 一、实验目的 1、了解原子荧光光度计仪器的基本结构和原理; 2、学会原子荧光光度计的操作技术; 3、了解食品中硒的测定意义; 4、学会湿法消化样品的操作。 二、基本原理 利用硼氢化钠作为还原剂,将四价硒在盐酸介质中还原为硒化氢(SeH2),由载气带入原子化器中进行原子化,在硒特制空心阴极灯照射下,基态硒原子被激发至高能态,再去活化回到基态时,发射出特征波长的荧光,其荧光强度与硒含量成正比,从而定量硒在食品中的含量。 三、仪器和试剂 1、仪器: AFS-230E型双道原子荧光光谱仪、硒特制空心阴极灯、可调式电热板 2、试剂 除非另有规定,本方法所使用试剂均为分析纯,水为

GB/T 6682 规定的三级水;所用玻璃仪器均需以硝酸(1+5)浸泡过夜,用水反复冲洗,最后用纯水冲冼干净。 硝酸(优级纯)、盐酸(优级纯)、氢氧化钠(5g/L,优级纯)、硼氢化钠溶液(8g/L)、铁氰化钾溶液(100g/L)、硒标准储备液(100μg/mL,光谱纯)、盐酸(6 mol/L)、混合酸:将硝酸与高氯酸按9:1 体积混合等。 硒标准储备液制备(100μg/mL):称取0.100g高纯硒粉于1000mL容量瓶中,溶于少量硝酸中,加入2mL高氯酸,置沸水浴中加热3h~4h冷却后再加8.4mL盐酸,再置沸水浴中煮2min,用蒸馏水准确稀释至1000mL,摇匀。 硒标准应用液制备:取100μg/mL硒标准储备液1.0mL,定容100mL,摇匀备用。 硼氢化钠溶液(8g/L)制备:称取8.0g硼氢化钠(NaBH4),溶于氢氧化钠溶液(5g/L)中,然后定容至1000mL。 铁氰化钾溶液(100g/L)制备:称取10.0g铁氰化钾(K3Fe(CN)6),溶于100mL容量瓶中,摇匀。 载流溶液:5%盐酸水溶液。 四、实验步骤 1、试样制备 在采样和制备过程中,应注意不使试样污染。 ①粮食:试样用水洗三次,于60 ℃烘干,粉碎,储于

原子荧光光谱法测定化妆品中铅的含量

氰化物发生—原子荧光光谱法测定化妆品中铅的含量一·实验目的: 1.学习原子荧光光谱仪的使用方法。 2.掌握用原子荧光光谱法测定铅的方法原理。 二·主要仪器设备: 仪器:AF—610A原子荧光光谱仪 试剂:铅标准使用液(5ug/ml)、20%的盐酸、10%铁氰化钾—2%草酸溶液、硼氢化钾溶液、佰草集爽肤水、美肌面膜、美丽加芬爽肤水、卡尼尔爽肤水。 三·实验原理: 原子荧光光谱法基本原理 在一定工作条件下,荧光强度I F与激发光源辐射强度I0和被测元素基态原子数N呈正比,即 I F=?AI0εlN 式中除N外皆为常数,N又与试样中被测元素浓度c呈正比,因此原子荧光强度与元素浓度关系如下: I F=kc 四·实验步骤: 1.样品处理: ①称取样品0.1-0.2g,设置平行样,每种样品称取两份,放入坩埚中,编号。 ②向坩埚镍加入15ml浓硝酸,并设置空白样。盖上坩埚盖,静置一晚上。再加入 2.5mlHClO4 ,放在电热板上消解30min取下盖子继续加热,直到有白烟冒出,将 坩埚转移至低温处,待无白烟冒出即可用蒸馏水定容至50ml。 2.铅标准系列的制备: 按照下表配置铅标准溶液

3.仪器参数设置: 负高压:270V 灯电流:80mA 辅助阴极电流:10mA 原子化器高度:7mm 原子化器温度:室温载气流量:700ml/min 测量方式:标准曲线法信号类型:峰面积 读书时间:20s 延时时间:2s 泵速级时间: (1)采样100r/min,8s (2)停,4s (3)注入100 r/min,16s (4)停,5s 载流:1.5%HCl 4.按照仪器要求测定标准溶液系列及样品的荧光信号并记录数据。五·数据处理: 1. 2

实验四 原子荧光法测定砷含量d

实验四 氢化物-原子荧光光谱法测定水中总砷含量 【目的与要求】 1、掌握氢化物-原子荧光光谱法的基本原理。 2、熟悉氢化物-原子荧光光谱仪的基本结构及使用方法。 【原理】 氢化物发生——原子荧光光谱法是利用化学反应使待测元素生成易挥发的氢化物,用氩气(载气)将其带出导入石英原子化器中而与基体其它共存元素相分离。所生成的氢化物在石英原子化器的氩氢火焰中很容易被原子化。生成的基态原子蒸气吸收了以特种空心阴极灯为激发光源发出的特征谱线而被激发,当电子跃迁返回基态或较低能级时发出荧光。其荧光强度在一定浓度范围内与待测元素的含量成正比。 即: I F = kc 该方法适合于分析能生成氢化物的元素,如砷(As )、锑(Sb )、铋(Bi )、硒(Se )等以及可形成气态组分的元素如汞(Hg )、镉(Cd )、锌(Zn )等。 如测定溶液中的砷时,以盐酸为介质,硼氢化钾作还原剂,使As 3+ 生成AsH 3 : 42333325++KBH +H O +H →H BO +K +H ?H ?+→H +H ↑ + As As 溶液中的As 5+ 在酸性条件下可用硫脲-抗坏血酸还原为 As 3+,此时测定的是总砷含量。 由于所有可形成氢化物的元素的荧光波长都位于紫外光区,AF-610A 原子荧光光谱仪采用了无色散系统和日盲光电倍增管检测,以提高仪器的灵敏度。同时与流动注射分析技术相结合,实现了自动化分析。 【仪器与试剂】 1 仪器与器皿 AF —610A 原子荧光光谱仪(北京瑞利分析仪器公司);砷特种空心阴极灯;25mL 比色管;1、5mL 吸量管;20mL 移液管。 2 试剂 1)1mg/mL 砷标准贮备溶液:国家标准物质溶液。 2)0.25μg/mL 砷标准使用溶液:吸取1mg/mL 砷标准贮备溶液,用10% HCl (V/V )逐级稀释至0.25μg/mL 。 3)硫脲(50g/L )—抗坏血酸(50g/L )混合溶液:称取硫脲[(NH 2)2CS]5g 、抗坏血酸(C 6H 8O 6)5g 溶于纯水 中,稀释至100mL ,用时现配。 4)7g/L 硼氢化钾溶液:称取2g 氢氧化钾溶于200mL 纯水中,加入7g 硼氢化钾并使之溶解,用纯水稀释至1000mL 。 5)1:1盐酸溶液(V/V ) 6)1%盐酸溶液:做载流用。 7) 含砷试样及自来水水样 【操作步骤】 1、标准系列及样品溶液的配制 标准系列:吸取0.25μg/mL 砷标准使用液0,0.20,0.40,0.80,1.50,3mL 于6个25mL 比色管中,加1:1盐酸和硫脲—抗坏血酸混合溶液各2.5mL ,以纯水稀释定容至25mL ,摇匀。 样品溶液:分别吸取自来水水样20mL 、试样5mL 于25mL 比色管中,加1:1盐酸和硫脲—抗坏血酸混合溶液各2.5mL ,定容,摇匀。 放置10min 后测定荧光强度。 2、分析测定 ⑴ 打开右箱体上盖(灯室),安装好待测元素空心阴极灯,将泵管连接好,将调节手柄于最下方处开始向上扳2个齿(即听到2次“咔”声),控制流量。在确认电源正确后,按微机、主机和打印机顺序开启电源。 ⑵

原子荧光光谱仪的构造原理

原子荧光光谱法从机理看来属于发射光谱分析,但所用仪器及操作技术与原子吸收光谱法相近,上篇文章我们介绍论了原子吸收分光光度计的构造原理,这篇我们主要介绍原子荧光分光度计。 原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类型达到十余种,但在实际分析中主要有: 共振荧光 处于基态或低能态的原子, 吸收光源中的共振辐射跃迁到高能态, 处于高能态的原子在返回基态或相同低能态的过程中, 发射出与激发光源辐射相同波长的荧光,这种荧光称为共振荧光。 直跃线荧光

当处于基态的价电子受激跃迁至高能态(E2),处于高能态的激发态电子在跃迁到低能态(E1)(但不是基态)所发射出的荧光被称为直跃线。 阶跃线荧光 当价电子从基态跃迁至高能态(E2)后, 由于受激碰撞损失部分能量而降至较低的能态(E1)。从较低能态(E1)回到基态(E0)时所发出的荧光称为阶跃线荧光。 热助阶跃线荧光

基态原子通过吸收光辐射跃迁至高能态(E2), 处于高能态的价电子在热能的作用下进一步激发, 电子跃迁至与能级E2相近的更高能态E3。当去激发至低能态(E1)(不是基态)时所发出的次级光被称为热助阶跃线荧光. 敏化荧光 当受激的第一种原子与第二种原子发生非弹性碰撞时, 可能把能量传给第二种原子, 从而使第二个原子被激发, 受激的第二种原子去激发过程中所产生的荧光叫敏化荧光.

原子吸收和原子荧光结构类似,也可以分成四部分:激发光源、原子化器、光学系统和检测器。

1、激发光源: 可用连续光源或锐线光源。常用的连续光源是氙弧灯,常用的锐线光源是高强度空心阴极灯、无极放电灯、激光等。连续光源稳定,操作简便,寿命长,能用于多元素同时分析,但检出限较差。锐线光源辐射强度高,稳定,可得到更好的检出限。 空心阴极灯-工作原理 空心阴极灯是一种特殊的低压放电现象,在阴阳两极之间加以300~500V的电压,这样两极之间形成一个电场,电子在电场中运动,并与周围充入的惰性气体分子发生碰撞, 使这些惰性气体电离。气体中的正离子高速移向阴极,阴极在高速离子碰撞的过程中溅射出阴极元素的基态原子,这些基态原子与周围的的离子发生碰撞被激发到激发态,这些被激发的高能态原子在返回基态的过程中会发射出该元素的特征谱线 . 空心阴极灯–特点 ?灯结构简单、空心阴极灯制作工艺成熟; ?工作性能稳定,寿命一般可以大于3000mA?h ,发光稳定性1小时漂移在±2%以内发射强度基本可以满足常规分析要求; ?对仪器的光源部分的电源无特别要求,也不需要其他辅助设施; ?价格便宜.

仪器分析笔记 《原子吸收光谱法》

第四章 原子吸收光谱法 ——又称原子吸收分光光度法 § 原子吸收分光光度法(AAS )概述 概述 1、定义 原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。 2、特点 灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。检出限可达 10—9 g /mL (某些元素可更高 ) 几乎不受温度影响:由波兹曼分布公式0 q E q q KT N g e N g - = 知,激发态原子浓度与基态原子浓度的比 值 q N N 随T ↗而↗。在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的 1%q N N =。也就是说,q N 随温度而强烈变化,而0N 却式中保持不变,其浓度几乎完全等于原子的 总浓度。 较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。另试样处理简单。 RSD 1~2%,相对误差~%。 选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。分析不同元素时,选用不同元素灯,提高分析的选择性 应用范围广:可测定70多种元素(各种样品中)。 缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。 3、操作 ①将试液喷入成雾状,挥发成蒸汽; ②用镁空心阴极灯作光源,产生波长特征谱线; ③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱; ④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量. 4、原子吸收光谱分析过程 确定待测元素。 选择该元素相应锐线光源,发射出特征谱线。

相关文档
相关文档 最新文档