文档库 最新最全的文档下载
当前位置:文档库 › 压缩机结构介绍

压缩机结构介绍

压缩机结构介绍
压缩机结构介绍

压缩机结构介绍

一、压缩机分类

压缩机按结构形式的不同分类如下:

按其原理可分为:

往复式(活塞式)压缩机、回转式(旋转式)压缩机(涡轮式、水环式、透平)压缩机,轴流式压缩机,喷射式压缩机及螺杆压缩机等各种型式,其中应用最为广泛的是往复式(活塞式)压缩机。

活塞式压缩机怎样分类?

活塞式压缩机分类的方法很多,名称也各不相同,通常有如下几种分类方法:(一)按压缩机的气缸位置(气缸中心线)可分为:

(1)卧式压缩机,气缸均为横卧的(气缸中心线成水平方向)。

(2)立式压缩机气缸均为竖立布置的(直立压缩机)。

(3)角式压缩机,气缸布置成L型、V型、W型和星型等不同角度的。

(二)按压缩机气缸段数(级数)可分为:

(1)单段压缩机(单级):气体在气缸内进行一次压缩。

(2)双段压缩机(两级):气体在气缸内进行两次压缩。

(3)多段压缩机(多级):气体在气缸内进行多次压缩。

(三)按气缸的排列方法可分为:

(1)串联式压缩机:几个气缸依次排列于同一根轴上的多段压缩机,又称单列压缩机。

(2)并列式压缩机:几个气缸平行排列于数根轴上的多级压缩机,又称双列压缩机或多列压缩机。

(3)复式压缩机:由串联和并联式共同组成多段压缩机。

(4)对称平衡式压缩机:气缸横卧排列在曲轴轴颈互成180度的曲轴两侧,布置成H型,其惯性力基本能平衡。(大型压缩机都朝这方向发展)。

(四)按活塞的压缩动作可分为:

(1)单作用压缩机:气体只在活塞的一侧进行压缩又称单动压缩机。

(2)双作用压缩机:气体在活塞的两侧均能进行压缩又称复动或多动压缩机。(3)多缸单作用压缩机:利用活塞的一面进行压缩,而有多个气缸的压缩机。

(4)多缸双作用压缩机:利用活塞的两面进行压缩,而有多个气缸的压缩机。(五)按压缩机的排气终压力可分为:

(1)低压压缩机:排气终了压力在3~10表压。

(2)中压压缩机:排气终了压力在10~100表压。

(3)高压压缩机:排气终了压力在100~1000表压。

(4)超高压压缩机:排气终了压力在1000表压以上。

(六)按压缩机排气量的大小可分为:

(1)微型压缩机:输气量在1米3/分以下。

(2)小型压缩机:输气量在1~10米3/分以下。

(3)中型压缩机:输气量在10米3/分~100米3/分。

(4)大型压缩机:输气量在100米3/分。

(七)按压缩机的转速可分为:

(1)低转数压缩机:在200转/分以下。

(2)中转数压缩机:在200~450转/在50分。

(3)高转数压缩机:在450~1000转/分。

(八)按传动种类可分为:

(1)电动压缩机:以电动机为动力者;

(2)气动压缩机:以蒸汽机为动力者;

(3)以内燃机为动力的压缩机;

(4)以汽轮机为动力的压缩机。

(九)按冷却方式可分为:

(1)水冷式压缩机:利用冷却水的循环流动而导走压缩过程中的热量。

(2)风冷式压缩机:利用自身风力通过散热片而导走压缩过程中的热量。(十)按动力机与压缩机之传动方法可分为:

(1)装置刚体联轴节直接传动压缩机或称紧贴接合压缩机。

(2)装置挠性联轴节直接传动压缩机。

(3)减速齿轮传动压缩机。

(4)皮带(平皮带或三角皮带)传动压缩机。

(5)无曲轴--连杆机构的自由活塞式压缩机。

(6)正体构造压缩机--即摩托压缩机动力机气缸与压缩机座整体制成,并用共同的曲轴的压缩机。

此外,压缩机还有固定式和移动式之分,及有十字头无十字头之分。

二、压缩机概述,

压缩机组主要由驱动机、压缩机、冷却器、洗涤罐、进排气缓冲罐、控制系统、底座、管线、联轴器等组成。驱动机向压缩机提供动力,压缩机将气体进行压缩,气体在压缩过程中产生热量,冷却器将高温气体进行冷却。洗涤罐用来对气体进行过滤或进行油气分离,保证进入气缸内的气体干燥和干洁。进排气缓冲罐用来抑制气体的脉动。控制系统对机组进行控制,并对机组的油温油压、水温水压、气温气压、速度、振动等进行监测,如有异常可自动停机。

压缩机上钉有一块铭牌,铭牌上标有机组的进排气温度、进排气压力,排气量、转速等等,在使用机组时注意,切不可在超过压缩机铭牌上标注的排量、压力、速度、温度等条件下使用,否则就有可能导致事故。

三、工作原理

压缩机的工作循环可分为膨胀、吸气、压缩和排气四个过程。由气缸、活塞、气缸的端面或气缸盖构成一个违者封闭的空间,当活塞在气缸内来回移动时,这个封闭空间时大时小,空间增大时,进气管道的气体经进气阀流入气缸,当空间减小时,气缸内的气体经排气管道流出,由于排气管道的气体压力高,单位重量的气体所占据的体积小,在进排气阀的控制下,气缸内的气体只有经排气阀向外排,从而可以通过活塞的移动将气体压缩到很高的压力。RDS压缩机用的是双作用气缸,气缸的两端都可以与活塞构成封闭空间,当活塞从紧靠气缸盖的地方(将该处称为外止点)向曲轴方向移动时,气缸的缸盖的一端的封闭空间增大,将进行吸气,气缸的靠近曲轴的一端的封闭空间减小,将进行排气。对于缸盖的一端,活塞与缸盖间有一定的间隙,在排气的时候总有一些气体残留在气缸内而不能排出,当活塞从外止点向曲轴方向移动时,残留在气缸内的气体将因压力减小而发生膨胀,膨胀的结果使吸气量减少,活塞要移动较长的一段距离才能开始吸气。当曲轴旋转了180度,活塞从外止点移动到紧靠曲轴的地方(将该处称为内止

点),并从内止点向外止点移动时,封闭空间减小,气体将被压缩而使压力增加,当活塞移动到一定的距离也就是说封闭空间小到一定的程度,缸内气体的压力大于排气管道的压力,排气阀打开,此时压缩机向外排气。气缸曲轴端与外端工作过程相反。对于多级压缩机,上一级排出的气体经冷却后被送到下一级,再进行压缩,最后一级排出的气体经后冷器输出或直接输出,向用户提供压缩气体。

四、压缩机主机

压缩机主机部分由机体、曲轴、连杆、十字头、活塞杆、活塞、气缸、主油泵、注油器等组成。曲轴是压缩机的旋转运动件,驱动机的动力由曲轴传递至活塞,连杆的作用是将曲轴的旋转运动转化为十字头的往复运动。十字头与活塞杆和活塞固定成一个整体,十字头的往复运动使活塞在气缸内也作往复运动。气缸内装有活塞和气阀,活塞在气缸内的运动使气体得到压缩。

(一)、机体

机体用于安装曲轴、连杆、十字头等,十字头滑道在机体伸出部分的内部,伸出部分设有窗口用于安装和拆卸十字头,机体下部的油池用于贮存润滑油。机体为开式结构,以方便安装曲轴,更换主轴瓦时,应注意以下几点:1,机体的主轴承盖与机体配对加工而成,在机体的顶部平面上打印有主轴承盖的编号,维修时注意,主轴承盖应按号入座,既不可将另一个座上的主轴承盖装在这一个座上,也不可将该座上的主轴承盖旋转180度安装。主轴承盖螺栓上装有止动垫片。按540~570Nm的力矩拧紧螺栓后将垫片翻边。

2,主轴承盖与主轴承座间装有可调整厚度的垫片,使用新的垫片时,剥去若干层,得到所需要的厚度,主轴承两边的垫片的厚度要相同。垫片剥好后,修整铅接头,使铅接头厚度与叠层部分的厚度相同。这样,当轴承盖压紧后,铅接头不会被挤进轴承间隙。垫片的使用只能从厚到薄,不应将薄的垫片垫厚使用。

3,机体上部平面在开口处打印有开口的尺寸,拧紧机体拉杆螺母时,应用长度千分尺测量机体开口尺寸,该尺寸应大于开口打印值0.000~0.050mm。此时的拧紧力矩约为680~700N.M。必须在组装中体和气缸之前拧紧拉杆螺母。

(二)、曲轴

曲轴总成是压缩机的主要运动件,包括曲轴、甩油环、键等。

曲轴的主轴颈和连杆轴颈为实心结构,斜油道将主轴颈与相邻连杆轴颈贯通。润滑油通过斜油孔从主轴承流向连杆轴承。油道必须清洁,无任何异物。

更换主轴瓦时,可不取出曲轴,方法是将主轴承盖和上瓦取出后,旋转曲轴将下瓦带出,如不能带出,则用一铜销或其它软金属销插入曲轴主轴颈油道,销的一端外露约6mm,转动曲轴,销子将轴瓦拨出主轴承座。为防止销子掉进曲轴油道,其外露端直径应比插入端略大。旋出下瓦前,应用记号笔在曲轴上作标记以确定瓦在曲轴上的轴向位置。下瓦更换后应及时安装好新的上瓦和拧紧主轴承盖并检查间隙是否合适,然后更换下一个下瓦,全部更换完毕后按规定力矩拧紧主轴承盖并将垫片翻边。

曲轴油封位于设备的输入端,压配在机体端盖上。一个夹紧在曲轴上对开的甩油环与油封配合使用。甩油环在曲轴上的轴向位置,应是其外侧到机体端装配表面的距离为23.8mm,甩油环准确定位后,拧紧螺栓将其夹紧在曲轴上,(三)、连杆

连杆的作用是将曲轴的旋转运动转化为活塞的往复运动。

连杆的大头与曲轴相连,小头与十字头相连,连杆上钻有润滑油孔,润滑油通过该孔从大头来到小头,润滑连杆衬套、十字头衬套和十字头瓦。连杆衬套中有一个小孔,该孔必须与连杆中的油孔对准,否则润滑油就不能到达小头。连杆衬套过盈配合与小头孔中,更换衬套时用挤压或加工的方法去除旧的衬套,用温差法即冷冻新衬套或在油中加热连杆小头的方法将新衬套轻轻压入小头孔。若不更换衬套仅仅更换连杆瓦,可不拆卸连杆与十字头的装配就可进行。更换连杆瓦时注意,连杆体与连杆盖是配对加工的,同主轴承盖一样,应按号入座,既不可将另一根连杆上的连杆盖装在这一根连杆上,也不可将该根连杆的连杆盖旋转180度安装。

(四)、十字头

十字头的组成:十字头销、上下十字头瓦、调整垫片、锁紧螺母、十字头衬套等。

十字头用铸钢制成,改变调整垫片的数量和规格可调整十字头中心高低和补偿十字头瓦的磨损。十字头销为全浮结构,两端支撑在十字头衬套上。装有衬套的连杆小头位于销的中间。活塞杆螺纹旋进十字头后,拧入螺销定位,并用锁紧

螺母锁紧。

十字头上下摩擦面均设有油槽,十字头销上相应位置设有油孔,在每个十字头衬套中有一个小孔,该孔必须与十字头中的油孔对准,以确保油道暢通。

上十字头瓦与十字头滑道之间的间隙在工厂装配好的。但在新机起动之前或更换了气缸、活塞、活塞杆、十字头、十字头瓦等零、部件之后,应检查上述间隙和活塞杆同轴度。当十字头瓦发出噪音或活塞杆跳动超过规定极限时,应调整或更换十字头瓦。

装好气缸,用专用单头呆板手拧紧活塞杆锁紧螺母,检查十字头是否正确地座落在十字头滑道内。装配正确的标准是用0.04mm厚的塞尺在下十字头瓦和十字头滑道之间的任何处均不能塞入。

活塞杆的水平跳动不需要调整,如果安装合适,水平跳动一般不会超过0.08mm。

检查调整活塞杆同轴度(即跳动)的程序:

1.在压缩机中体内安装固定一个带有百分表的表架,百分表触头压在活塞杆

顶部,便于读取杆的跳动量。按下百分表,使指针转动一周,然后将表头置于零位并固紧。

2.转动压缩机一周,观察表盘上的指针移动。表盘零位两边指针示数之和即

为活塞杆的垂直方向上的总跳动。

3.活塞杆在垂直方向上的跳动,通过增减十字头与下部瓦之间的垫片来调整。

若活塞杆在活塞一端较高,则要在十字头和下部瓦之间增加垫片,若活塞杆在十字头一端较高,则要从十字头和下部瓦之间减少垫片。如果弄不清活塞杆哪端较高,可在杆上置一水平仪表判断十字头是应垫高还是降低。

必须记住,为保持上十字头瓦与滑道间隙不变,从一片瓦和十字头之间取出的垫片应加入另一片瓦和十字头之间。

4.由于活塞杆最初的调整检查是在冷态下进行的,所以活塞杆在活塞的一端

应装得稍低一些,补偿在设计负载与工作温度条件下运转时活塞的膨胀。

机组满负荷运转4小时后,检查活塞杆的热跳动,其跳动值应尽可能为0。

(五)、活塞及活塞杆

活塞与气缸内壁及缸盖构成容积可变的工作腔,并由曲轴通过活塞杆带动,在气缸内作往复运动,由此实现气缸内气体的压缩。

活塞总成由活塞、活塞杆、活塞环等组成。活塞杆两端具有螺纹,通过螺母与活塞及十字头紧固。

活塞环材料为填充聚四氟乙烯,该材料韧性好,耐磨性强。活塞环既起支承活塞的作用也起密封气体的作用。活塞环为易损件,应定期更换,更换活塞环的周期,根据实际情况和经验确定,大约为8000小时或更多。压力、温度、润滑情况、活塞重量、气体类型、气体湿度、气体清洁度和气缸孔的粗糙度等都对更换活塞环的周期产生影响。无论何时,当活塞底部与气缸孔间隙减小到

0.25mm时,必须更换活塞环。

一般说来,只要气缸的直径不超过其原来直径的4%,可继续使用标准尺寸的活塞环,否则,应选用加大环,但气缸孔必须是圆的,因为加大环不能校正或补偿偏圆或锥形孔。

(六)、中体

中体的结构比较简单,它仅存在有十字头的压缩机中。它主要是提供安装密封填料的一个空间;两侧的窗口供装、拆填料操作。

中体内装有刮油器,刮油器用螺栓联接在中体上,内含刮油环一套,用于防止机体内的润滑油沿活塞杆漏失,并能防止气缸内的气体进入机体,污染机体润滑油。中体顶部有两个3/4″的锥管螺纹接头,底部有四个3/4″的锥管螺纹接头,这些接头供通气、排液和润滑作用。

中体靠螺栓把气缸和机体联在一起。

当安装或拆卸刮油器时,必须先卸下金属刮油环。刮油环不得从活塞螺纹上滑过,否则螺纹会划伤刮油环,导致环永久损坏。若设备长期停用,则不要装刮油环,因为环可能损伤活塞杆。

刮油环只要定期清洗,一般不需多加注意。清洗的周期取决于操作条件。检查环的磨损时,将环套在一个与活塞杆直径相同的棒上,检查开口间隙。当环磨损严重,开口间隙接近零时,最好更换新环。

提供的刮油环环片上均有配对标记,装配时相邻环片必须相配,环上的径向槽应面向气缸,密封环面无方向。

(七)、气缸

气缸是往复式压缩机中直接进行气体压缩的部分。它与活塞、气阀等共同组成压缩气体的工作腔。

气缸是一个压力容器,具有双层壁结构,有宽大的阀室和气腔,由高强度铸铁制成,能承受高压力。

无论是哪一种气缸,均由以下几部分组成:缸体、阀盖、压圈、进气阀组件、排气阀组件、螺柱、螺母、密封结构、润滑结构、冷却结构、侧盖、垫片等。

气缸壁、气道、水套、气阀、密封填料等要定期检查,任何外来沉积物都应该清除掉。气阀可浸泡在清洗剂中,使其上面的附着物软化,然后轻轻刮去,使阀道畅通。气阀要在彻底干燥后,方可装到气缸上。

若循环水脏了,污物会沉积在气缸水套和气缸盖水腔内,最终会阻碍循环冷却水的流动,降低冷却效果,引起活塞和气缸的损坏。气缸水套要不时地打开检查,一旦发现任何沉积,要及时清除,而后用清水冲洗水套。

在每次维修气缸前,都必须按第五章第2节的要求采取必要的安全措施。为保证工作人员的人身安全,打开气缸前,要释放尽气缸的水压和气压。

新气缸或更换了零部件的大修气缸,磨合是提高其使用寿命的关键过程。

压缩机气缸必须逐渐磨合。在磨合期间,气缸有可能与灰尘、焊渣和其它外部材料相接触,从而加大气缸的磨损。这通常是关系到气缸使用寿命长短的最关键时期,在此期间对气缸润滑油的要求极为苛刻。建议在初次磨合时选用比正常工作粘度高的润滑油。应慎重选择这种重油种类,并要有足够的注油量(特别是在环境温度较低的情况下)。在磨合期间,应供给最大量的注油量,以便冲洗磨屑和外部杂质。

磨合润滑气缸按以下步骤进行:

1.压缩机在第一周运转过程中,使用重磨合油(常用压缩机油),且将注油泵

流量调到最大进给量。

2.在后来的三周磨合期间,逐渐用正常运转时的润滑油来稀释第一周磨合所

用的重磨合油。如磨合期和正常操作时所使用油的牌号不同,在混合它们之前应确认它们相互匹配,决不可把合成油与矿物油相混合。

3.随着气缸的磨合,应时常对气缸孔进行检查,看看是否呈现出镜面。由于

磨合油被稀释,可能出现温度升高等问题。因此注意增减较重磨合油的百分比,直到在气缸壁上呈现出镜面。

4.当磨合全部采用正常工作的润滑油时,逐渐调节注油泵的柱塞行程,使油

流量达到最佳。

通常希望尽可能地减小压缩机气缸和填料的注油量,因为这样最经济,又可避免超量排油和积炭。

在任何情况下,气缸的注油量不能少于每分钟每个点进给滴。

在减少气缸润滑油量的前后,均应对压缩机气阀、气缸壁、气路等进行仔细的检查。正确的润滑油进给量应恰好在气缸壁上保持一层薄油膜。在气缸工作容积两端或在排气管道上沉积润滑油是润滑过量的表现或不合适的润滑油进给量;在气缸壁上出现任何干燥斑点是润滑不足或温度、气体特性与润滑油不相适应的表现。

(八)、压缩机气阀

气阀为高速网状阀,它由阀座、PEEK阀片、缓冲片、导向块、阀片弹簧、缓冲片弹簧、阀挡等组成。由一中心螺柱和自锁螺母连成一体。气阀与气缸之间装有垫片,以防气体泄漏。

气阀在压缩机的进、排气通道上起单向阀的作用。进气阀在吸气冲程中打开,让气体进入气缸,而在压缩冲程中关闭,以防止气体倒流回进气通道;排气阀在压缩冲程中打开,被压缩的气体从气缸排出,而在吸气冲程关闭,防止排气道内的压缩气体返回气缸。气阀的任何泄漏,无论是进气阀还是排气阀,都会降低气缸的工作效率。

气阀靠两边的压差开启,阀片离开阀座贴到缓冲片上。缓冲片及其弹簧能缓冲高速运动的阀片对阀档的撞击。缓冲片的升程约是阀片升程的1/3~1/2。阀片和缓冲片分别装有弹簧。相对于缓冲片,阀片的弹簧较小,因而气阀可迅速有效地打开。缓冲片及其弹簧的特性使气阀能迅速并闭、工作平稳、效率高,并能使压缩机延长工作时间。

当活塞接近止点时,气阀两边的压差减少,阀片在弹簧的作用下关闭。弹力及压差的共同作用使进气阀在压缩冲程中关闭,排气阀在吸气冲程中关闭。

(九)、余隙塞

可调余隙塞安装在压缩机气缸外端。在余隙调节范围内,通过用扳手转动余隙塞的活塞杆增加或减少余隙容积。调整余隙之前,压缩机必须关闭,气缸内压力必须释放。

改变余隙活塞的位置可调节余隙容积。活塞和杆之间用螺纹连接。拧松锁紧螺母,逆时针方向转动余隙杆,使余隙活塞远离气缸,则增加余隙容积;反之顺时针方向转动余隙杆则减少余隙容积。余隙杆上标有刻度,拧紧锁紧螺母,从锁紧螺母端面看去的刻度即为气缸所增加的余隙。

可调余隙塞用于调节压缩机的排气量和级间压力比。在压缩机压缩阶段,由于被压缩的气体部分进入增加的余隙容积而不是经过排气阀排出,这样可减少气体排放量;在膨胀阶段,增加的余隙容积中的那部分气体膨胀进入压缩机气缸,从而减少了压缩机气缸的有效吸入容积。

(十)、填料

填料也叫盘根,通常为全浮动结构。这种密封装置不需要调整。

组成:填料法兰、填料盒和填料环。

填料环包括排气环、密封环和缓冲环。

缓冲环安装在最靠气缸里边的一个填料盒内,用以缓冲密封环所承受的气体压力。缓冲环为铸铁环,径向开口,环瓣接合处无开口间隙,其内孔稍大于活塞杆直径。安装在活塞杆后,径向方向应有0.05~0.15mm的间隙。该环的压力边开有压力释放切口,安装时切口必须朝着压力高的一边。

密封环由一个切向开口的非金属环(四氟乙烯环)和一个径向开口的金属环组成,非金属环装在金属环之前,在压力高的一边。

非金属环的压力边开有径向槽,安装时径向槽必须朝着压力高的一边。金属环是为杆的散热和防止非金属环变形面设计的,金属环的孔稍大于活塞杆直径,环瓣接合处无开口间隙。不同的填料组件密封环的数量不同。其中,低压填料组件有三组,中、高压填料均有四组。

排气环由两个切向开口的四氟乙烯环组成,其中一个环上设有定位销,另一个环上设有销孔,以此来保证两个环的切向开口互相错开。该环内径略小于活塞杆直径。每组填料组件只有一组排气环。

各种环的环瓣都是成组配对加工而成,而且在每个瓣上都打有配对标记,因此,组装时应注意,即使是同一种类的环,其环瓣也不得互换,而且每个环的各瓣还应按配对标记进行装配,带有标记的一面应面向压力边。

各环自由浮置于填料盒中轴向间隙均为。

填料要定期拆下清洗、检查。清洗填料环时,也许发现环孔有线状划痕,这表明磨损严重。用锉刀锉去这些划痕,但不得损伤环的配合面。拆开填料清洗时,注意避免垫圈或任何配合面的损坏。除非锉磨线状划痕,不得损伤填料环孔。清洗箍紧弹簧上积碳和油污。若弹簧失效,则要更换。对于根部有径向切口的切向密封环,只要径向切口有一定间隙,便可使用。当间隙为零时,必须更换。

(十一)、油泠油滤器

油冷器是一种管壳型热交换器,壳内走油,管子里走水。在正常情况下,机体油池的油温需保持在66~72℃的范围内。润滑油的温度通过调节油冷器的水流量来控制。

油滤器安装在油冷器排油口的法兰上,在油滤器壳体的底部装有一个丝堵,以便排污和清洗。

为了随时监测油滤器的工作情况,其上装有一个压差表,压差表的两端分别装在油滤器的进出口上。

通常,油在工作温度下通过新过滤器时,其压力降为0.02MPa。冷油或滤芯堵塞都会增加油滤器进出口压差。无论如何,当油滤器进出口压降超过0.055~0.07MPa时,必须检查、清洗或更换过滤器元件。此外,更换机体油池润滑油时,油滤器元件也要清洗或更换。

(十二)、主油泵

主油泵在机组运转时将一定压力的润滑油送到机体及传动部件润滑系统。它装在机体后部,曲轴尾端拨销直接驱动泵主轴上的联轴节。主油泵除非在排量降低时方可拆卸。

调压阀和安全阀装在机体后部主油泵壳体上,置于机体内部,两阀在压缩机出厂前就已装好。

调压阀用于控制润滑系统压力。对于粘度不同的油需做局部调整,调整前要放油减压。

调节螺杆控制弹簧的弹力,从而提高或降低油压。如要增加油压,顺时针调节螺杆;如要降低油压,逆时针调节螺杆。油压应尽可能接近0.42PMa。

安全阀用来排泄冷油起动时主油泵出口管线的过大流量和过高压力,以保护润滑系统。当油量过大、并且压力较高时,该阀也能局部调节。

润滑油油面切勿高到运动部件可能碰到的位置,否则将击起泡沫,导致主油泵油压损失。如果油位降到油标刻线下面太多,润滑系统将会进入空气,影响轴承润滑。

在压缩机初次起动使用最少24小时,最多72小时之后,必须彻底冲洗润滑系统,然后注入新油。此后,只要机体不进灰尘,油滤器工作正常,就不需要经常换油。通常,根据具体情况,每4000~8000小时才换一次油。注意,不要用水或起毛的抹布擦拭机体内部。若压缩机在极脏的大气环境里工作或安装在室外或处理极脏的气体或在炎热的环境里油温过高,需要经常换油。

最新各种压缩机工作原理及优缺点分析

各种压缩机工作原理及优缺点分析

各种压缩机工作原理及优缺点分析 一、压缩机概念 用来压缩气体借以提高气体压力的机械称为压缩机。提升的压力小于 0.2MPa时,称为鼓风机。提升压力小于0.02MPa时称为通风机。 二、压缩机分类 1.按工作原理分类 容积式压缩机直接对一可变容积中的气体进行压缩,使该部分气体容积缩小、压力提高。其特点是压缩机具有容积可周期变化的工作腔。 离心式压缩机它首先使气体流动速度提高,即增加气体分子的动能;然后使气流速度有序降低,使动能转化为压力能,与此同时气体容积也相应减小。其特点是压缩机具有驱使气体获得流动速度的叶轮。 2.按排气压力分类 3.按压缩级数分类 单级压缩机气体仅通过一次工作腔或叶轮压缩 两级压缩机气体顺次通过两次工作腔或叶轮压缩 多级压缩机气体顺次通过多次工作腔或叶轮压缩,相应通过几次便是几级压缩机

4.容积流量分类 名称容积流量 (m3/min) 微型压缩机 <1 小型压缩机 1~10 中型压缩机 10~100 大型压缩机≥100 5.按结构或工作特征的分类

三、各种压缩机工作原理及优缺点 1.活塞式压缩机的工作原理及优缺点 当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸盖和活塞顶面所构成的工作容积则会发生周期性变化。活塞式压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞式压缩机的活塞再次反向运动时,上述过程重复出现。总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程,即完成一个工作循环。 活塞压缩机的优点: (1) 不论流量大小,都能得到所需要的,排气压力范围广,最高压力可达 320MPa(工业应用),甚至700MPa,(实验室中)。 (2) 单机能力为在500m3/min以下的任意流量。 (3) 在一般的压力范围内,对材料的要求低,多采用普通的钢铁材料,加 工较容易,造价也较低廉。 (4) 热效率较高,一般大、中型机组绝热效率可达0.7~0.85左右。 (5) 气量调节时,适应性强,即排气范围较广,且不受压力高低影响,能 适应较广阔的压力范围和制冷量要求。

制冷压缩机结构和工作原理介绍

制冷压缩机在系统中的作用 为了能连续不断地制冷,需用压缩机将已汽化的低压蒸气从蒸发器中吸出并对其做功,压缩成为高压的过热蒸气,再排入冷凝器中(提高压力是为了使制冷剂蒸气容易在常温下放出热量而冷凝成液体)。在冷凝器中利用冷却水或空气将高压的过热蒸气冷凝成为液体并带走热量,制冷剂液体又从冷凝器底部排出。如此周而复始,实现连续制冷。 概括地说,这种制冷方法是使制冷剂在低温低压的条件下汽化而吸取周围介质的热量,并在常温高压的条件下冷凝液化而放出热量并由冷却水(或空气)带走。欲使制冷剂实现这样的热量转移,必须提供与蒸发温度和液化温度相对应的低压和高压条件,而这一条件正是由压缩机创造的。因此,在蒸气压缩式制冷循环中,只有有了压缩机,制冷机才能将低温物体的热量不断地转移给常温介质,从而达到制冷的目的。 目前各类压缩机的大致应用范围及制冷量大小: 制冷压缩机的种类与分类 制冷压缩机按其工作原理可以分为: 容积型和速度型 1.压缩机的种类 (1)容积型压缩机:用机械的方法使密闭容器的容积变小,使气体压缩而增加其压力的机器。 它有两种结构型式:往复活塞式(简称活塞式)和回转式

(2)速度型压缩机:用机械的方法使流动的气体获得很高的流速,然后在扩张的通道内使气体流速减小,使气体的动能转化为压力能,从而达到提高气体压力的目的,这种机器称为速度型压缩机。属于这一类的有离心式制冷压缩机。 这种压缩机工作时,气体在高速旋转的叶轮推动下,不但获得了很高的速度,并且在离心力的作用下,沿着叶轮半径方向被甩出,然后进入截面积逐渐扩大的扩压,在那里气体的速度逐渐下降而压力则随之提高。 压缩机种类图: 2 .压缩机的分类 (1) 按工作蒸发温度范围分类单级制冷压缩机一般可按其工作蒸发温度的范围分为高温、中温和低温压缩机三种,但在具体蒸发温度区域的划分上并不统一。下面列举一种著名压缩机的大致工作蒸发温度的分类范围。 高温制冷压缩机(-10 ~ 0 )℃ 中温制冷压缩机(-15 ~ 0 )℃ 低温制冷压缩机(- 40 ~ -15 )℃ (2) 按制冷量的大小分类: 大型≥550kW 中型(25~550)kW

谷轮涡旋压缩机故障现象

谷轮涡旋压缩机故障现象 谷轮涡旋压缩机主要故障 主要有以下四种: ①浮动密封圈损坏,高低压串气。 由涡旋压缩机的结构特点可知,为了在涡旋定子上部提供适当的气体压力,在涡旋定子上的适当的中间压缩处开了一个中间压力通道,以提供中间压力。 在中间压力腔上部设有浮动密封装置,因此涡旋顶部受排气压力与中间压力作用。除了平衡涡旋内部压缩气体压力以外,还提供了顶端和底槽间的密封力, 该密封力靠浮动密封圈来实现。该密封圈由一种类似于橡胶或塑料的非金属材 料制成。故障现象一般表现为压缩机电机完好,并且能够通电运行,但机组的 排气压力不升高,吸气压力也不降低,吸气与排气几乎没有压差,排气管不热,吸气管也不凉。压缩机电流与额定值差别很大,事实上压缩机在空转。 ②涡旋盘损坏。 涡旋盘损坏除有上述浮动密封圈损坏的特征外,还能听到压缩机内部明显 的金属撞击声,这是涡旋盘被击碎后的金属碎片相互撞击或与压缩机壳体撞击 的声音。 ③电机烧毁。 当接通电源时,熔断器熔断或短路器跳断,压缩机无法启动。 ④电机抱轴,轴承损坏。 压缩机电源接通时,听到机壳内电动机有嗡嗡的声音,但不运转,并且电 流上升很快,几秒钟后,压缩机内部过载保护或外部热继电器保护动作,切断 电源。有时保护器来不及动作,很快达到堵转电流,可能直接导致电机烧毁。 2故障原因分析及防治措施

2.1故障压缩机解剖后发现,密封圈发生了局部的融化或是断裂。 其原因是:由于制冷剂泄漏等原因,吸气压力降低(但是即使装了低压保护装置,也可能还没有达到保护设定值,而低压保护并没有切断),吸气过热度增大,致使排气温度迅速升高,这时,如果未装排气温度保护器,或是安装不当,会使系统存在严重的过热现象。避免密封圈发生热损坏最有效的办法是正确安 装排气温度保护器。排气温度保护器的温度设定一般为125一130℃;排气温 度保护器的感温包一般安装在压缩机排气管上,距离排气口不超过150 mm,感 温包与排气管固定要牢固,并且需要严格保温;排气温度保护器的接线可以和 压缩机的其他保护措施(如高压保护或低压保护)串联起来,共同形成对压缩机 的保护。 2.2涡旋盘损坏一般是由液击引起。 主要有三种情况:一是开机的瞬间有大量的制冷剂液体进人压缩机;二是 蒸发器水流量不够(蒸发负荷减小),压缩机有回液现象;三是机组热泵运行除 霜不好,大量液体制冷剂没有蒸发就进人压缩机,或是四通阀换向瞬间蒸发器(热泵运行时为冷凝器)内的液体进人压缩机。解决液击或回液的问题,主要从 以下几方面考虑。 ①管路设计上要避免开机时液态制冷剂进人压缩机,这可能需要对系统做 过量回液试验,尤其是充注量比较大的制冷系统。在压缩机吸气口增加气液分 离器是解决这个问题的有效办法,尤其是在采用逆循环热气除霜的热泵机组中。 ②开机前,对压缩机油池进行足够长时间预热可以有效避免大量制冷剂积 存于压缩机润滑油中。对于防止液击也有一定作用。 ③水系统流量保护不可缺少,这样当水流量不够时起到保护压缩机的作用,以免机组有回液现象或是严重时冻坏蒸发器。流量开关损坏时要及时进行修理 或更换,切不可短接流量开关。 2.3电机绕组烧毁与电气设计的保护有关,或是由机组运行使用不当造成的。

空压机原理及结构图介绍图

压缩机: 压缩机,是一种将低压气体提升为高压气体的从动的流体机械,是制冷系统的心脏。 空气压缩机: 空气压缩机是一种用以压缩气体的设备。空气压缩机与水泵构造类似。大多数空气压缩机是往复活塞式,旋转叶片或旋转螺杆。 种类: 空气压缩机的种类很多。 1、按工作原理可分为三大类:容积型、动力型、热力型压缩机。 2、按润滑方式可分为无油空压机和机油润滑空压机。 3、按性能可分为:低噪音、可变频、防爆等空压机。 4、按用途可分为:冰箱压缩机、空调压缩机、制冷压缩机、油田用压缩机、天然气加气站用、凿岩机用、风动工具、车辆制动用、门窗启闭用、纺织机械用、轮胎充气用、塑料机械用压缩机、矿用压缩机、船用压缩机、医用压缩机、喷砂喷漆用。 5、按型式可分为:固定式、移动式、封闭式。 容积式压缩机——直接依靠改变气体容积来提高气体压力的压缩机。 活塞式压缩机——是容积式压缩机,其压缩元件是一个活塞,在气缸内做往复运动。 回转式压缩机——是容积式压缩机,压缩是由旋转元件的强制运动实现的。

滑片式压缩机——是回转式变容压缩机,其轴向滑片在同圆柱缸体偏心的转子上作径向滑动。截留于滑片之间的空气被压缩后排出。 液体-活塞式压缩机——是回转容积式压缩机,在其中水或其它液体当作活塞来压缩气体,然后将气体排出。 罗茨双转子式压缩机——属回转容积式压缩机,在其中两个罗茨转子互相啮合从而将气体截住,并将其从进气口送到排气口。没有内部压缩。 螺杆压缩机——是回转容积式压缩机,在其中两个带有螺旋型齿轮的转子相互啮合,使两个转子啮合处体积由大变小,从而将气体压缩并排出。螺杆式空气压缩机中的螺杆压缩组件,采用最新型数控磨床内部制造,并配合在线激光技术,确保制造公差精确无比。其可靠性和性能可确保压缩机的运转费用在使用期内一直极低。调整压缩机、一体式压缩机和干燥机系列都是L/LS系列压缩机中的新产品。 速度型压缩机——是回转式连续气流压缩机,在其中高速旋转的叶片使通过它的气体加速,从而将速度能转化为压力。这种转化部分发生在旋转叶片上,部分发生在固定的扩压器或回流器挡板上。 离心式压缩机——属速度型压缩机,在其中有一个或多个旋转叶轮(叶片通常在侧面)使气体加速。主气流是径向的。 轴流式压缩机——属速度型压缩机,在其中气体由装有叶片的转子加速。主气流是轴向的。 混合流式压缩机——也属速度型压缩机。其转子的形状结合了离心式和轴流式两者的一些特点。

压缩机工作原理及结构

压缩机工作原理及结构-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

下面简单介绍几种压缩机的工作原理及结构 一、离心压缩机的工作原理及结构 汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。级间的串联通过弯通,回流器来实现。这就是离心式压缩机的工作原理。

二、往复式压缩机工作原理及结构 属于容积式压缩机,是使一定容积的气体顺序地吸入和排出封闭空间提高静压力的压缩机。曲轴带动连杆,连杆带动活塞,活塞做上下运动。活塞运动使气缸内的容积发生变化,当活塞向下运动的时候,汽缸容积增大,进气阀打开,排气阀关闭,空气被吸进来,完成进气过程;当活塞向上运动的时候,气缸容积减小,出气阀打开,进气阀关闭,完成压缩过程。通常活塞上有活塞环来密封气缸和活塞之间的间隙,气缸内有润滑油润滑活塞环。 往复式压缩机振动大的原因有哪些? 1、连杆螺栓、轴承盖螺栓、十字头螺母松动。 2、主轴承、连杆大小头瓦、十字头滑道等间隙过大。 3、曲轴和联轴器配合松动。 4、十字头滑板与滑道间隙过大,或滑板松动。 5、十字头销过紧或断油引起发热烧毁。 6、油和水带入气缸造成水击。 7、气阀损坏或泄漏。 8、润滑油太少或断油,引起气缸拉毛。 9、活塞环损坏。 10、活塞螺帽松动,活塞松动。

压缩机的工作原理

往复式压缩机的工作原理 什么是压缩 往复式压缩机都有气缸、活塞和气阀。压缩气体的工作过程可分成膨胀、吸入、压缩和排气四个过程。 例:单吸式压缩机的气缸,这种压缩机只在气缸的一段有吸入气阀和排除气阀,活塞每往复一次只吸一次气和排一次气。 1 ,膨胀:当活塞向左边移动时,缸的容积增大,压力下降,原先残留在气缸中的余气不断膨胀。 2, 吸入:当压力降到稍小于进气管中的气体压力时,进气管中的气体便推开吸入气阀进入气缸。随着活塞向左移动,气体继续进入缸内,直到活塞移至左边的末端(又称左死点)为止。 3 ,压缩:当活塞调转方向向右移动时,缸的容积逐渐缩小,这样便开始了压缩气体的过程。由于吸入气阀有止逆作用,故缸内气体不能倒回进口管中,而出口管中气体压力又高于气缸内部的气体压力,缸内的气体也无法从排气阀跑到缸外。出口管中的气体因排出气阀有止逆作用,也不能流入缸内。因此缸内的气体数量保持一定,只因活塞继续向右移动,缩小了缸内的容气空间(容积),使气体的压力不断升高。 4 ,排出:随着活塞右移,压缩气体的压力升高到稍大于出口管中的气体压力时,缸内气体便顶开排除气阀的弹簧进入出口管中,并不断排出,直到活塞移至右边的末端(又称右死点为止。然后,活塞右开始向左移动,重复上述动作。活塞在缸内不断的往复运动,使气缸往复循环的吸入和排出气体。活塞的每一次往复成为一个工作循环,活塞每来或回一次所经过的距离叫做冲程。< 什么是压缩气体的三种热过程? 气体在压缩过程中的能量变化与气体状态(即温度、压力、体积等)有关。在压缩气体时产生大量的热,导致压缩后气体温度升高。气体受压缩的程度越大,其受热的程度也越大,温度也就升得越高。压缩气体时所产生的热量,除了大部分留在气体中使气体温度升高外,还有一部分传给气缸,使气缸温度升高,并有少部分热量通过缸壁散失于空气中。 压缩气体所需的压缩功,决定于气体状态的改变。说通缩点,压缩机耗功的大小与除去压缩气体所产生的热量有直接关系。一般来说,压缩气体的过程有以下三种:等温压缩过程:在压缩过程中,把与压缩功相当的热量全部移除,使缸内气体的温度保持不变,这种压缩成为等温压缩。在等温压缩过程中所消耗的压缩功最小。但这一过程是一种理想过程,实际生产中是很难办到的。 绝热压缩过程:在压缩过程中,与外界没有丝毫的热交换,结果使缸内气体的温度升高。这种不向外界散热也不从外界吸热的压缩成为绝热压缩。这种压缩过程的耗功最大,也是一种理想压缩。因为实际生产中,无伦何种情况要想避免热量的散失,是很难做到的。 多变压缩过程:在压缩气体过程中,既不完全等温,也不完全绝热的过程,成为多变压缩过程。这种压缩过程介于等温过程和绝热过程之间。实际生产中气体的压缩过程均属于多变压缩过程。 什么是多级压缩? 所谓多级压缩,即根据所需的压力,将压缩机的气缸分成若干级,逐级提高压力。并在每级压缩之后设立中间冷却器,冷却每级压缩后的高温气体。这样便能降低每级的排气温度。

离心式压缩机工作原理及结构图介绍

离心式压缩机工作原理及结构图 2016-04-21 zyfznb转自老姚书馆馆 修改分享到微信 一、工作原理 汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。级间的串联通过弯通,回流器来实现。这就是离心式压缩机的工作原理。二、基本结构 离心式压缩机由转子及定子两大部分组成,结构如图1所示。转子包括转轴,固定在轴上的叶轮、轴套、平衡盘、推力盘及联轴节等零部件。定子则有气缸,定位于缸体上的各种隔板以及轴承等零部件。在转子与定子之间需要密封气体之处还设有密封元件。各个部件的作用介绍如下。

1、叶轮 叶轮是离心式压缩机中最重要的一个部件,驱动机的机械功即通过此高速回转的叶轮对气体作功而使气体获得能量,它是压缩机中唯一的作功部件,亦称工作轮。叶轮一般是由轮盖、轮盘和叶片组成的闭式叶轮,也有没有轮盖的半开式叶轮。 2、主轴 主轴是起支持旋转零件及传递扭矩作用的。根据其结构形式。有阶梯轴及光轴两种,光轴有形状简单,加工方便的特点。 3、平衡盘 在多级离心式压缩机中因每级叶轮两侧的气体作用力大小不等,使转子受到一个指向低压端的合力,这个合力即称为轴向力。轴向力对于压缩机的正常运行是有害的,容易引起止推轴承损坏,使转子向一端窜动,导致动件偏移与固定元件之间失去正确的相对位置,情况严重时,转子可能与固定部件碰撞造成事故。平衡盘是利用它两边气体压力差来平衡轴向力的零件。它的一侧压力是末级叶轮盘侧间隙中的压力,另一侧通向大气或进气管,通常平衡盘只平衡一部分轴向力,剩余轴向力由止推轴承承受,

压缩机的形式及分类

压缩机按结构形式的不同分类如下: 按其原理可分为: 往复式(活塞式)压缩机、回转式(旋转式)压缩机(涡轮式、水环式、透平)压缩机,轴流式压缩机,喷射式压缩机及螺杆压缩机等各种型式,其中应用最为广泛的是往复式(活塞式)压缩机。 活塞式压缩机怎样分类? 活塞式压缩机分类的方法很多,名称也各不相同,通常有如下几种分类方法:(一)按压缩机的气缸位置(气缸中心线)可分为: (1)卧式压缩机,气缸均为横卧的(气缸中心线成水平方向)。 (2)立式压缩机气缸均为竖立布置的(直立压缩机)。 (3)角式压缩机,气缸布置成L型、V型、W型和S型(扇型)等不同角度的。(二)按压缩机气缸段数(级数)可分为: (1)单段压缩机(单级):气体在气缸内进行一次压缩。 (2)双段压缩机(两级):气体在气缸内进行两次压缩。 (3)多段压缩机(多级):气体在气缸内进行多次压缩。 (三)按气缸的排列方法可分为: (1)串联式压缩机:几个气缸依次排列于同一根轴上的多段压缩机,又称单列压缩机。 (2)并列式压缩机:几个气缸平行排列于数根轴上的多级压缩机,又称双列压缩机或多列压缩机。 (3)复式压缩机:由串联和并联式共同组成多段压缩机。 (4)对称平衡式压缩机:气缸横卧排列在曲轴轴颈互成180度的曲轴两侧,布置成H型,其惯性力基本能平衡。(大型压缩机都朝这方向发展)。 (四)按活塞的压缩动作可分为: (1)单作用压缩机:气体只在活塞的一侧进行压缩又称单动压缩机。 (2)双作用压缩机:气体在活塞的两侧均能进行压缩又称复动或多动压缩机。(3)多缸单作用压缩机:利用活塞的一面进行压缩,而有多个气缸的压缩机。(4)多缸双作用压缩机:利用活塞的两面进行压缩,而有多个气缸的压缩机。(五)按压缩机的排气终压力可分为:

离心式压缩机工作原理

离心式压缩机的工作原理是什么,为什么离心式压缩机要有那么高的转速? 答:离心式压缩机用于压缩气体的主要工作部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体压力能的。 更通俗地说,气体在流过离心式压缩机的叶轮时,高速旋转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。 显然,叶轮对气体作功是气体压力得以升高的根本原因,而叶轮在单位时间内对单位质量气体作功的多少是与叶轮外缘的圆周速度u2密切相关的:u2数值越大,叶轮对气体所作的功就越大。而u2与叶轮转速和叶轮的外径尺寸有如下关系: 式中 D2--叶轮外缘直径,m; n--叶轮转速,r/min。 因此,离心式压缩机之所以要有很高的转速,是因为: 1)对于尺寸一定的叶轮来说,转速n越高,气体获得的能量就越多,压力的提高也就越大; 2)对于相同的圆周速度(亦可谓相同的叶轮作功能力)来说,转速n越高,叶轮的直径就可以越小,从而压缩机的体积和重量也就越小; 3)由于离心式压缩机通过一个叶轮所能使气体提高的压力是有限的,单级压比(出口压力与进口压力之比)一般仅为1.3~2.0。如果生产工艺所要求的气体压力较高,例如全低压空分设备中离心式空气压缩机需要将空气压力由0.1MPa提高到0.6~0.7MPa,这就需要采用多级压缩。那么,在叶轮尺寸确定之后,压缩机的转速越高,每一级的压比相应就越大,从而对于一定的总压比来说,压缩机的级数就可以减少。所以,在进行离心式压缩机的设计时,常常采用较高的转速。但是,随着转速的提高,叶轮的强度便成了一个突出的矛盾。目前,采用一般合金钢制造的闭式叶轮,其圆周速度多在300m/s以下。 另外,对于容量较小的离心式压缩机而言,由于风量较小,叶轮直径也较小,可采用较高的转速;而容量较大的压缩机,由于叶轮直径较大,相应地转速也应低一些。例如,为国产3200m3/h

空压机结构及工作原理

空压机结构及工作原理: 空压机 1、活塞式无油润滑空气压缩机 活塞式无油润滑空气压缩机由传动系统、压缩系统、冷却系统、润滑系统、调节系统及安全保护系统组成。压缩机及电动机用螺栓紧固在机座上,机座用地脚螺栓固定在基础上。工作时电动机通过连轴器直接驱动曲轴,带动连杆、十字头与活塞杆,使活塞在压缩机的气缸内作往复运动,完成吸入、压缩、排出等过程。该机为双作用压缩机,即活塞向上向下运动均有空气吸入、压缩和排出。 2、螺杆式空气压缩机 螺杆式空气压缩机由螺杆机头、电动机、油气分离桶、冷却系统、空气调节系统、润滑系统、安全阀及控制系统等组成。整机装在1个箱体内,自成一体,直接放在平整的水泥地面上即可,无需用地脚螺栓固定在基础上。螺杆机头是1种双轴容积式回转型压缩机头。1对高精密度主(阳)、副(阴)转子水平且平行地装于机壳内部,主(阳)转子有5个齿,而副(阴)转子有6个齿。主转子直径大,副转子直径小。齿形成螺旋状,两者相互啮合。主副转子两端分别由轴承支承定位。工作时电动机通过连轴器(或皮带)直接带主转子,由于2转子相互啮合,主转子直接带动副转子一同旋转。冷却液由压缩机机壳下部的喷嘴直接喷入转子啮合部分,并与空气混合,带走因压缩而产生的热量,达到冷却效果。同时形成液膜,防止转子间金属与金属直接接触及封闭转子间和机壳间的间隙。喷入的冷却液亦可减少高速压缩所产生的噪音。 螺杆式空压机的主要部件为螺杆机头、油气分离桶。螺杆机头通过吸气过滤器和进气控制阀吸气,同时油注入空气压缩室,对机头进行冷却、密封以及对螺杆及轴承进行润滑,压缩室产生压缩空气。压缩后生成的油气混合气体排放到油气分离桶内,由于机械离心力和重力的作用,绝大多数的油从油气混合体中分离出来。空气经过由硅酸硼玻璃纤维做成的油气分离筒芯,几乎所有的油雾都被分离出来。从油气分离筒芯分离出来的油通过回油管回到螺杆机头内。在回油管上装有油过滤器,回油经过油过滤器过滤后,洁净的油才流回至螺杆机头内。当油被分离出来后,压缩空气经过最小压力控制阀离开油气筒进入后冷却器。后冷却器把压缩空气冷却后排到贮气罐供各用气单位使用。冷凝出来的水集中在贮气罐内,通过自动排水器或手动排出。 三晶变频器在空压机上的节能改造应用 空气压缩机在国民经济和国防建设的许多部门中应用极广,特别是在纺织、化工、动力等工业领域中已成为必不可少的关键设备,是许多工业部门工艺流程中的核心设备。提供自动化生产所需的压缩空气足够的供气压力,是生产流程顺畅之要素,瞬间的压降,即会影响产品

各种空气压缩机分类介绍教学内容

各种空气压缩机分类介绍 随着国内经济的发展,我国的空压机设计制造技术也会有突飞猛进的发展,在某些方面的技术水平也已经达到国际先进水平。但在一些方面与国际先进水平还存在一定差距。希望空压机用户在选型上能够切合实际,结合企业需求,选择经济、可靠、高效、环保的空压机,避免因选型错误导致的机器维修、成本加大等问题,面对市场上各式各样不同功效的空压机,很多用户对空压机的选型上无法有一个确切的认识,有时候是因为对不同空压机的功效和性能不能完全了解,而导致无法合理选型,无法选择可靠、高效、节能的空压机型。现将常用的几种空压机型的优缺点和其适用范围做一个简单的介绍,希望能为用户在选择空压机的时候做一个参考。若按照空压机气体方式的不同,通常将空压机分为两大类,即容积式和动力式(又名速度式)空压机。容积式和动力式空压机由于其结构形式的不同,又做了以下分类: 一、移动式空压机是一种动力式空压机,在其中有一个或多个旋转叶轮(叶片通常在侧面)使气体加速,主气流是径向的。动力式空压机又分为喷射式和透平式空压机,离心式空压机就属于透平式空压机组。在离心式空压机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。 应用范围 近些年,化学工业和大型化工厂的陆续建立,使得离心式空压机成为了压缩和输送化工生产中各种气体的关键机器,占有及其重要的地位。随着气体动力学研究的成就使离心空压机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心空压机向高压力,宽流量范围发展的一系列问题,使离心式空压机的应用范围大为扩展,以致在很多场合可取代往复空压机,而大大地扩大了应用范围。 有些化工基础原料,如丙烯、乙烯、丁二烯、苯等可加工成塑料、纤维、橡胶等重要化工产品。在生产这种基础原料的石油化工厂中,离心式空压机也占有重要地位,是关键设备之一。除此之外,其他如石油精炼,制冷等行业中,离心式空压机也是极为关键的设备。 发展趋势 目前离心式空压机可用来压缩和输送化工生产中的各种气体,并且它的排气压力比早期有了很大的提高,其最小气量也有所降低,这就相应的扩大了离心式空压机的应用范围。 离心式空压机需要向大容量发展,以满足我国石化生产规模不断扩大的要求,同时随着新技术的发展、新型气体密封、磁力轴承和无润滑联轴器的出现,离心空压机的发展趋势主要表现为:不断开发高压和小流量产品;进一步研究三元流动理论,将其应用到叶轮和叶片扩压器等元件的设计中,以期达到高效机组;低噪

轴流压缩机概述

轴流压缩机概述 陕鼓牌轴流压缩机分为A系列和AV系列,A系列为静叶不可调,AV系列为全静叶可调。目前工业常用的是AV系列,其规格从AV40到AV140共计240个,级数一般为9,18级,该系列压缩机特点是流量、压力调节范围宽广,各工况点效率高,最高可达90%以上。陕鼓轴流压缩机采用瑞士苏尔寿公司轴流压缩机技术设计制造,系列化、通用化、标准化程度高,设计、制造、加工水平完全符合国际有关通用标准及技术规范,处于国际先进水平。设计中采用现代设计方法提高了压缩机的效率和机组可靠性,同时结构的改进也便于安装、拆卸以及日常维护。近几年,由于能源紧缺,高效率、大流量的轴流压缩机越来越多地替代离心压缩机,在以前被认为是离心压缩机的领域使用。陕鼓设计、制造的轴流压缩机除用于高炉鼓风、空分装置、催化裂化装置、硝酸四合一机组及三合一机组、大型风源风洞等传统领域外,还被用于CCPP(高炉煤气联合循环发电装置)、电站、热压缩、液化天然气、制药、污水处理等领域,产品出口印度、苏丹、巴西、土耳其等国家。 为了保持轴流压缩机的技术领先性,陕鼓对引进技术进行了消化、吸收、再创新,先后开发了小型轴流压缩机,设计流量1000Nm3/min,可为300 m3高炉和40,60万吨/年催化裂化装置配套轴流压缩机,效率可提高8%,10%;开发了轴向进气、径向排气的新型结构轴流压缩机,减少进气损失,并满足用户现场安装空间的要求;开发了目前国产最大的AV100-17轴流压缩机,可满足5800m3高炉鼓风需要;开发了AV112轴流压缩机焊接机壳技术。 轴流压缩机5大技术特点 一是轴流压缩机气体动力学设计采用最先进的三元流理论和优化设计方法;采用效率高、压头大的新型叶栅,成功进行了各种反动度叶型组合设计。在同样参数

压缩机主要分类

压缩机的主要分类及发展历程 河北科技大学装控122班史少成 摘要压缩机作为生产发展的重要设备,其种类多种多样工作原理也各不相同,各自有自己特点与应用场合。且起源与发展也不同。压缩机的发展趋势也趋向更高效,更节能。 关键词压缩机分类工作原理压缩机起源发展趋势 1压缩机作用 压缩机是一种用来提高气体或液体的压力的设备,其形式多种多样,被压缩对象的用途也各不相同。其广泛应用于工农业,交通运输,国防,及日常生活的各个领域。例如压缩空气用来驱动各类风动工具,控制仪表,各种车辆的制动刹车和车窗启闭,高压空气爆破,以及化工工艺的各种压缩机等等。压缩机的技术发展水平是衡量一个国家装备制造业发展水平的标准之一。 2压缩机的分类,发展及工作原理 2.1活塞式压缩机 活塞式压缩机的起源可追溯到我国商代,那时的木质风箱被认为是活塞压缩机的雏形。而近代空气压缩机的发展起源于德国制造成功的真空泵。而后压缩机行业开始迅猛发展并在工业中占有重要地位。70年代初期, 德国德累斯顿技术大学提出著名的各类压缩机技术演化完善度评估曲线。70年代以前,工艺流程用的往复活塞式压缩机,单机容量大、年产台数多、年销售总额最大、最能代表技术水准的是合成氨及空气分离装置两大类用途压缩机。近25年来,工艺流程用的往复活塞式压缩机的制造、销售及技术开发热点主要集中在炼油及石油化工企业多种装置/流程所需多品种,大中功率,中高压力氢气压缩机。石油、天然气企业天然气集输及天然气回注采油用多品种、大中功率、中高压力天然气压缩机以及天然气汽车加气站用CNG压缩机等方面。 工作原理:压缩机主要部件包括机身、曲轴、连杆、十字头,接筒,气缸,活塞,密封填料工作时将气体封闭在一定容积气缸内,通过曲轴旋转带动活塞往复运动压缩气体使气体压力升高,到达排气压力后排出,实现气体升压过程。再吸入低压气体。曲轴旋转一周为一个工作循环。往复式压缩机是目前应用最广泛的一种压缩机。 往复式压缩机根据压缩动作可分为单作用压缩机(气体只在活塞一侧进行压缩),双作用压缩机(气体在活塞两侧均进行压缩),多缸单作用压缩机,多缸双作用压缩机。 其特点是适用压力广泛,不论流量大小,均能达到所需压力。排气范围大,不受压力影响。装置系统简单,可维修性强。热效率高,单位耗电少。但是其排气不连续,造成气体脉冲,转速不高,体积大且重,运转有较大震动,易损件多。

各种空压机工作原理动图(完整版)

各种压缩机工作原理动图(完整版) 一、活塞式压缩机 活塞式压缩机的工作是气缸、气阀和在气缸中作往复运动的活塞所构成的工作容积不断变化来完成。如果不考虑活塞式压缩机实际工作中的容积损失和能量损失(即理想工作过程),则活塞式压缩机曲轴每旋转一周所完成的工作,可分为吸气,压缩和排气过程。 活塞式压缩机工作原理: 压缩过程:活塞从下止点向上运动,吸、排汽阀处于关闭状态,气体在密闭的气缸中被压缩,由于气缸容积逐渐缩小,则压力、温度逐渐升高直至气缸内气体压力与排气压力相等。压缩过程一般被看作是等熵过程。 排气过程:活塞继续向上移动,致使气缸内的气体压力大于排气压力,则排气阀开启,气缸内的气体在活塞的推动下等压排出气缸进入排气管道,直至活塞运动到上止点。此时由于排气阀弹簧力和阀片本身重力的作用,排气阀关闭排气结束。 二.双螺杆压缩机 双螺杆压缩机具有一对互相啮合、相反旋向的螺旋形齿的转子。大气通过进气过滤器将灰尘或杂质滤除后,经进气控制阀进入螺杆空气压缩机机头的吸气齿槽容积腔中,随着阳、阴转子啮合运动,齿槽容积腔中的空气被逐渐压缩,当空气被压缩到规定的压力时,压缩空气即从特定的排气孔口排出,然后流经油气分离罐,此时压缩排出的含油气体在油气分离罐内通过碰撞、拦截、重力作用,绝大部份的油介质被分离下来,然后进入油气分离芯进行二次分离,得到含油量很少的压缩空气,最后通过空气冷却器冷却排出,完成整个工作过程。(国

内做的比较成熟的双螺杆空压机公司是广东艾高,专注螺杆空压机20多年,微信:艾高空压机) 三、单螺杆压缩机 螺杆式压缩机又称螺杆压缩机。20世纪50年代,就有喷油螺杆式压缩机应用在制冷装置上,由于其结构简单,易损件少,能在大的压力差或压力比的工况下,排气温度低,对制冷剂中含有大量的润滑油(常称为湿行程)不敏感,有良好的输气量调节性,很快占据了大容量往复式压缩机的使用范围,而且不断地向中等容量范围延伸,广泛地应用在冷冻、冷藏、空调和化工工艺等制冷装置上。以它为主机的螺杆式热泵从20世纪70年代初便开始用于采暖空调方面,有空气热源型、水热泵型、热回收型、冰蓄冷型等。在工业方面,为了节能,亦采用螺杆式热泵作热回收。 四、转子式压缩机 转子式压缩机通过由发动机或电动机驱动(多数为电动机驱动),另一转子(又称阴转子或凹转子)是由主转子通过喷油形成的油膜进行驱动,或由主转子端和凹转子端的同步齿轮驱动。压缩机汽缸内装有一对互相啮合的螺旋形阴阳转子,两转子都有几个凹形齿,两者互相反向旋转。转子之间和机壳与转子之间的间隙仅为5~10丝,主转子(又称阳转子或凸转子),通过由发动机或电动机驱动(多数为电动机驱动),另一转子(又称阴转子或凹转子)是由主转子通过喷油形成的油膜进行驱动,或由主转子端和凹转子端的同步齿轮驱动。所以驱动中没有金属接触(理论上)。 五、离心式压缩机

轴流式压缩机

一、轴流式压缩机简介 轴流式压缩机是属于一种大型的空气压缩机它是由3大部分组成,一是以转轴为主体的可以旋转的部分简称转子,二是以机壳和装在机壳上的静止部件为主体的简称定子(静子),三是壳体、密封体、轴承箱、调节机构、联轴器、底座和控制保护等组成。 轴流压缩机主要是由机壳、叶片承缸、调节缸、转子、进口圈扩压器、轴承箱、油封、密封、轴承、平衡管道、伺服马达、底座等组成。 轴流式压缩机的静叶可调机构和带动该机构的中间气缸,机壳是标准化的同一种型号不同级数的机壳,进排气缸是一样的,不同级数机身长度的改变组合木模来实现,当级数不用时,除轴向长度不同外,其它所有结构都一样。主轴都是为镍铬合金钢,叶片材料为铬不锈钢,静叶内缸结构尺寸、轴封、密封、联轴器级轴流式压缩机的附属设备、润滑油系统、控制系统、保护系统都是非常智能型的。前6级的反动为百分之70,以后几级的反动向为百分之100。 压缩机底座由钢板焊接而成,压缩机本体重量通过下壳体的支腿,支撑在底座的4个支柱上,下机壳与底座上的支座间有定位及导向结构,整个轴流式压缩机的重量支撑在4个支柱上,其低压侧的2个支柱与机壳支腿的上下面做成球面的,支柱与支腿之间的间隙因此允许机器低压侧在各个方向上摆动以适应受热膨胀。定子的死点在高压侧,所以高压侧的支柱不允许机器的高压侧轴向移动,只允许在垂直于轴的横向移动。为了保持轴孔的水平高度不变,高压侧的2个支柱为特殊材料做成,不会因受热而伸长。

当我们启动轴流式压缩机后,空气从压缩机过滤器中进入,同时产生的噪声会沿着进气口传出,然后经过整流栅使吸入的气流稳定,为隔离压缩机对吸气管道的机械震动、降低噪音,同时补偿压缩机的热膨胀位移,也利于压缩机检修时设备对中调整,在压缩机与吸入气管道的连接处配置了柔性补偿器。采用柔性合成胶材料,其耐温以产生逆流时的风温,经过进气节流阀来控制压缩机启动带来的阻力,当压缩机运行稳定后,压力值上升到指定时。进气调节阀开始关闭,放空阀动作卸掉内部多余的气压。 二、轴流压缩机的基本工作原理 图1-5为轴流压缩机的构造示意图。在压缩机主轴上安装有多级动叶片,整个通道由收敛器、进口导流叶片、各级工作叶片(动叶片)和导流叶片、扩压器等组成。气体由进口法兰流经收敛器10,使进人进日导流叶片1的气流均匀,并得到初步的加速。气流流经进口导叶叶片间的流道,使气流整理成轴向流动,并使气体压力有少许提高。转子8由原动机拖动作高速旋转,由工作叶片2将气流推动,使之大大加速,这是气体接受外界供给的机械能转变为气体动能的过程。高速气流流经导流叶片3构成的流道(相当于扩压管),在其中 降低流速而使气体压缩,这是靠减少气流动能来使气体压缩的升压过程。一列工作叶片(动叶)与一列导流叶片(静叶)构成一个工作级。气体连续流经压缩机的各级,逐级压缩升压。最后经整流装置4将气流整理成轴向,流经扩压器7,在扩压器中气流速度降低,压力升高,最后汇入蜗壳经出口法兰排出压缩机。 轴流压缩机每级的增压比不大,约为1.15~1.25,若要获得较高压力,需要较多的级。例如压比为4的空气压缩机,一般需要十几级。 三、轴流式压缩机的技术特点 1、一是轴流压缩机气体动力学设计采用最先进的三元流理论和优化设计方法;采用效率高、压头大的新型叶栅,成功进行了各种反动度叶型组合设计。在同样参

压缩机工作原理及结构

下面简单介绍几种压缩机的工作原理及结构 一、离心压缩机的工作原理及结构 汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。级间的串联通过弯通,回流器来实现。这就是离心式压缩机的工作原理。

二、螺杆式空压机工作原理及结构 可以从以下来阐述,其中包含吸气、封闭及输送、压缩及喷油、排气四个过程。各个步骤介绍如下: 1、吸气过程: 螺杆式的进气侧吸气口,必须设计得使压缩室可以充分吸气,而螺杆式空压机并无进气与排气阀组,进气只靠一调节阀的开启、关闭调节,当转子转动时,主副转子的齿沟空间在转至进气端壁开口时,其空间最大,此时转子的齿沟空间与进气口之自由空气相通,因在排气时齿沟之空气被全数排出,排气结束时,齿沟乃处于真空状态,当转到进气口时,外界空气即被吸入,沿轴向流入主副转子的齿沟内。螺杆式空压机维修提醒当空气充满整个齿沟时,转子之进气侧端面转离了机壳之进气口,在齿沟间的空气即被封闭。 2、封闭及输送过程: 主副两转子在吸气结束时,其主副转子齿峰会与机壳闭封,此时空气在齿沟内闭封不再外流,即[封闭过程]。两转子继续转动,其齿峰与齿沟在吸气端吻合,吻合面逐渐向排气端移动。螺杆式空压机维修过程三。 3、压缩及喷油过程: 在输送过程中,啮合面逐渐向排气端移动,亦即啮合面与排气口间的齿沟间渐渐减小,齿沟内之气体逐渐被压缩,压力提高,此即[压缩过程]。而压缩同时润滑油亦因压力差的作用而喷入压缩室内与室气混合。 4、排气过程: 当螺杆空压机维修中转子的啮合端面转到与机壳排气相通时,(此时压缩气体之压力最高)被压缩之气体开始排出,直至齿峰与齿沟的啮合面移至排气端面,此时两转子啮合面与机壳排气口这齿沟空间为零,即完成(排气过程),在此同时转子啮合面与机壳进气口之间的齿沟长度又达到最长,其吸气过程又在进行。

压缩机的用途、种类及各类压缩机的比较

一、压缩机的用途 根据压缩气体使用的目的不同,将压缩机的应用分为以下四个方面: 1.动力用压缩机 是利用压缩空气作为动力风源:如机械、矿山、建筑等工业中使用压缩空气驱动风动工具;如控制仪表及自动化装置的仪表风;如纺织工业中用压缩空气吹送纬纱;如食品、制药行业用压缩空气来搅拌浆液;如交通运输业用压缩空气来制动车辆等。 ——我公司的常规喷油螺杆、动力活塞压缩机均属于此类。 2.化工工艺用压缩机 石化行业所需压缩机种类 在化学工业中,将气体压缩至高压,有利于化学反应。 如化肥生产中的合成氨是由氮气和氢气在合成塔中高压下合成而得,这里就要用到氮氢气压缩机和循环压缩机。如尿素是由二氧化碳和氨合成,这里就要用到二氧化碳压缩机。 如塑料、人造纤维、人造橡胶等行业要用到聚乙烯压缩机。石油精炼,常要把氢加热加压后与油反应,使碳氢化合物重组分裂化成轻组分的碳氢化合物,此时要用到氢气压缩机等。 如炼油成套生产中常用的压缩机主要有催化裂化装置的主风机和富气压缩机,催化重整装置和加氢装置的循环氢压缩机和新氢压缩机,焦化装置的焦化气压缩机等。乙烯成套生产装置中的压缩机数量最多,如一烯裂解装置中的裂解气压缩机、丙烯压缩机、乙烯压缩机,丁二烯抽提装置中的丁二烯压缩机,聚乙烯装置和聚丙烯装置中的循环气压缩机、回收气压缩机和尾气压缩机,PTA装置和丙烯腈装置中的工艺空气压缩机、氢气压缩机等。 空分空压装置中的压缩机主要有空气压缩机、氧气压缩机、氮气压缩机等。 其中,乙烯裂解装置中的裂解气压缩机、丙烯压缩机和乙烯压缩机,俗称乙烯“三机”,这一块的能耗占装置总能耗的30%~40%,是石化工业中最为重要的离心压缩机;高压聚乙烯装置中的超高压压缩机是石化生产装置中压力最高的往复压缩机,排气压力达到310MPa。 ——我公司的工艺机事业部的产品、部分迷宫机的产品属于此类。

压缩机结构介绍

压缩机结构介绍 一、压缩机分类 压缩机按结构形式的不同分类如下: 按其原理可分为: 往复式(活塞式)压缩机、回转式(旋转式)压缩机(涡轮式、水环式、透平)压缩机,轴流式压缩机,喷射式压缩机及螺杆压缩机等各种型式,其中应用最为广泛的是往复式(活塞式)压缩机。 活塞式压缩机怎样分类? 活塞式压缩机分类的方法很多,名称也各不相同,通常有如下几种分类方法:(一)按压缩机的气缸位置(气缸中心线)可分为: (1)卧式压缩机,气缸均为横卧的(气缸中心线成水平方向)。 (2)立式压缩机气缸均为竖立布置的(直立压缩机)。 (3)角式压缩机,气缸布置成L型、V型、W型和星型等不同角度的。 (二)按压缩机气缸段数(级数)可分为: (1)单段压缩机(单级):气体在气缸内进行一次压缩。 (2)双段压缩机(两级):气体在气缸内进行两次压缩。 (3)多段压缩机(多级):气体在气缸内进行多次压缩。 (三)按气缸的排列方法可分为: (1)串联式压缩机:几个气缸依次排列于同一根轴上的多段压缩机,又称单列压缩机。 (2)并列式压缩机:几个气缸平行排列于数根轴上的多级压缩机,又称双列压缩机或多列压缩机。 (3)复式压缩机:由串联和并联式共同组成多段压缩机。 (4)对称平衡式压缩机:气缸横卧排列在曲轴轴颈互成180度的曲轴两侧,布置成H型,其惯性力基本能平衡。(大型压缩机都朝这方向发展)。 (四)按活塞的压缩动作可分为: (1)单作用压缩机:气体只在活塞的一侧进行压缩又称单动压缩机。 (2)双作用压缩机:气体在活塞的两侧均能进行压缩又称复动或多动压缩机。(3)多缸单作用压缩机:利用活塞的一面进行压缩,而有多个气缸的压缩机。

压缩机主要工作原理

主要工作原理 螺杆压缩机是利用一对相互啮合的阴阳转子来实现空气的持续吸气、压缩、排气等过程,主动转子为5纹螺旋,从动转子为6条齿槽,采用独特齿形,可产生高压缩效率。 1.空气从进气口吸入,充满封闭的齿轮间。 2.转子通过旋转的啮合使封闭的齿形的容积缩小,从而使空气得到压缩。 3.空气从敞开的齿间排出 以上过程随着转子不停的旋转啮合,不断产生脉动空气。 压缩空气中的水份来自何处? 一般大气中的水份皆呈气态,不易察觉其存在,但若经空气压缩机压缩及管路冷却后,则会凝结成液态水滴。举例说明:在大气温度30°c,相对湿度75%状况下,一台空气压缩机,吐出量3nm3/min,工作压力为0.7Mpa,运转24小时压缩空气中约含100l的水份。 为何须要干燥的空气? 假如没有使用任何可以除去水气的方法,立即可见的影响是造成产品品质不良,设备发生故障,严重影响生产流程,增加生产成本等不良后果,损失甚巨。 什么是露点温度? 即是一种检测压缩空气系统干燥度的温度,换句话说,就是空气中水份凝结成水滴的温度。露点温度愈低,压缩空气中所含的水份就愈少。 冷冻式压缩空气干燥机根据空气冷冻干燥原理,利用制冷设备将压缩空气冷却到一定的露点温度后析出相应所含的水分,并通过分离器进行气液分离,再由自动排水器将水排出,从而使压缩空气获得干燥。 离心压缩机:指气体在压缩机中的运动是沿垂直于压缩机轴的径向进行的。离心压缩机排气均匀,气流无脉冲,无油,性能曲线平坦,操作围较宽。 压缩和压缩比 1、压缩 绝热压缩是一种在压缩过程中气体热量不产生明显传入或传出的压缩过程。在一个完全隔热的气缸上述过程可成为现实。等温压缩是一种在压缩过程中气体保持温度不变的压缩过程。 2、压缩比:(R)

相关文档