文档库 最新最全的文档下载
当前位置:文档库 › 离散系统分析和离散傅里叶变换讲解

离散系统分析和离散傅里叶变换讲解

离散系统分析和离散傅里叶变换讲解
离散系统分析和离散傅里叶变换讲解

第四章 离散系统分析和离散傅里叶变换

4-1概述

在上一章中我们已经介绍了连续时间信号(周期的或非周期的)的傅里叶变换。在第一、二章中介绍了离散信号和离散系统的概念,在这一章中主要讨论离散信号的傅里叶变换。

4-2离散信号的傅里叶变换

时域抽样定理告诉我们,连续时间信号可以由它的样本值恢复出来,即

]2

)

([

)()(∑

-∞

=-Ω=

n s nT t Sa nT f t f 当抽样频率s Ω给定时,抽样函数]2

)

([

nT t Sa s -Ω就确定了,唯一与信号相关的是信号的样本值)(nT f ,换句话说传载)(t f 中信息的是样本值)(nT f 。因此研究连续时间信号)(t f 中的信息,就转

变为研究样本值)(nT f 中的信息。当抽样频率s Ω给定时,T 也就一定了,样本值)(nT f 就可以抽象为序列)(n f ,也就是说离散信号的数学抽象是序列。以后我们就用序列)(n f 表示离散信号(样本值)。

由于序列的变量是整数变量,与连续信号的变量不同,因此对序列的处理方法与连续时间变量的处理方法也必定不同。先来看看序列的傅里叶变换,连续非周期时间信号)(t f 的傅里叶变换为

?

-Ω-=

=Ωdt e t f t f F t j )(])([)(F

?

-ΩΩΩ=

Ω=d e F F t f t j -)(21

)]([)(1

π

F

假定)(n f 是非周期的,仿照连续时间信号的傅里叶变换形式可以定义序列的傅里叶变换:

∑∞

-∞

=-=

n jn j e n f e

F ω

ω

)()( (4-1)

?-

=

π

πωω

ωπ

d e e

F n f jn j )(21

)(

(4-2)

式中ω为数字角频率。(4-1)式和(4-2)式构成了序列的傅里叶变换对,前者称为序列的傅里叶正变换,后者称为序列的傅里叶逆变换。注意到序列傅里叶正变换公式是个和式,这是因为序列)(n f 的变量是离散的整数,序列的傅里叶逆变换公式是个积分式,由此也说明序列的傅里叶变换是ω的连续函数,也就是说,离散信号的傅里叶变换是频域中连续的函数。此外因

∑∞

-∞

=++=

n n

j j e

n f e

F )2()

2()()(πωπω

∑∞

-∞==

n n

j n j e

e n

f πω2)(

)()(ωω

j n n

j e F e n f ==

∑∞

-∞

=

所以任何序列的傅里叶变换都是以π2为周期的频域连续函数。

序列的傅里叶变换具有如下性质: 1. 线性特性 若 )()(ωj e X n x ?→←F

)()(ωj e Y n y ?→←F

)()()()(ωωj j e bY e aX n by n ax +?→←+F

(4-3)

式中a 和b 均为常数。

2. 时间位移特性 若 )()(ωj e X n x ?→←F

)()(00ωωj n j e X e n n x -?→←-F

(4-4)

式中0n 为任意整数。

3. 频率位移特性 若 )()(ωj e X n x ?→←F

)()()(00ωωω-?→←j n j e X e n x F

(4-5)

式中0ω为任意常数。

4. 对称特性

若)(n x 为实数序列,且有)()(n x n x -=

则称)(n x 为偶序列(even sequence ),通常用下标e 表示偶序列,即)(n x e 。

若)(n x 为实数序列,且

)()(n x n x --=

则称)(n x 为奇序列(odd sequence ),通常用下标o 表示奇序列,即)(n x o 。

任何序列都可以表示为偶序列与奇序列之和,即 )()()(n x n x n x o e +=

(4-6) 其中 )]()([2

1

)(n x n x n x e -+= (4-7)

)]()([2

1

)(n x n x n x o --=

(4-8)

若)(n x 为复数序列,且其实部为偶对称,虚部为奇对称,即 )](Re[)](Re[n x n x -=

)](Im[)](Im[n x n x --=

则称此序列为共轭对称序列(conjugate symmetric sequence ),通常表示为)()(*

n x n x e

e -=。 若)(n x 为复数序列,且其实部为奇对称,虚部为偶对称,即 )](Re[)](Re[n x n x --=

)](Im[)](Im[n x n x -=

则称此序列为共轭反对称序列(conjugate ant symmetric sequence ),通常表示为)()(*

0n x n x o

--=。 任意复数序列)(n x 均可表示为共轭对称序列与共轭反对称序列之和,即 )()()(n x n x n x o e +=

(4-9) 其中 )]()([2

1

)(*n x n x n x e -+= (4-10)

)]()([2

1

)(*n x n x n x o --=

(4-11)

实际上,(4-9)式与(4-6)式是等价的,当)(n x 为实数序列时,(4-9)式就变成(4-6)式了。

若 )()(ωj e X n x ?→←F

则 )()(**ωj e X n x -?→←F

(4-12)

)()(**ωj e X n x ?→←-F

(4-13)

(4-12)式说明共轭序列的傅里叶变换等于原序列傅里叶变换的共轭函数的反函数。(4-13)式说明反序列的共轭序列的傅里叶变换等于原序列傅里叶变换的共轭函数。这个性质再一次表明了时域和频域的对称性。

4-3周期序列的傅里叶级数(DFS )

我们知道一个周期为T 的连续时间信号)(t f 可以展开成傅里叶级数,即

∑∞

-∞

=Ω=

n t

jn n

e

F t f 0)(

式中

?

-Ω-=

22

0)(1

T T t jn n dt e t f T

F ,T

π20=

Ω。 对于一个周期为N 的离散信号)(n f ,也可以展开成傅里叶级数,注意到连续时间信号展开成傅里叶级数是将信号表示成一系列基波频率0Ω整倍数频率上复指数函数t jn e 0Ω的加权和。由此我们想到一个周期序列也展开成其基波频率N

π

ω20=

整倍数频率上复指数n jk e 0ω的加权和。比较t jn e 0Ω和n jk e 0ω这两个复值数函数表达式,可以看出有两点不同,一是连续时间信号)(t f 的周期T 是个模拟量,而周期序列的周期N 则为整数值;二是连续时间信号)(t f 的自变量t 是连续时间变量,而离散时间信号)(n f 的自变量n 是离散变量(整数值)正是因为存在着这种差别,决定了周期离散信号的傅里叶级数与周期连续信号的傅里叶级数有着本质的区别。在周期连续信号的傅里叶级数表达式中,复指数(谐波分量)

t jn e 0Ω有无穷多个,这表现在傅里叶级数是n 无穷和式。然而对于周期离散信号的复指数(谐波分量)n jk e 0ω只有N 个独立分量,这是因为

n jk n N

jk

n n N

jk

n N

N k j n

N k j e e

e

e

e

002222)

()(ωπππ

πω====+++

同理可以推导出

n jk N n jk e e 00)(ωω=+

以上二式说明复指数n jk e 0ω既是变量k 的周期序列,也是变量n 的周期序列,周期均为N 。因此周期信号只能分解在独立的N 个n jk e 0ω分量上,即有

∑-==1

0)(N k k jn k p e F n f ω

(4-14)

为了与非周期序列加以区别,周期信号序列加注下标 “p ”表示周期含义。(4-14)式是仿照周期连续时间信号的傅里叶级数形式得出的周期序列傅里叶级数展开式,现在的问题是这样的展开是否可行,即能否找到满足(4-14)式的一组系数1,,2,1,0,

-=N k F k 。

用r

jn e 0ω-乘以(4-14)式两边,并对n 从0到N -1求和,即

∑∑∑-=-=--=-=101

1

000)(N n N k r jn k jn k N n r

jn p

e e F e

n f

ωωω

上式右边交换求和次序,有

∑∑∑-=-=-=--=1

101

0)(00)(N n N k N n r k jn k r

jn p

e F e

n f

ωω

][1

)(10

0∑∑-=--==N n r k jn N k k e F ω

上式中方括弧中的和式由正交关系求出,即:

???≠==∑-=mN

r mN r N e N n r

jn 0

1

00ω

式中m 为整数,方括弧中的和式只有当mN r k =-或r mN k +=时,取非零值N ,由于后一个和式变量k 的取值范围为]1,0[-N ,所以m 必须取零值(即0=m ),这就是说只有当r k =时,方括弧中的和式取非零值,于是

∑-=-=1

0)(N n r r

jn p NF e

n f

ω

(4-15)

以上分析表明,(4-14)式中的系数r F 可以严格地由(4-15)式求出,也就是说(4-14)式表述的关系是存在的。将(4-14)式和(4-15)式略作修改就是周期序列的傅里叶级数表达式,即

∑-=-=

1

)(1)(N n nk

N

p p W k F

N

n f (4-16)

式中N

j

j N e

e W πω20

--==称为旋转因子,)(k F p 为傅里叶级数的系数,在这里写成序列形式,它由下式

给出:

∑-==

1

)()(N n nk

N

p p W n f

k F (4-17)

注意到按照我们前面推导的结果

N

1

因子应该乘以(4-17)式,而在这里将这个因子放在(4-16)式中了,这是信号处理理论中的习惯没有特殊的含义;另外也看到我们除了将傅里叶级数的系数写成序列形式外,还加注了下标“p ”,这是因为

∑-=+=

+1

0)

()()(N n N k n N

p p W n f

N k F

∑-==

10

)(N n nN

N

nk N p W W n f

)()(1

0k F W n f

p N n nk

N

p ==

∑-=

周期序列)(n f p 的傅里叶级数系数)(k F p 也是以N 为周期的周期序列。

任意给定一个周期序列)(n f p 都可以由(4-17)式求出它的傅里叶级数的系数序列)(k F p ,也就是说,时域中的一个周期序列必定与频域中的一个周期序列一一对应,在信号处理理论中通常称(4-17)式为周期序列)(n f p 的离散傅里叶级数变换(简写为DFS ),即

)]([)(n f DFS k F p p =

(4-18)

而(4-16)式称为离散傅里叶级数的逆变换(简写为IDFS ),即

)]([)(k F IDFS n f p p =

(4-19)

我们可以把)(k F p 看成时域序列)(n f p 的频域表示,反之)(n f p 也可看成一个频域序列)(k F p 的时域表示,这就是说,)(n f p 与)(k F p 由(4-16)式和(4-17)式构成了时域与频域的映射关系。

现在讨论离散傅里叶级数的性质。设1()p f n 和2()p f n 都是周期为N 的

如果把周期连续时间信号的傅里叶级数的系数k F 看成周期序列在频域中的映射)(0Ωk F (即k F k F =Ω)(0,则我们可以得出如下关系:

1.连续、非周期时域信号)(t f ←映射→非周期、连续频域信号)(ΩF ,它由傅里叶变换构成映射关系,即

?

-Ω-=Ωdt e t f F t j )()(

(4-20)

?

-ΩΩΩ=

d e F t f t j )(21)(π

(4-21)

2.离散、非周期时域信号)(n f ←映射→周期、连续频域信号)(ωj e F ,它由序列的傅里叶变换构成映射关系,即

∑∞

-∞

=-=n jn j e n f e

F ω

ω

)()( (4-22)

?-

=

π

π

ωωωπ

d e e F n f jn j )(21)(

(4-23)

3.连续、周期时域信号)(t f p ←映射→非周期、离散频域信号)(0Ωk F ,它由周期函数的傅里叶级数展开式构成映射关系,即

?

-Ω-=

Ω22

00)(1

)(T T t jk p dt e t f T

k F

(4-24)

∑∞

-∞

=ΩΩ

=

k t

jk p e

k F t f 0)()(0 (4-25)

4.离散、周期时域信号)(n f p ←映射→周期、离散频域信号)(k F p ,它由离散傅里叶级数变换构成映射关系,即

∑-==

1

)()(N n nk

N

p p W n f

k F (4-26)

∑-=-=

1

)(1

)(N n nk

N

p p W k F

N

n f (4-27)

以上分析实际上包含了所有可能的信号形式,注意上述映射关系有这样的对称关系:如果信号在

时域中是连续的,则它的频域表达式一定是非周期的,反之若信号在频域中是连续的,则它的时域表达式一定是非周期的;如果信号在时域中是离散的,则信号在频域中的表达式一定是周期的,反之如果信号在频域中是离散的,则信号在时域中的表达式是周期的。

4-4离散傅里叶变换(DFT )

如果一个信号的时域表达式是离散的,而且是有限时宽,即

]1,0[0)(-?=N n n f

(4-28)

上式表明序列)(n f 仅在区间[0,N -1]上取非零值,通常称)(n f 为有限长序列或N 点序列。事实上,在工程我们一次观察信号总是在有限时宽范围内进行的,这就是说一次观察信号常常是有限时宽的,对于离散信号就是有限长序列。对于信号的表述无论是在时域,还是在频域一次只能表示有限长度的信号,即我们希望对一个有限时宽的信号,它的频域表示也是个有限长的,在离散情况下,一个有限长的时域序列能否表示为一个有限长的频域序列,这就是离散傅里叶变换要解决的问题。

在介绍离散傅里叶变换之前,先讨论周期序列与有限长序列的关系。一个N 点序列)(n f ,若以N 为周期做周期展开就构成一个周期为N 的周期序列)(n f p ,表示一个N 点序列)(n f 周期性延拓的数学描述为:

N p n f n f ))(()(=

(4-29)

式中N n ))((称为n 对N 取余数,也就是n 被N 除可得一个整数商m 和一个介于0与N 之间的整数余数l ,即

l mN n +=

(4-30)

式中m 为整数(可正可负),l 也为整数且N l <≤0。n 对N 取余数就等于l ,即

l n N =))((

(4-31)

例如:给定N =8时,

当n =18时,因为282+?=n ,即2,2==l m ,所以2))18((8=; 当n =-18时,因为683+?-=n ,即6,3=-=l m ,所以6))18((8=-; 当n =4时,因为480+?=n ,即4,0==l m ,所以4))4((8=; 当n =--4时,因为481+?-=n ,即4,1=-=l m ,所以4))4((8=-;

离散傅里叶变换的分析与研究

XXXX大学 2012届学士学位论文 离散傅里叶变换的分析与研究 学院、专业物理与电子信息学院 电子信息工程 研究方向数字信号处理 学生姓名XX 学号 XXXXXXXXXXX 指导教师姓名XXX 指导教师职称讲师 2012年4月26日

离散傅里叶变换的分析与研究 XX 淮北师范大学物理与电子信息学院 235000 摘要离散傅里叶变换是连续傅里叶变换在时域和频域上都离散的形式,是对连续时间信号频谱分析的逼近。离散傅里叶变换不仅在理论上有重要意义,而且在各种信号的处理中亦起着核心作用。 本文首先介绍了离散傅里叶变换的定义及性质,然后介绍了离散傅里叶变换的应用,主要包括对线性卷积的计算和对连续信号的谱分析。在理解理论的基础上,在matlab环境下实现了线性卷积和对连续信号频谱分析的仿真。仿真结果表明:当循环卷积长度大于或等于线性卷积长度时,可利用循环卷积计算线性卷积;利用DFT对连续信号进行频谱分析必然是近似的,其近似的结果与信号带宽,采样频率和截取长度都有关。 关键词离散傅里叶变换;线性卷积;谱分析

The Analysis and Research of Discrete Fourier Transform XX School of Physics and Electronic Information, Huai Bei Normal University, Anhui Huaibei, 235000 Abstract The discrete Fourier transform is the form that the continuous Fourier transform are discrete both in the time domain and frequency domain,it is a approach to the analysis of continuous time signal spectrum . The discrete Fourier transform not only has important significance in theory, but also plays a central role in all kinds of signal processing . This paper introduced the definition and properties of the discrete Fourier transform first of all.Then introduced the application of the discrete Fourier transform, which mainly including the calculation of linear convolution and analysis of continuous signal the spectral. On the basement of understanding theory, we realized the linear convolution and analysis of continuous signal spectrum on the Matlab environment . The simulation results show that when the length of the cyclic convolution is equal to or greater than linear convolution,we can use cyclic convolution to calculate linear convolution;It is approximately use continuous DFT spectrum to analyze the frequency domain of continuous time signal, the approximation of the results is related to the signal bandwidth, sampling frequency and intercept length. Keywords The discrete Fourier transform; Linear convolution; Spectrum analysis

傅里叶变换在信号与系统系统中的应用

河北联合大学 本科毕业设计(论文) 题目傅里叶变换在信号与系统中的应用 院系理学院 专业班级07数学一班 学生姓名刘帅 学生学号200710050113 指导教师佟玉霞 2011年5月24日

题目傅里叶变换在信号与系统中的应用 专业数学与应用数学姓名刘帅学号200710050113 主要内容、基本要求、主要参考资料等 主要内容 傅里叶变换是一种重要的变换,且在与通信相关的信号与系统中有着广泛的应用。本文主要研究傅里叶变换的基本原理;其次,掌握其在滤波,调制、解调,抽样等方面中的应用。分析了信号在通信系统中的处理方法,通过傅里叶变换推导出信号调制解调的原理,由此引出对频分复用通信系统的组成原理的介绍。 基本要求 通过傅里叶变换实现一个高通滤波,低通滤波,带通滤波。用傅里叶变换推导出信号调制解调的原理。通过抽样实现连续信号离散化,简化计算。另外利用调制的原理推导出通信系统中的时分复用和频分复用。 参考资料 [1]《信号与系统理论、方法和应用》徐守时著中国科技大学出版社 2006年3月修订二版 [2]《信号与系统》第二版上、下册郑君里、应启珩、杨为理著高等教育出版社 [3]《通信系统》第四版 Simon Haykin 著宋铁成、徐平平、徐智勇等译沈 连丰审校电子工业出版社 [4]《信号与系统—连续与离散》第四版 Rodger E.Ziemer 等著肖志涛等译 腾建辅审校电子工业出版社 [5]《现代通信原理》陶亚雄主编电子工业出版社 [6]《信号与系统》乐正友著清华大学出版社 [7]《信号与线性系统》阎鸿森、王新风、田惠生编西安交通大学出版社 [8]《信号与线性系统》张卫钢主编郑晶、徐琨、徐建民副主编西安电 子科技大学出版社 [9] https://www.wendangku.net/doc/7d13250552.html,/view/191871.htm//百度百科傅里叶变换 [10]《通信原理》第六版樊昌信曹丽娜编著国防工业出版社 [11]A.V.Oppenheim,A.S.Willsky with S.H.Nawab.Siganals and systems(Second edition).Prentice-Hall,1997.中译:刘树棠。信号与系统。西安交通工业大学出版社 完成期限 指导教师 专业负责人

离散时间傅里叶变换.

第3章 离散时间傅里叶变换 在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。本章将介绍离散时间系统的频域分析方法。 3.1 非周期序列的傅里叶变换及性质 3.1.1 非周期序列傅里叶变换 1.定义 一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为: 正变换: ∑∞ -∞ =ω-ω = =n n j j e n x e X n x DTFT )()()]([ (3-1-1) 反变换: ? π π -ωωω-ωπ = =d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2) 记为: )()(ω?→←j F e X n x 当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。 [例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得 ωω=--=--== = ω-ω-ωω-ω-ωω-ω -ω-ω-=ω-∞ -∞ =ω ∑∑ 2 1sin 3sin )() (11)()(2 521 212133365 6j j j j j j j j j n j n n j n j e e e e e e e e e e e n R e X 2.离散时间序列傅里叶变换存在的条件: 图3-1

离散傅里叶变换和快速傅里叶变换

实验报告 课程名称: 信号分析与处理 指导老师: 成绩:__________________ 实验名称:离散傅里叶变换和快速傅里叶变换 实验类型: 基础实验 同组学生姓名: 第二次实验 离散傅里叶变换和快速傅里叶变换 一、实验目的 1.1掌握离散傅里叶变换(DFT )的原理和实现; 1.2掌握快速傅里叶变换(FFT )的原理和实现,掌握用FFT 对连续信号和离散信号进行谱分析的方法。 1.3 会用Matlab 软件进行以上练习。 二、实验原理 2.1关于DFT 的相关知识 序列x (n )的离散事件傅里叶变换(DTFT )表示为 n j n j e n x e X Ω-∞ -∞ =Ω ∑= )()(, 如果x (n )为因果有限长序列,n =0,1,...,N-1,则x (n )的DTFT 表示为 n j N n j e n x e X Ω--=Ω ∑=1 )()(, x (n )的离散傅里叶变换(DFT )表达式为 )1,...,1,0()()(21 -==--=∑N k e n x k X nk N j N n π, 序列的N 点DFT 是序列DTFT 在频率区间[0,2π]上的N 点灯间隔采样,采样间隔为2π/N 。通过DFT ,可以完成由一组有限个信号采样值x (n )直接计算得到一组有限个频谱采样值X (k )。X (k )的幅度谱为 )()()(22k X k X k X I R += ,其中下标R 和I 分别表示取实部、虚部的运算。X (k )的相位谱为 ) () (arctan )(k X k X k R I =?。 离散傅里叶反变换(IDFT )定义为 )1,...,1,0()(1)(21 -==∑-=N n e k X N n x nk N j N n π 。 2.2关于FFT 的相关知识 快速傅里叶变换(FFT )是DFT 的快速算法,并不是一个新的映射。FFT 利用了n N j e π2-函数的周期性 和对称性以及一些特殊值来减少DFT 的运算量,可使DFT 的运算量下降几个数量级,从而使数字信号处 装 订 线

离散傅里叶变换应用举例

x=[1,1,1,1];w=[0:1:500]*2*pi/500; [H]=freqz(x,1,w); magH=abs(H);phaH=angle(H); subplot(2,1,1);plot(w/pi,magH);grid;xlabel('');ylabel('|X|'); title('DTFT的幅度') subplot(2,1,2);plot(w/pi,phaH/pi*180);grid; xlabel('以pi为单位的频率');label('度'); title('DTFT的相角')

N=4;w1=2*pi/N;k=0:N-1; X=fft(x,N); magX=abs(X);phaX=angle(X)*180/pi; subplot(2,1,1);plot(w*N/(2*pi),magH,'--');axis([-0.1,4.1,0,5]);hold on; stem(k,magX);ylabel('|X(k)|');title('DFT的幅度:N=4');text(4.3,-1,'k'); hold off; subplot(2,1,2);plot(w*N/(2*pi),phaH*180/pi,'--');axis([-0.1,4.1,-200,200]); hold on; stem(k,phaX);ylabel('度');title('DFT的相角:N=4');text(4.3,-200,'k')

n=(0:1:9);x=cos(0.48*pi*n)+cos(0.52*pi*n); w=[0:1:500]*2*pi/500; X=x*exp(-1i*n'*w); magx=abs(X); x1=fft(x);magx1=abs(x1(1:1:10)); k1=0:1:9;w1=2*pi/10*k1; subplot(3,1,1);stem(n,x);title('signalx(n),0<=n<=9'); axis([0,10,-2.5,2.5]);line([0,10],[0,0]); subplot(3,1,2);plot(w/pi,magx);title('DTFT幅度');xlabel('w');axis([0,1,0,10]); subplot(3,1,3);stem(w1/pi,magx1);title('DFT幅度'); xlabel('频率(单位:pi)');axis([0,1,0,10]) 实验总结:补零运算提供了一个较密的频谱和较好的图示形式,但因为在信号中只是附加了零,而没有增加任何新的信息,因此不能提供高分辨率的频谱。

离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换 摘要 本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。 1. 离散时间傅里叶变换 1.1离散时间傅里叶变换及其逆变换 离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{n j e ω-}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展开,为离散时间信号和线性时不变系统提供了一种频域表示,其中ω是实频率变量。时间序列x[n]的离散时间傅里叶变换)(ωj e X 定义如下: ∑∞ -∞ =-= n n j j e n x e X ωω ][)( (1.1) 通常)(ωj e X 是实变量ω的复数函数同时也是周期为π2的周期函数,并且)(ωj e X 的幅度函数和实部是ω的偶函数,而其相位函数和虚部是ω的奇函数。这是由于: ) ()()(tan ) ()()() (sin )()()(cos )()(2 22 ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X = +=== (1.2) 由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从)(ωj e X 中算出: ωπ ωπ πω d e e X n x n j j )(21 ][?- = (1.3)

傅里叶变换及应用

傅里叶变换在MATLZB里的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用。傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,再利用傅立叶反变换将这些频域信号转换成时域信号。应用MATLAB实现信号的谱分析和对信号消噪。 关键词:傅里叶变换;MA TLAB软件;信号消噪 Abstract: In modern mathematics,Fourier transform is a transform is very important ,And has been widely used in digital signal processing.This paper first introduces the basic concepts, properties and development situation of Fourier transform ;Secondly, introduces in detail the method of separation of variables and integral transform method in solving equations in Mathematical Physics.Fourier transformation makes the original time domain signal whose analysis is difficult easy, by transforming it into frequency domain signal that can be transformed into time domain signal by inverse transformation of Fourier. Using Mat lab realizes signal spectral analysis and signal denoising. Key word: Fourier transformation, software of mat lab ,signal denoising 1、傅里叶变换的提出及发展 在自然科学和工程技术中为了把较复杂的运算转化为较简单的运算,人们常常采用所谓变换的方法来达到目的"例如在初等数学中,数量的乘积和商可以通过对数变换化为较简单的加法和减法运算。在工程数学里积分变换能够将分析运算(如微分,积分)转化为代数运算,正是积分变换这一特性,使得它在微分方程和其它方程的求解中成为重要方法之一。 1804年,法国科学家J-.B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究"他在题为<<热的解析理论>>一文中,发展了热流动方程,并且指出如何求解"在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种

连续时间傅里叶变换

2 奇偶信号的FS: (i) 偶信号的FS: 2 a n f (t)cosn T] T 1 Fn 弘 1tdt ; bn 2 T1 f (t)sin n 1tdt c n d n a n (ii ) jbn an 2 2 偶的周期信号的 奇信号的FS: F n ( Fn 实, 偶对称);n FS 系数只有直流项和余弦项。 2 T f(t)sinn 1tdt ; 5 dn T| 11 1 Fn F n jbn ( Fn 纯虚,奇对称); a a n 0 ; b n b n 2jFn 第二章连续时间傅里叶变换 1周期信号的频谱分析 一一傅里叶级数FS (1) 狄义赫利条件:在同一个周期 T1内,间断点的个数有限;极大值和极小值的数目有限;信号绝 为T i ,角频率为 ,2 f ,—。 Ti (3)任何满足狄义赫利条件周期函数都可展成傅里叶级数。 ⑷三角形式的FS: (i) 展开式:f(t) a 0 (ancon it bn sin n ,t) n 1 (ii) 系数计算公式: (a) 直流分量: ao f (t)dt T 1 T 1 (b) n 次谐波余弦分量: a n - f (t) cosn 1tdt, n N T1 T 1 2 (c) n 次谐波的正弦分量: bn — f (t)sinn 1tdt, n N T1 T 1 (iii) 系数an 和bn 统称为三角形式的傅里叶级数系数,简称傅里叶系数。 (iv) 称f1 1/T1为信号的基波、基频; nf1为信号的n 次谐波。 (V) 合并同频率的正余弦项得: n 和n 分别对应合并后 门次谐波的余弦项和正弦项的初相位。 (vi) 傅里叶系数之间的关系: (5)复指数形式的FS: (i) 展开式:f (t) Fne jn 1t n (ii) 系数计算:Fn 丄 f(t)e jn 1t dt, n Z T] T 1 (iii) 系数之间的关系: (iv) Fn 关于 n 是共扼对称的,即它们关于原点互为共轭。 (v) 正负n (n 非零)处的Fn 的幅度和等于Cn 或dn 的幅度。 对可积 丁 f(t)dt 。 (2)傅里叶级数:正交函数线性组合。 正交函数集可以是三角函数集 {1,cosn *,sinn 1t :n N}或复指数函数集 {e jn 术:n Z},函数周期

傅里叶变换的应用.

傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换; 傅立叶变换 傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面); 时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变; 频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输); 卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点) 信号在频率域的表现 在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化

离散傅里叶变换(DFT)试题

第一章 离散傅里叶变换(DFT ) 填空题 (1) 某序列的DFT 表达式为 ∑-==1 )()(N n kn M W n x k X ,由此可以看出,该序列时域 的长 度为 ,变换后数字频域上相邻两个频率样点之间的间隔是 。 解:N ; M π 2 (2)某序列DFT 的表达式是 ∑-==1 0)()(N k kl M W k x l X ,由此可看出,该序列的时域长度 是 ,变换后数字频域上相邻两个频率样点之间隔是 。 解: N M π 2 (3)如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件 。 解:纯实数、偶对称 (4)线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统 的极点为 ;系统的稳定性为 。系统单位冲激响应)(n h 的初值为 ;终值 )(∞h 。 解: 2,2 1 21-=- =z z ;不稳定 ;4)0(=h ;不存在 (5) 采样频率为Hz F s 的数字系统中,系统函数表达式中1 -z 代表的物理意义是 ,其中时域 数字序列)(n x 的序号 n 代表的样值实际位置是 ;)(n x 的N 点DFT )k X (中,序号k 代表的样值 实际位置又是 。 解:延时一个采样周期F T 1=,F n nT =,k N k πω2= (6)已知 }{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和 ][n h 的5点循环卷积为 。 解:{}]3[]2[][][][][---+?=?k k k k x k h k x δδδ {}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x (7)已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--=== k n h k n x 则][][n h n x 和的 4点循环卷积为 。

第二讲 Part3 离散傅里叶变换_难点

第三讲 Part3 DFT 的理论难点 1、抽样定理 连接离散信号与连续信号的桥梁。 ()(){ ()()j t a a j j n s n X j x t e dt X e x nT e ω ω∞ -Ω-∞ ∞ -=-∞ Ω== ?∑ 根据频域卷积定理推导 () ()()() {1()()()()()2j j j j j y n x n h n Y e X e H e X e H e d πωωωθωθπ θ π--==*=? 得到:1 ()()j a s k s X e X j jk T ω ∞ =-∞ = Ω-Ω∑ 2、FT 中的待研究的理论难点与关键之处 2.1 DFT 与DTFT 的关系 两种论述方法: 方法1:书P119-P120的论述;请同学看书后,上黑板叙述推演相关的过程。 方法2:书P121,连续频谱的抽样也必然使原来的时域信号变成周期的。 2.2 DFT 的()X k 是“()x n 的傅里叶变换”的某种程度上的近似。 用DFT 对连续信号和离散信号进行谱分析的基本原理和方法 2.2.1 怎样理解DFT 对FT 的近似? 由于用DFT 对连续信号做频谱分析的过程中隐含了频域和时域的两个周期延拓,又由于信号时宽和带宽的制约关系,因此,做DFT 得到的()N X k ,及由()N X k 做IDFT 得到的 ()N x n 都是对原()a X j Ω及()a x t 的某种近似。 如果s T 选得足够小,则式1 ()|()s j a T a s l s X e X j jl T ω ω∞ =Ω=-∞ = Ω-Ω∑ 中将避免或大大减轻 频域的混叠。 如果N 选得足够大,一方面可以减轻式()()*()j j j a X e X e D e ω ω ω =的窗口效应,另一方面也会减轻式()(),0,1, (1) l x n x n lN n N ∞ =-∞ = +=-∑的时域混叠。 结论:在这两个条件均满足的情况下,上述的近似误差将减小到可接受的程度,从而

基于Labview的快速傅里叶变换的实现

一、概述 FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。DFT对于X(K)的每个K值,需要进行4N次实数相乘和(4N-2)次相加,对于N个k值,共需N*N乘和N(4N-2)次实数相加。改进DFT算法,减小它的运算量,利用DFT中的周期性和对称性,使整个DFT的计算变成一系列迭代运算,可大幅度提高运算过程和运算量,这就是FFT的基本思想。虽然它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。 虽然FFT大幅度地降低了常规傅立叶变换的运算量,但对于一般的单片机而言,处理FFT运算还是力不从心。主要原冈是FFT计算过程中的蝶形运算是复数运算,要分开实部和虚部分别计算。在这里利用LabVIEW来实现快速傅立叶变化。LabVIEW是一种程序开发环境,类似于BASIC开发环境;但LabVIEW与其它计算机语言相比,有一个特别重要的不同点:其它计算机语言都是采用基于文本的语言产生代码行;而LabVIEW使用图形化编程语言G编写程序,产生.的程序是框图的形式。像C或BASIC一样,LabVIEW也是通用的编程系统,有一个可完成任何编程任务的庞大的函数库。LabVIEW的函数库包括数据采集、GPIB、串口控制、数据分析、数据显示及数据存储等。LabVIEW也有传统的程序调试工具,如设置断点、以动画方式显示数据及其通过程序(子V1)的结果、单步执行等,便于程序的调试。 二、方案论证 1:单一频率正弦信号的FFT 采用Labview的信号产生模板提供的常用的信号发生器,从中找到正弦信号发生器,使其产生一个正弦信号。将此正弦信号输入到实数FFT.vi中的X端进行快速傅里叶变换处理,使时域信号转换为频域信号。然后经过复数至极坐标转换后将其显示出来。其结构如图1所示。 图1 单一频率正弦信号的FFT结构图

实验2 离散时间傅里叶变换

电 子 科 技 大 学 实 验 报 告 学生姓名:项阳 学 号: 2010231060011 指导教师:邓建 一、实验项目名称:离散时间傅里叶变换 二、实验目的: 熟悉序列的傅立叶变换、傅立叶变换的性质、连续信号经理想采样后进行重建,加深对时域采样定理的理解。 三、实验内容: 1. 求下列序列的离散时间傅里叶变换 (a) ()(0.5)()n x n u n = (b) (){1,2,3,4,5}x n = 2. 设/3()(0.9),010,j n x n e n π=≤≤画出()j X e ω并观察其周期性。 3. 设()(0.9),1010,n x n n =--≤≤画出()j X e ω并观察其共轭对称性。 4. 验证离散时间傅里叶变换的线性、时移、频移、反转(翻褶)性质。 5. 已知连续时间信号为t a e t x 1000)(-=,求: (a) )(t x a 的傅里叶变换)(Ωj X a ; (b) 采样频率为5000Hz ,绘出1()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论; (c) 采样频率为1000Hz ,绘出2()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论。 四、实验原理:

1. 离散时间傅里叶变换(DTFT)的定义: 2.周期性:()j X e ?是周期为2π的函数 (2)()()j j X e X e ??π+= 3.对称性:对于实值序列()x n ,()j X e ?是共轭对称函数。 *()() Re[()]Re[()] Im[()]Im[()]()() ()() j j j j j j j j j j X e X e X e X e X e X e X e X e X e X e ??????????-----===-=∠=-∠ 4.线性:对于任何12,,(),()x n x n αβ,有 1212[()()][()][()]F x n x n F x n F x n αβαβ+=+ 5.时移 [()][()]()j k j j k F x n k F x n e X e e ωωω---== 6.频移 00()[()]()j n j F x n e X e ωωω-= 7.反转(翻褶) [()]()j F x n X e ω--= 五、实验器材(设备、元器件): PC 机、Windows XP 、MatLab 7.1 六、实验步骤: 本实验要求学生运用MATLAB 编程产生一些基本的离散时间信号,并通过MATLAB 的几种绘图指令画出这些图形,以加深对相关教学内容的理解,同时也通过这些简单的函数练习了MATLAB 的使用。 [()]()()(), ()j j jn z e n n F x n X e X z x n e x n ωωω∞-==-∞∞=-∞===<∞∑∑收敛条件为:

傅里叶变换及其在图像处理中的应用

傅里叶变换及其在数字图像处理中的应用 王家硕 学号:1252015 一、 Fourier 变换 1. 一维连续傅里叶变换 设 f (x)为x 的实变函数,如果f (x)满足下面的狄里赫莱条件: (1)具有有限个间隔点。 (2)具有有限个极点。 (3)绝对可积。 则 f (x )的傅里叶变换(Fourier Transformation ,FT )定义为: Fourier 正变换:dt e t f t f f F t j ? +∞ ∞ --==ωω)()]([)(; Fourier 逆变换:ωωπ ωd e f t F f t f t j ? ∞ +∞ ---= =)(21)]([)(1 , 式中:1-= j ,ω 为频域变量。 f (x )与F (w )构成傅里叶变换对,可以证明傅里叶变换对总是存在的。由于f (x )为实函数,则它的傅里叶变换F (w )通常是复函数,于是F (w )可写成 F (w ) = R (w ) + j I (w ) (1) 式中:R (w )和I (w )分别是F (w )的实部和虚部。公式1可表示为指数形式: 式中: F (w ) 为f (x )的傅里叶幅度谱,f (w )为f (x )的相位谱。 2. 二维连续傅里叶变换 如果二维函数f (x , y )是连续可积的,即∞

数字信号处理基于MATLAB的离散傅里叶变换的仿真

数字信号处理设计报告书 课题名称 应用MATLAB 对信号进行频谱分析及 滤波 姓 名 何 晨 学 号 20076089 院、系、部 电气系 专 业 电子信息工程 指导教师 刘鑫淼 2010年 6 月27日 ※※※※※※※※※ ※※ ※ ※ ※※ ※※ ※※※※※ ※※ 2007级数字信号处理 课程设计

应用MATLAB对信号进行频谱分析及滤波 20076089 何晨 一、设计目的

要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 二、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 三、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N 有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: X(k)=DFT[x(n)]= kn N W N n n x ∑ - = 1 ) ( ,k=0,1,...,N-1 N j e N Wπ2- = 逆变换:x(n) =IDFT[X(k)]= kn N W k X N n N - ∑ - = 1 ) ( 1 ,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 四、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号

离散系统分析和离散傅里叶变换讲解

第四章 离散系统分析和离散傅里叶变换 4-1概述 在上一章中我们已经介绍了连续时间信号(周期的或非周期的)的傅里叶变换。在第一、二章中介绍了离散信号和离散系统的概念,在这一章中主要讨论离散信号的傅里叶变换。 4-2离散信号的傅里叶变换 时域抽样定理告诉我们,连续时间信号可以由它的样本值恢复出来,即 ]2 ) ([ )()(∑ ∞ -∞ =-Ω= n s nT t Sa nT f t f 当抽样频率s Ω给定时,抽样函数]2 ) ([ nT t Sa s -Ω就确定了,唯一与信号相关的是信号的样本值)(nT f ,换句话说传载)(t f 中信息的是样本值)(nT f 。因此研究连续时间信号)(t f 中的信息,就转 变为研究样本值)(nT f 中的信息。当抽样频率s Ω给定时,T 也就一定了,样本值)(nT f 就可以抽象为序列)(n f ,也就是说离散信号的数学抽象是序列。以后我们就用序列)(n f 表示离散信号(样本值)。 由于序列的变量是整数变量,与连续信号的变量不同,因此对序列的处理方法与连续时间变量的处理方法也必定不同。先来看看序列的傅里叶变换,连续非周期时间信号)(t f 的傅里叶变换为 ? ∞ ∞ -Ω-= =Ωdt e t f t f F t j )(])([)(F ? ∞ ∞ -ΩΩΩ= Ω=d e F F t f t j -)(21 )]([)(1 π F 假定)(n f 是非周期的,仿照连续时间信号的傅里叶变换形式可以定义序列的傅里叶变换: ∑∞ -∞ =-= n jn j e n f e F ω ω )()( (4-1) ?- = π πωω ωπ d e e F n f jn j )(21 )( (4-2) 式中ω为数字角频率。(4-1)式和(4-2)式构成了序列的傅里叶变换对,前者称为序列的傅里叶正变换,后者称为序列的傅里叶逆变换。注意到序列傅里叶正变换公式是个和式,这是因为序列)(n f 的变量是离散的整数,序列的傅里叶逆变换公式是个积分式,由此也说明序列的傅里叶变换是ω的连续函数,也就是说,离散信号的傅里叶变换是频域中连续的函数。此外因

MATLAB离散傅里叶变换及应用资料

MATLAB 离散傅里叶变换及应用 一、DFT 与IDFT 、DFS 、DTFT 的联系 1、 序列的傅里叶变换(DFT)和逆变换(IDFT) 在实际中常常使用有限长序列。如果有限长序列信号为x(n),则该序列的离散傅里叶变换对可以表示为 1N ,0,1,k , W x(n)DFT [x(n)]X(k)1 N 0n nk N -===∑-= (12-1) 1N ,0,1,n , W X(k)N 1IDFT[X(k)]x(n)1N 0 k nk N -===∑-=- (12-2) 已知x(n)=[0,1,2,3,4,5,6,7],求x(n)的DFT 和IDFT 。要求: (1)画出序列傅里叶变换对应的|X(k)|和arg [X(k)]图形。 (2)画出原信号与傅里叶逆变换IDFT [X(k)]图形进行比较。 程序源代码: xn=[0,1,2,3,4,5,6,7]; N=length(xn); n=0:(N-1);k=0:(N-1); Xk=xn*exp(-j*2*pi/N).^(n'*k); x=(Xk*exp(j*2*pi/N).^(n'*k))/N; subplot(2,2,1),stem(n,xn); title('x(n)');

subplot(2,2,2),stem(n,abs(x)); title('IDFT|X(k)|'); subplot(2,2,3),stem(k,abs(Xk)); title('|X(k)|'); subplot(2,2,4),stem(k,angle(Xk)); title('arg|X(k)|'); 运行图如下: x(n) IDFT|X (k)| 2 4 6 8 |X (k)| 2 4 6 8 arg|X (k)| 从得到的结果可见,与周期序列不同的是,有限长序列本身是仅有N 点的离散序列,相当于周期序列的主值部分。因此,其频谱也对应序列的主值部分,是含N 点的离散序列。 2、 序列DFT 与周期序列DFS 已知周期序列的主值x(n)=[0,1,2,3,4,5,6,7],

离散傅里叶变换的分析与研究 开题报告

本科学生毕业论文(设计)开题报告题目离散傅里叶变换的分析与研究 姓名XX 专业电子信息工程 学号XXXXXXXXXX 学院物理与电子信息学院 指导教师XXX 淮北师范大学教务处制

一、本课题研究现状及可行性分析 离散傅里叶变换,其实质是有限长序列傅立叶变换的有限点离散采样,从而实现了频域离散化,使数字信号处理可以在频域采用数值运算的方法进行,这样就大大增加了数字信号处理的灵活性。更为重要的是,离散傅里叶变换有多种快速算法,统称为快速傅里叶变换,从而使信号的实时处理和设备的简化得以实现。所以说,离散傅立叶变换不仅在理论上有重要意义,而且在各种信号的处理中亦起着核心作用。 离散傅里叶变换在数字通信、语音信号处理、图像处理、功率谱估计、系统分析与仿真、雷达信号处理、光学、医学、地震以及数值分析等各个领域都有着广泛的应用。 目前,我们已具备有关的大量参考文献和基本的原始程序,对本论文的开展不存在根本性的问题,我们的研究方法是可行的。 二、本课题研究的关键问题及解决问题的思路 关键问题: 线性卷积与循环卷积之间的关系,及对信号的频谱分析。并在MA TLAB环境下的编程实现。 解决思路: 在理解和掌握线性卷积,循环卷积以及信号频谱分析的基础上,用MA TLAB语言编写线性卷积,循环卷积以及频谱分析的设计程序,最后通过仿真结果验证理论的正确性。 三、论文纲要 1 绪论 1.1 DFT的定义 1.2 DFT与傅里叶变换和Z变换的关系 2 DFT的基本性质 2.1 线性性质 2.2 循环卷积性质 2.3循环卷积定理 3 DFT的应用 3.1 用DFT计算线性卷积 3.2 用DFT对信号进行谱分析 3.3 用DFT进行谱分析的误差问题

MATLAB的离散傅里叶变换的仿真

应用MATLAB对信号进行频谱分析及滤波 设计目的 要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 一、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 二、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: N?1?2?kn)(nx j?W W NN e?0?n N X(k)=DFT[x(n)]=,k=0,1,...,N-1N?11?kn?)(WXk N N0?n x(n) =IDFT[X(k)]= 逆变换:,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 三、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f*t); figure(1); subplot(211); plot(t,x);%作正弦信号的时域波形 axis([0,0.1,-1,1]); title('正弦信号时域波形'); z=square(50*t); subplot(212) plot(t,z) axis([0,1,-2,2]); title('方波信号时域波形');grid;

相关文档
相关文档 最新文档