文档库 最新最全的文档下载
当前位置:文档库 › 工业微生物化学诱变育种研究及应用进展

工业微生物化学诱变育种研究及应用进展

工业微生物化学诱变育种研究及应用进展
工业微生物化学诱变育种研究及应用进展

 [收稿日期]2008-05-18

 [作者简介]欧平(1970-),男,广西贺州学院讲师,微生物专业在读硕士。主要研究方向:微生物学。

工业微生物化学诱变育种研究及应用进展

欧 平

(贺州学院,广西 贺州 542800)

[摘 要]文章着重介绍了当代化学诱变技术、发生突变的机理和诱变效率,概述了化学诱变的原理及

其在工业微生物育种上的应用进展,选择性地介绍了几种公认有效的突变剂的作用机理。

[关键词]微生物;化学诱变;诱变剂

[中图分类号]Q933 [文献标识码]A [文章编号]1673-8861(2008)03-0139-06 变异是生物进化的基础推动力(Stebbins 1950),也是保证物种多样性的前提,是其他任何方式不能代替的重要演变方式。人为地利用这种方式,用尽可能小地影响基础生命代谢的方式最大限度地追求对物种变异的加速,正是诱导变异的研究目的。诱变育种是人为地利用诱变因素诱发生物遗传变异,在较短时间内获得有利用价值的突变体,根据育种目标要求,选育成新品种直接生产利用,或育成新种质作亲本在育种上利用的育种途径。诱变育种对于品种的改良有着很大的贡献,而在生物的生理机制研究中,诱变技术也功不可没,许多代谢途径的发现都是建立在若干突变体的基础上的。随着分子水平的深入研究,与诱变相关的基因um u D 、C 和di n B 的克隆,以及其他突变机理的进一步明晰,诱变育种的工作变得更为有序和可操纵。

1927年,Muller 发现X 射线能诱发果蝇基因突

变,从此开创了诱变育种技术的先河。诱变育种技术发展至今形成了3种技术:辐射诱变、定点诱变和化学诱变。世界化学诱变育种研究工作始于20世纪50年代,我国近几十年来这方面的研究工作也有了较大进展。20世纪70年代以来,诱变因素从早期的单一诱变剂发展到多种化学诱变剂和生理活性物质,诱变方法从单一处理发展到复合处理,同时,诱变育种与组织培养等密切结合,大大提高了诱变育种的实际意义。

从自然环境中分离,经过简单筛选而获得的的产酶菌株虽然具备了一定的产酶能力,但是要达到某种特定代谢产物的大量积累,实现高产、优质和低

耗的高效转化,则需要对菌株进行改良,解除或突破微生物的代谢调控[1]。微生物育种手段主要有:诱变育种、杂交育种和基因工程育种。虽然现代的基因操作技术对菌株改造更为精准,但实际工业化生产上所使用的产酶菌株,仍然是多采用一些传统诱变技术。诱变育种就是利用物理、化学等诱变剂处理均匀而分散的微生物细胞群,在大大提高其突变频率的基础上,采用适当的筛选方法获得所需要的突变菌株,以供科学实验和生产实践使用[2]。由于化学诱变育种技术还具有易操作、剂量易控制、对基因组损伤小、突变率高等特点,因而近年来成为运用最为广泛的诱变技术。经过近一个世纪的不断发展和完善,化学诱变育种技术已成为目前工业微生物育种中最为常用、最有效的技术之一。

1.化学诱变的主要原理

化学诱变是通过采用一些分子结构不太稳定的化学诱变剂进行的,它通过化学试剂造成生物的损伤和错误修复,产生突变体。这些突变以点突变为主,并且因试剂不同具有某些相对高频而且较为稳定的突变谱。单一碱基对改变而形成的点突变是化学诱变的主要形式。

化学诱变剂主要指某些烷化剂、碱基类似物、抗

生素等化学药物,常见的有甲基磺酸乙酯(EMS )、硫酸二乙酯(DES )、叠氮化钠(SA )和乙烯亚胺(EI )等,这些化合物通过与核苷酸中的磷酸、嘌呤和嘧啶等分子直接反应来诱发突变,并对某特定的基因或核酸有选择性作用[3]。

其中烷化剂因可与核酸的碱基等直接发生化学

反应,在复制时导致碱基错配,故更易引起基因突变,常用的有亚硝基胍(N TG)、硫酸二乙酯(DES)、甲基磺酸乙酯(EMS)、乙烯亚胺和环氧乙酸等。一般来说处理剂量大,致死率高,单位存活的正突变菌株少,但是在不多的正突变菌株中可能会有目的产物产量大幅提高的突变株;处理剂量小,致死率低,单位存活的正突变菌株虽多,但一般目的产物产量提高不大,并且由于正突变菌株量过多,会大大增加复筛的工作量。不过因为各种诱变剂各有其特殊性、致死和变异作用并非同一过程的平行效应且有些菌株只对某些特定的诱变剂敏感,所以对诱变剂的选择很大程度上依赖于经验以及最初在实验室所做的尝试性工作。

化学诱变的特点:突变频率比自然突变高几百倍至几千倍,且变异谱广泛;由诱变引起的断裂与重接,可打破优良性状与不良性状间的连锁;能比较有效地提高个别微生物的产酶量;育种程序简单,年限短;变异的方向和性质不定;诱发的变异较易稳定;使用经济方便,只需少量的药剂和简单的设备。

不同诱变剂对不同植物、组织或细胞、染色体节段、基因的诱变有一定专一性。在选择诱变剂时,还要考虑下列标准:诱变剂的有效性、效率和专一性,这是解决定向突变的一条途径。

化学诱变剂在微生物上的应用一般认为始于上世纪中,通过近几十年的研究,人们对诱变原理的认识也逐步加深。我们知道,常规杂交育种基本上是染色体的重新组合,这种技术一般并不引起染色体发生变异,更难以触及到基因。而利用化学诱变,有的药剂是用其烷基置换其它分子中的氢原子,也有的本身是核苷酸碱基的类似物,它可以“鱼目混珠”,造成DNA复制中的错误,无疑这些都会使微生物的基因发生突变。化学因素的诱导作用使得细菌的突变率比平时高出千百倍,有些变异是其它手段难以得到的。可遗传的优良性状一经获得便可育成品种或种质资源。

2.化学诱变在工业微生物育种上的研究与应用

2.1 化学诱变育种技术

化学诱变剂与物理辐射相比在作用方式上和生物学效应的均有较大差异[4],其优势主要有以下几个方面:第一,化学诱变剂靠各自的活性基团和特有的化学特性直接与生物分子进行化学反应,是化学基团之间的反应,更多的是引起分子水平上的变化,对生物分子的影响是个别、局部的,不利作用少[5];第二,化学诱变剂引起的突变频率较高,尤其是产生非常高的叶绿素突变频率[6],就突变的数量而言要

比辐射有效得多;第三,化学诱变剂有特异性,遗传变异定位的程度比辐射高,诱发的突变性状有明确的专一性。此外,化学诱变剂很经济,用量少,操作方便。

化学诱变育种是通过化学诱变剂诱发微生物基因或染色体畸变,经过培育和筛选,育成产酶量高的品种的新方法。其优点是突变遗传性状稳定快,可以缩短育种进程。化学诱变育种的一般步骤为:出发菌株叶纯化→斜面培养→单细胞或单孢子悬液→诱变剂处理→平板分离→斜面培养→初筛→斜面培养→复筛→斜面培养→中试→生产实践。

2.2 化学诱变育种工作的原则

2.2.1 选择简便有效的诱变剂。

2.2.2 挑选优良的出发菌株(即用于育种的原始菌株)。

2.2.3 处理单细胞或单孢子悬液,使呈分散状态,均匀接触诱变剂。细菌或酶母菌悬液中加玻璃珠并振荡,或用脱脂棉过滤,可获均匀分散的单细胞悬液。放线菌和霉菌的菌丝是多核的,诱变育种应用其单核的孢子。用稀释的表面活性剂制备单孢子悬液,常用的表面活性剂是吐温-80(Tween-80),浓度0.01%~0.1%。

2.2.4 选用最适剂量:在高诱变率的前提下,既能扩大变异幅度,又能促使变异移向正变范围的剂量,即为最适剂量。

2.2.5 利用复合处理的协同效应:两种或多种诱变剂的先后使用,同一种诱变剂的重复使用,两种或多种诱变剂的同时使用,均常呈现一定的协同效应,会取得更好的诱变效果。

2.2.6 利用微生物形态、生理与产量间的相关指标,如变色圈、水解圈、抑菌圈、反应圈的大小等,以便在初筛中即可从形态性状估计其生产潜力。

2.2.7 设计和采用高效筛选方案和方法,以期花费最少的工作量,在最短的时间内,取得最大的成效。

2.3 化学诱变技术突变机理及诱变效率

2.3.1 化学诱变中DNA损伤、修复系统与适应性突变

自然条件下,损伤和发生复制差错的频率都是很高的。Ames[7](1989)对鼠肝脏因氧化作用引起的损伤作了统计,核基因组每130000bp有1个损伤,线粒体中每8000bp有一个碱基损伤。DNA复制的错误包括转座、倒位、移码和丢失。Haynes和Kunz(1988)报道,复制错误频率大约是10-2,即:“每一个复制的基因中会出现一个错误”。尽管这些

错误大部分被各种DNA修复系统,包括复制中的和复制后的修复作用修复到人们公推的每个体10-8~10-9次突变。修复系统的高效率是物种维持遗传稳定的决定因素。

由近年来的研究来看,修复系统的作用是明显的,只不过它的功能并不是精确无误的。Hall在选择压力下为获得适应性作的基因水平的突变似乎是被允许的,有选择性压力比中性环境能获得更多的基因突变。突变形成只出现在包含允许错误修复的DNA聚合酶IV的编码基因din+的克隆里,筛选条件既可以刺激lac突变体的反转突变,也可以促使野生型基因发生适应性突变[8]。Grzesiuk-E;Janion-C[9](1994)用MMS诱变大肠杆菌报道了umuDC依赖型的突变。在umuDC蛋白过量表达的细胞中富含A T的argE(ochre)-Arg(+)和另一基因Rif(R)-Rif(R)突变率增高。他们的研究也表明:MMS诱导产生的突变位点在细胞饥饿时被RecA催化的重组修复方式修复。正常情况下,RecA催化的重组修复方式是避免复制错误发生的途径,但在代谢活跃的细胞里,由于有UmuDC-RecA翻译合成的DNA聚合酶3全酶复合体的出现,也会以易产生差错的修复途经进行修复。以上研究不同程度地表明微生物为在逆境中求生是可以产生适应性突变的。

Bunnv-K im[10](2002)等人对阻遏蛋白LexA 编码基因进行诱变,发现沙门氏菌中失效突变体是致死突变,也就是说LexA失效突变体不是突变效应的增效基因。这一结果和大肠杆菌中一样。进一步研究表明:RecA和LexA是特殊修复方式的作用因子。能造成DNA损伤或复制受抑制的逆境会引发一系列称为应急反应(SOS response)的复杂的诱导修复效应。在不利环境中,突变有利于生物的生存的情况下,细胞为避免死亡而启动这项特殊的求生功能,包括DNA损伤修复、诱变效应、细胞分裂的抑制以及溶原性细菌释放噬菌体等。有DNA修复和导致变异两条支路,具有双重功效。SOS反应由RecA蛋白和LexA阻遏蛋白相互作用引起。RecA蛋白是SOS 反应系统的发动因子,单链DNA和A TP存在时, RecA蛋白被激活,促进LexA阻遏蛋白水解,使SOS 反应的一系列基因得到表达,其中包括紫外线损伤的修复基因uv r A,uv r R,uv r O(分别编码切除酶的亚基)以及Rec A和L ex A基因本身,与诱变作用有关的基因um u DC和di n R,与细胞分裂有关的基因sul A,ruv和lon等等。

从突变的后果看,并非所有的碱基改变都能影响基因的功能和表型。可能性有3个,即基因功能的丢失、新功能的获得和对基因表达完全没有影响,分别由编码区的突变和非编码区的突变引发。基因编码区的突变可能会引起单个碱基的替换、缺失等,从而造成合成的蛋白质类型改变,造成基因功能的丢失或新功能的获得;或者因移码引起阅读框改变合成了另一种蛋白质或提前终止转录转译而不合成有功能蛋白,也能造成基因功能改变或尚失。而非编码区的突变是否影响基因功能就有很强的选择性。以E Coli乳糖操纵子为例,阅读框上游-10~-35非保守区发生碱基突变并不影响下游基因的启动转录,但-70~50和-50~40区,-10区的突变影响就很大,可以引起基因功能的变化甚至表型变化。起始位点上,甚至单独一个碱基的突变都造成基因表达失活,产生表型变异。

2.3.2 诱变效率

尽管微生物自然突变率只有10-8~10-9,化学诱变率也只不过比自然突变率增加10倍,但人们在过去的几十年已获得了许多的突变体并形成品种用于生产或研究。给出不完全统计数据:过去几十年全世界其中利用化学诱变育成微生物新品种约占诱变育成品种的50%以上。近年来,一方面随着高效低诱变剂等的使用,诱变的效率得到了提高,方法也更为多样化;另一方面,由于化学诱变的操作可控性强、与新的分子生物学技术结合较容易,效率也有了较大的上升,由此化学诱变的使用频率迅速上升,很快成为诱变的主流方法。

诱变的效率首先受基因型限制,其次因化学诱变剂的种类、浓度、处理时间不同而不同。化学诱变效率得以提高的关键在于两方面:一是获取足够大的诱变群体;二是科学家的研究证实获得高于自然变异的突变率是可能的。突变来源于染色体畸变、DNA损伤、DNA复制错误和修复系统对错误的忽略。突破生物体的保护,造成DNA损伤并在复制中保存下来,使错误复制通过修复系统的作用稳定遗传给子代,这些环节的加深认识和技术突破使得诱变率得以提高成为可能。

2.4 工业微生物育种的几种诱变剂

化学诱变剂大致包括碱基类似物、碱基修饰剂和嵌入染料3大类。碱基类似物是与DNA正常碱基结构类似的化合物,能在DNA复制时取代正常碱基掺入并与互补碱基配对。如5-溴尿嘧啶(BU)和2 -氨基嘌呤(AP),都能引起碱基对转换为碱基对;碱基修饰剂通过对DNA碱基进行修饰作用而改变其配对性质。有专一作用于胞嘧啶的羟胺和种类众多、目前运用最多、效率公认为最好的烷化剂系列,

包括氮芥、甲基磺酸乙酯(EMS)、乙磺酸乙酯(EES)、甲基磺酸甲酯(MMS)、亚硝基胍(N TG)等等;吖啶橙(acridine)、溴化乙锭(EB)等可插入到碱基对之间的染料,被称作嵌入染料,也是较强的诱变剂,能造成两条链错位或移码突变。此外,叠氮类化合物和一些抗生素也被人们认为是良好的诱变剂。本文选择介绍EMS、N TG、DES、叠氮钠和亚硝酸钠等常用的诱变剂,并介绍了一些近年新的化学诱变剂。

2.4.1 EMS分子式CH3SO2OC2H5,中文名为甲基磺酸乙酯,无色液体,分子量124,水中溶解度为8%。p H为7的条件下在水中半衰期20℃时是93 h,30℃时26h。EMS是烷化剂的一种。烷化剂通常带有1个或多个活性烷基,此基团能够转移到其它电子密度高的分子上去,使碱基许多位置上增加了烷基,从而在多方面改变氢键的能力。EMS被证明是最为有效而且负面影响小的诱变剂。与其他烷化诱变剂类似,是通过与核苷酸中的磷酸、嘌呤和嘧啶等分子直接反应来诱发突变。EMS诱发的突变主要通过两个步骤来完成,首先鸟嘌呤的06位置被烷基化,成为一个带正电荷的季铵基团,从而发生两种遗传效应:一是烷化的鸟嘌呤与胸腺嘧啶配对,代替胞嘧啶,发生转换型的突变;二是由于鸟嘌呤的N27烷基活化,糖苷键断裂造成脱嘌,而后在DNA复制过程中,烷基化鸟嘌呤与胸腺嘧啶配对,导致碱基替换,即G:C变为A:T。当然,化学诱变存在着染色体结构和数量方面的诱导变异,但这种单一碱基对改变而形成的点突变仍是化学诱变的主要形式,这样的点突变将是品种改良和退化特性恢复的希望所在。诱变剂也可与核苷结构的磷酸反应,形成酯类而将核苷酸从磷酸与糖分子之间切断,产生染色体的缺失。这些DNA结构上的变化都可能促使不表达的基因或区段被激活,而表现出被掩盖的性状。EMS 化学诱变产生点突变的频率较高,而染色体畸变相对较少,可以对作物的某一种特殊性状进行改良。与其它诱变剂相比,EMS诱变后产生的突变频率高,且多为显性突变体,易于突变体的筛选,是目前运用最广泛也是公认最为有效的诱变剂。

2.4.2 N TG是一种黄色结晶状物质,不溶于水,使用时应新鲜配制并先溶于助溶剂(如丙酮)。N TG会根据溶液不同的PH值产生不同的分解产物:在酸性条件下,分解成对菌株进行诱变;在中性条件下(p H=7),N TG本身和DNA起烷化反应而引起突变;在碱性条件下(p H>8),N TG会分解成重氮甲烷CHO2N2,对DNA起烷化作用。过程是称取一定量的N TG溶于少量丙酮,加入5ml最佳稀释度的菌悬液(从原始菌液稀释时,要用三种不同的缓冲液:p H<6.0,PH中性,p H>8.0)使其终浓度为1mg/ml,适当温度轻微振荡作用不同的时间,将菌悬液洗涤三次终止反应后涂布于平板筛选培养基上,在适当温度培养。

2.4.3 叠氮化钠(NaN3)是一种呼吸抑制剂,能引起染色体畸变和基因突变,可获得较高的突变频率。NaN3等电点是p H为4.18,在p H为3时NaN3溶液中主要产生呈中性的分子HN3,易透过膜进入细胞内,以碱基替换方式影响DNA的正常合成,从而导致点突变的产生。由于NaN3只作用于复制中的DNA,所以处理种子时把种子预浸到种胚中,有利于提高处理效果。NaN3具有高效、无毒、便宜及使用安全等优点。

2.4.4 硫酸二乙酯(DES)是一种烷化剂,在水溶液中的水解半衰期很短,30℃时为一个小时,所以需要在用前新鲜配制。取0.5ml硫酸二乙酯加入4.5ml95%乙醇制成储备液,取不同体积的储备液和最佳稀释度的菌液混合,使其体积比(DES/菌液分别为不同值。适当温度振荡处理不同的时间,将菌悬液洗涤三次终止反应后涂布于平板筛选培养基上,在适当温度培养。

2.4.5 亚硝酸是一稀常用的诱卞剂,毒性小.不稳定,易挥发.其钠盐易在酸性缓冲液中产生NO 和NO2。亚硝酸的诱变机制是脱去碱基中的氨基变成酮基,引起转换而发生变异。A→H,C→U,G→X。A:T→G:C和G:C→A:T。亚硝酸的诱变也可以发坐回复突变。亚硝酸除了脱氨基作用外,还可引起DNA交联作用,DNA复制,从而导致奕变。

ENS、DES、N TG、NaN3和亚硝酸等为常用的工业微生物化学诱变剂,下面介绍一些新的化学诱变方法和试剂。

2.4.6 移码诱变剂

移码诱变剂与DNA相互结合引起碱基增添或缺失而造成突变。它们主要包括吖啶黄、吖啶橙、ICR-171、ICR-191等。移码诱变剂对噬菌体有强烈的诱变作用,诱发细菌、放线菌的质粒脱落比其他诱变剂效果更为显著。如某些产生抗生素的放线菌。用处理后,发现产量明显下降,主要就是由于控制抗生素合成的质粒脱落造成的。

吖啶黄是淡黄色晶体,微溶于热水,溶于乙醇和乙醚,不稳定,见光易分解。使用时,先用少许乙醇溶解,配成一定浓度的母液。通常处理方法是特它们加入培养基中,使最后浓度为10-50ug/ml,混合后制

成平板,适温培养,在生长过程中处理。另外还可将吖啶黄加人到培养液中,浓度为10-20ug/ml,在适温条件下,振荡培养过程中处理。

2.4.7 羟化剂(以羟胺为例)

羟胺的简称HA,常以盐酸羟胺形式存在,为白色晶体,溶于水,不稳定易分解,具腐蚀性。

羟胺的诱变机制:当羟胺浓度为0.1~1. 0mol/l p H6.0时,主要与胞嘧啶反应,使羟化的C与A配对,在0.1~1.0mol/lp H9.0,羟胺可以与鸟嘧啶反应,10-3mol/L时,羟胺可以与胸腺嘧啶、鸟嘌呤和尿嘧啶起反应。但据分析,羟胺与T、G反应的是它的产物,而不是它本身。此外,羟胺有时还能和细胞中其他物质作用产生过氧化氯,也具有诱变作用。

羟胺的处理方法:常用浓度为0.1%~5%,可直接在溶液中处理,时间1~2h,然后分离培养。但一般都加到琼脂平板或振荡培养基中。然后接入孢子或细菌,在适温下培养,生长过程中处理.所用浓度比直接处理时低些。

2.4.8 金属盐类

用于诱变育种的金属盐类主要有氯化锂、硫酸锰等。其中氯化理比较常用,与其他诱变剂复合处理,效果相当显著。氯化锂称之为助诱变剂,氯化锂是白色粉末,易溶于水,使用时通常加到培养基中。为了速免受破坏.倒平板时,当培养基温度冷却到50~60℃时才加入制成平板,然后把细菌或孢子涂布分离,处理终浓度为0.3%~1.5%。

2.4.9 其他化学诱变剂

2.4.9.1 秋水仙素

秋水仙碱是诱发细胞染色休多倍体的诱变剂。秋水仙碱的主要作用是破坏细胞有丝分裂过程中纺锤丝的形成。导致多倍体的产生。

2.4.9.2 抗生素

作为诱变剂的抗生素主要有链黑霉素、争光霉素、丝裂霉素、放线菌素、光辉霉素和阿霉素等。这些抗生素都是抗癌药物,它们在微生物育种中虽有应用,但效果不如烷化剂等诱变剂显著,应用并不广泛。一般不单独使用,常与其他诱变剂一起复合使用。平阳霉素(P YM)是一种抗生素,属于博莱霉素的一类,是博莱霉素的A5组分。目前主要作为抗肿瘤药应用于临床,对多种癌症具有较好的疗效。抗生素具有高度选择性,能抑制细胞的生长,其中的大多数对维持生命有重要意义.作为一种新的诱变剂, P YM在许多实验中均被证明具有安全、高效、诱变频率高、范围大等特点。与EMS的诱变特点相近,在某些方面优于EMS,很具有开发和应用前景。

化学诱变剂多数是极毒的致癌药品,在进行诱变操作后的处置以及诱变剂的保藏等方面的安全防护都是极其重要的。如有疏忽,就可能对健康和环境带来恶果,万万不可麻痹。

2.5 化学诱变在工业微生物育种上的研究与应用

化学诱变研究始于上世纪初,到了上世纪40年代,化学药剂的诱变作用得到了肯定,50年代人们开始探讨化学诱变在工业微生物育种上的应用。在己投入工业发酵生产的五、六十种酶制剂产品中,特别是淀粉酶、脂肪酶和蛋白酶等,其生产菌大多是经过化学诱变的改良菌种。

碱性蛋白酶作为一种重要的蛋白质水解酶,早己实现了工业化生产,但是人们对它研究开发的兴趣方兴未艾。多年以来,国内外对产碱性蛋白酶的生产菌株的选育进行了大量的研究,高产菌种的选育也由传统的单纯使用诱变手段逐步过渡到应用基因工程技术。但利用化学诱变剂单独或复合处理微生物来选育高产变种至今仍是选育碱性蛋白酶高产菌株的常规方法和主要的育种手段。1987年那淑敏等[11]利用亚硝基胍和紫外线复合处理,获得变异株B acill us lichenif ormis533-F13,产酶活力最高达10000U/ml;1990年邱秀宝等从38份土样中筛选到一株嗜碱性短小芽抱杆菌R115[12],经亚硝基肌诱变及利福平抗性株筛选得到高产稳产变异株B45,经发酵条件研究酶活力达到18000U/ml[13];徐子渊等[14]将原碱性蛋白酶生产菌2709进行诱变育种,获得变异株C1213,酶产量提高了40%;郑铁曾等[15]进行了提高C1213菌碱性蛋白酶活力的研究,酶活力提高了170%。

施巧琴[16]于1981年发表了我国第一篇关于碱性脂肪酶生产菌株诱变选育的论文,作者用紫外照射、亚硝基胍、盐酸轻胺、5-溴尿嘧啶、秋水仙碱等诱变方法处理扩展青霉UN-596菌株,得到了高产的突变菌株UN-503,其产生的脂肪酶的活性比原始菌株的增加了近17倍。王龙英[17]等人从蚕茧浸渍腐化水中分离获得一株产碱性脂肪酶菌株y-96,通过紫外线和硫酸二乙酯多次诱变,成功地选育出了一株高产菌株yz-145,其在最适条件下产酶能力为1615U/ml,该突变株通过5次传代培养产酶量稳定,表明其具有良好的稳定遗传性。

耐高温α—淀粉酶通常是指最适反应温度为90℃~95℃、热稳定性90℃以上的。α—淀粉酶,比解淀粉芽抱杆菌生产的中等耐热性α—淀粉酶高

100℃~200℃。早在1915年法国Boiden等开始由枯草杆菌生产细菌淀粉酶,并在工业上用于纺织品退浆。1985年丸尾[18]报道以地衣芽泡杆菌N YK24为出发菌株,对各种诱变方法作了比较,发现N TG 的诱变效果最好,通过六次连续诱变与自然选择,挑选环丝氨酸抗性突变株,随着抗药性增加,酶活力增加了二千倍。

3.结束语

目前,运用ENS、DES、N TG、NaN3、P YM、移码诱变剂、羟化剂和亚硝酸等诱变剂已成为微生物育种中主要的化学诱变技术,并在育种实践中得到了广泛的应用,其在机理方面也有了一定的研究,但还比较肤浅,诱变机理还不甚清楚,给育种工作带来很大的盲目性。今后应深入研究各新型化学诱变源的主要诱变因素作用于出发菌株的生化和分子生物学机理,探讨各诱变因素间的相互作用。同时,对诱变后各变异类型的发生频率和所选性状的遗传规律进行统计分析,以提高菌种选育的可预见性和诱变效率。如利用物理、化学等因素及其综合起来对微生物体的诱变作用机制进行进一步研究。这些新型诱变技术必将在工业微生物诱变育种过程中选育出更多的优良菌株,探索新的化学诱变源的研究将具有广阔的发展前景。

[参考文献]

[1]曲音波,林建强,肖敏.微生物技术开发原理[M].北京:化学业出版社,2005,52-59.

[2]周德庆.微生物学教程(第二版)[M].北京:高等教育出版社,2002,213-223.

[3]杜连恩,罗景兰,葛察明.化学诱变剂EMS在大豆育种上的应用[J].中国油料,1987,(2):44-46.

[4]徐冠仁.植物诱变育种学[M].北京:中国农业出版社,1996,3:203

[5]陆瑞菊,王亦非.诱变处理对青菜和甘蓝不定芽诱导率的影响[J].上海农业科技,1999,2:11-12.

[6]毛炎麟.化学诱变剂的利用[A].见:徐冠仁.植物诱变育种学[C].北京:中国农业出版社,1996:63-74.

[7]Ames,B.n.Endogenons DNA damage as related to Cancer and aging.Mutation Research,1989,214:41-46.

[8]Slechta,- E.-Susan,Bunny,-K im-L;Kugalberg,-Elisabeth.Adaptive mutation general mutagenesis is not a programmed response to stress but results from rave coamplification of dinB with lac[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(22):47-52.

[9]Grzesink,-E;Janion,- C.The frepuency of MMS-induced.umuDC-dependent mutations declines during strarvation in escherichia Coli[J].Molecular-and-G eneral-G enetics(gemany),1994,245(4):486-492.

[10]Bunny,-K im;Liu,-Jing Roth-John.Phenotypes of lexA mutations in salmonellae enterica.Evidence for a lethal lexA nall phenotype due to the fels-2prophage[J].Joumal of Bacteriology,2002,184(22):6235-6249.

[11]那淑敏,余茂效.一株碱性蛋白酶菌株的选育及其发酵条件的研究[J]微生物学报,1988,28(3):235-246,15.

[12]邱秀宝,袁影,戴宏.嗜碱性芽孢杆菌碱性蛋白酶的研究:Ⅱ.诱变株选育及产酶条件[J].微生物学报,1990,30(2): 129-133.

[13]邱秀宝,戴宏,袁影.嗜碱性短小芽抱杆菌碱性蛋白酶的研究[J].微生物学报,1990,(6):445-449.

[14」徐子渊,朱青虹,王建华.地衣型芽抱杆菌C1213碱性蛋白酶的研究[J].食品与发酵工业,1984:12-16.

[15]郑铁昌,涂提坤,黄登禹.提高C1213菌碱性蛋白酶活力的研究[J].食品与发酵工业,1993(1):25-31.

[16]施巧琴.碱性脂肪酶的研究—1菌株的分离和筛选[J].微生物学通报,1981,8:108-110.

[17]王龙英,李孝辉,费笛波.碱性脂肪酶高产菌株yz-145的筛选及产酶条件[J].浙江农业学报,2004,16(3):123-126.

[18]徐凤彩.酶工程[M].北京:中国农业出版社,2001,2.

诱变育种技术

诱变育种技术 诱变育种是利用物理、化学因子,促使育种的原始材料的遗传性发生变异,从而选出优良品种的一种育种方法。它包括物理的辐射诱变和化学诱变两种。 辐射诱变是指利用γ-射线、X-射线、β-射线、中子、无线电微波、激光、紫外线等物理因子,照射植物的种子、植株和其他器官,使它们的遗传物质发生变化,产生各种各样的变异,通常称为突变,然后选择符合人们需要的植株进行培育,从而获得新品种。化学诱变则是利用一些化学药品,来浸泡和处理植物的种子或其他器官,促使突变的发生,从而选育出新的品种。 诱变育种是相对于利用自然突变选种(穗选、株选)而言的,植物在自然条件下生长发育,由于受到各种自然条件的作用,它们的遗传物质也会发生变异。但由于自然条件下的各种引起变异的因子的强度较缓和,自然突变的频率较低,发生的变异数往往满足不了育种选择的需要,所以现代育种中往往采取较强的诱变强度,让突变的发生数大大增加,从而加快育种进程。 诱变育种的优点在于: 能大幅度提高植物的变异牢,扩大变异范围:自然突变率一般在十万分之几到百万分之几,而诱变处理后的突变频率可高达 1/30左右,比自然突变高1000~10000倍,同时引起的变异类型多、范围广。如印度用γ-射线处理蓖麻,获得了生育期由270天缩短到120天的特大变异株系。

能改良品种的第一性状,而保持其他优良性状不变:对于一个具有多种优良性状而只希望改进某一两个性状的品种,采用诱变育种最为有效,它较之利用杂交育种方法相比,容易收到满意的效果。如通过辐射,把燕麦的抗锈病特性和对叶枯病易感性分离开来,培育出了抗锈病又不易感染叶枯病的新品种。 引起的变异稳定快,育种年限短;诱变处理后的子代分离少、稳定快,一般在第三代就可稳定,而杂交育种的某个性状的稳定往往要在第五到第七代。对于一年只能生长一季的农作物来说,意味着缩短育种时间2~4年。 能改变作物的育性,有利于杂种优势的发挥:在常规的杂交育种中,往往要用较多的时间和人力去除掉母本的雄蕊,避免自交现象的发生。用诱变处理母本的种子,可以选育出雄性不育的植株,形成雄性不育系,供杂交育种时使用。由于杂交后的第一代往往表现出杂种优势,发挥了父、母本的各自的优良品质,用它们的子一代作种子来生产,其产量及其他性状往往很好。所以我国现在大面积推广的杂交水稻、杂交玉米、杂交小麦,都取得了明显的经济效益和社会效益,为解决我国广大农民的温饱问题作出了巨大贡献。 诱变育种的中心是利用各种诱变剂提高作物的突变率。但是诱变剂的剂量是一个首先要注意的问题,并非剂量越大越好,要明白诱变剂的处理是建立在对原有细胞中的遗传物质的损伤基础上来加大突变率的,它们的处理对细胞是有伤害的。选择一定的诱变剂量很重要,诱变育种中有相应的三个名词或俗语,那就是“致死剂量”、

诱变育种在生产中的应用

27、诱变育种在生产中的应用(A) 1、人工诱导多倍体,培育新品种 2、单倍体育种,缩短了育种的年限 3、诱导青霉素菌株,提高青霉素的产量 4、诱导三倍体,生产无籽果实 28、单倍体育种的原理、方法和特点(A) 单倍体(haploid)是指具有配子染色体数(n)的个体。 原理:采用花药离体培养的方法来获得单倍体植株,然后经过人工诱导使染色体数目加倍重新恢复到正常植株的染色体的数目 特点:1、明显的缩短了育种的年限。 2、获得的种都是纯合的,自交后产生的后代性状不会发生分离。 注意:如果某个体由本物种的配子不经受精直接发育而成,则不管它有多少染色体组都叫“单倍体” 29、转基因生物和转基因食品的安全性(A) 用一分为二的观点看问题,用其利,避其害。我国规定对于转基因产品必须标明。 30、人类遗传病产生的原因、特点及类型(A) 原因:人类遗传病是由于遗传物质的改变而引起的人类疾病 特点:呈家族遗传、发病率高(我国约有20%--25%) 类型:单基因遗传病 多基因遗传病(原发性高血压、冠心病等) 染色体异常遗传病 31、常见单基因遗传病的遗传(A) 显性:多指、并指、软骨发育不全、抗维生素D佝偻病 隐性:白化病、苯丙酮尿症、镰刀型贫血症、先天性聋哑等 32、遗传病的产前诊断与优生的关系(A) 产前诊断是指:胎儿出生前,医生用专门的检测手段确定胎儿是否患某种遗传病或先天性疾病 产前诊断可以大大降低病儿的出生率 33、遗传咨询与优生的关系(A) 在一定的程度上能够有效的预防遗传病的产生和发展 34、人类基因组计划及其意义(A) 人类基因组计划是测定人类基因组的全部DNA序列,解读其中包含的遗传信息 意义:可以清楚的认识人类基因的组成、结构、功能极其相互关系,对于人类疾病的诊制和预防具有重要的意义 35、现代生物进化理论主要内容(B) 1、种群是生物进化的基本单位 2、突变和基因重组提供进化的原材料,自然选择导致种群基因频率的定向改变 通过隔离形成新的物种 3、生物进化的过程实际上是生物与生物、生物与无机环境共同进化的过程,进化导致生物的多样性 36、生物进化的历程(A) 生物是经过漫长的地质年代逐渐进化而来的。是按简单到复杂,由低等到高等,由水生到陆生的进化顺序。 37、生物进化与生物多样性的关系(B)

关于微生物育种中化学诱变技术的综述

关于微生物育种中化学诱变技术的综述 姓名:周旭班级;11生工1 学号:20110801120 摘要:化学诱变是一种传统而经典的微生物育种技术,不仅在高产工业菌株选育中得到广泛应用,而且近来还用于改造野生菌株代谢功能,以发现新产活性产物。本文简要综述常用化学诱变剂及其作用机制,以及化学诱变技术在微生物育种领域中的新近应用研究进展。 关键词:微生物育种;化学诱变剂;诱变机制;应用 1前言 菌种优劣对于微生物药物的工业化生产具有决定性意义。野生菌株往往因产率低而不能直接用于工业生产,而需要通过菌种改良,选育高产优良菌株。微生物药物的工业化生产对菌株的这种需求带动了各种育种技术的蓬勃发展,而育种技术则通过不断提供优良菌株又促进了微生物药物产业的持续发展。 在育种研究中,近来还发现有些突变株可代谢产生新产物,具有可供作药源新菌株资源的潜在应用前景,使育种技术进一步拓展了新的应用研究发展空间。微生物人工诱变育种技术按诱导突变类型可分为物理诱变、化学诱变和生物诱变三大类[1]。化学诱变是一种传统而经典的微生物育种技术,不仅在高产工业菌株选育中得到广泛应用,而且还用于改造野生菌株的代谢功能,从而发现新产活性产物。在实际应用中,化学诱变既有利用某一种化学诱变剂的单一诱变,也有组合利用化学或其他多种诱变剂的复合诱变,还有化学诱变联合抗生素抗性筛选等。本文简要综述常用化学诱变剂及其作用机制,以及化学诱变技术在微生物育种领域中的新近应用研究进展。 2常用化学诱变剂 2.1碱基类似物作为化学诱变剂的碱基类似物主要有嘧啶类似物和嘌呤类似物两大类。其中,常用嘧啶类似物有5-溴尿嘧啶(5-BU)、5-氟尿嘧啶(5-FU)、6-氮杂尿嘧啶(6-NU)等;嘌呤类似物有2-氨基嘌呤(2-AP)、6-巯基嘌呤(6-MP)、8-氮鸟嘌呤(8-NG)等[2]。 2.2烷化剂 烷化剂类化学诱变剂种类较多,如硫芥(氮芥)类、环氧衍生物类、乙撑亚胺类、硫酸(磺酸)酯类、重氮烷类、亚硝基类等。其中,亚硝基乙基脲、亚硝基胍、硫酸二乙酯、甲基磺酸甲酯、甲基磺酸乙酯等较为常用。 2.3移码诱变剂 移码诱变剂系指能够引起DNA分子中组成遗传密码的碱基发生移位复制,致使遗传密码发生相应碱基位移重组的一类化学诱变物质,主要为吖啶类杂环化合物,常用的有吖啶橙和原黄素两种(图1)。

太空诱变育种解析

太空诱变育种 摘要:现在,越来越多地国家利用太空诱变来培育新品种,同时在这一方面取得了良好地成果,由此开辟了一条植物育种地新地途径资料个人收集整理,勿做商业用途 关键字:太空诱变特点安全性应用展望 太空育种.又称航天育种、空间诱变育种,是利用太空技术.通过高空气球、返回式卫星、飞船等航天器将作物地种子、组织、器官或生命个体等诱变材料搭载到高空地宇宙空间,利用强辐射、微重力、高真空、弱磁场等宇宙空间特殊环境诱变因子地作用.使生物基因发生变异,再返回地面进行选育,培育新品种、新材料地作物育种新技术.其核心内容是利用太空环境地综合物理因素对植物或生物遗传性地强烈动摇和诱变,在较短地时间内创造出目前地面诱变育种方法难以获得地罕见突变种质材料和基因资源,选育突破性新品种,由此而开辟一条植物育种地新途径.资料个人收集整理,勿做商业用途 太空诱变地主要因素 .微重力 太空地重力环境明显不同于地面,未及地球上重力十分之一地微重力( )是引起植物遗传变异地重要原因之一.许多实验证明,植物感受和转换微重力信号,是通过质膜调节细胞内水平或磷脂/蛋白质排列顺序地变化等,引起酶、蛋白质激酶、氧化还原酶及光系统中许多酶类地活性变化等,从而在细胞分裂期微管地组装与去组装、染色体移动、微丝地构建、光系统地激活等方而起作用,进而影响细胞分裂、细胞运动、细胞间信息传递、光合作用和生长发育等生理生化过程,并出现细胞核酶变、分裂紊乱、浓缩染色体增加、核小体数目减少等.已有地研究结果还指出,微重力是通过增加植物对其它诱变因素地敏感性和干扰损伤修复系统地正常运作,从而加剧生物变异,提高变异率.资料个人收集整理,勿做商业用途 .空间辐射 空间辐射源包括来自地磁场俘获地银河宇宙射线和太阳磁暴地各种电子、质子、仅粒子、低能重离子和高能重离子等.它们能穿透宇宙飞行器地外壁,作用于太空飞行器中地生物.研究结果表明,空间诱变与地面辐射处理发生地变异情况有许多类似之处,辐射敏化剂预处理能增加生物损伤.和生物膜是射线作用地靶子.空间辐射主要导致生物系统遗传物质地损伤,如突变、肿瘤形成、染色体畸变、细胞失活、发育异常等.重离子辐射生物学研究地结果表明,质子、高能重离子等能非常有效地引起细胞内遗传物质分子地双链断裂和细胞膜结构改变,且其中非重接性断裂地比例较高,从而对细胞有更强地杀伤及致突变和致癌变能力嘲.对植物地研究证明,空间条件尤其是高能离子具有强烈地致变作用,导致细胞死亡、突变、恶性转化,而且在微重力条件下辐射地诱变作用将会加强门.资料个人收集整理,勿做商业用途.其它诱变因素 植物材料在空间飞行时.是受各种空间因素综合作用地,包括高真空、交变磁场、航天器发射过程中地强振、飞行舵内地温度和湿变条件及其他未知因素.一般认为.空间辐射和微重力地复合效应是主要地诱变因素.资料个人收集整理,勿做商业用途 太空育种地特点 .诱变效率高 太空中地特殊条件对农作物种子具有强烈地诱变作用.可以产生较高地变异率,其变异幅度大、频率高、类型丰富.有利于加速育种进程.水稻自然变异地频率在二十万分之一.化学诱变地变异频率也在千分之几.而经空间处理地水稻变异频率可达百分之几.一般来说,太空育种变异率为%%,最高地诱变率可超出%以上,其中有益突变率为%%.资料个人收集整理,勿做商业用途 .变异方向不定.正负方向变异都有 作为一种空间多环境特殊条件下产生地诱变,其诱变方向具有不确定性.一般单株有效穗数、

点击化学在高分子研究中的进展

Chemical Propellants & Polymeric Materials 2010年第8卷第1期 · 17 · 点击化学在高分子研究中的进展 陈晓勇 (中北大学材料科学与工程学院,山西太原 030051;上海交通大学化学与化工学院,上海 200240) 摘 要:首先概括了点击化学的概念、特征和类型,然后对其在高分子研究中的进展进行了综述。详细地梳理了点击化学与新型聚合方法的联用以及点击化学在合成功能聚合物和控制聚合物拓扑结构方面的应用与研究。 关键词:点击化学;高分子;聚合物;进展 中图分类号: O6-1 文献标识码: A 文章编号: 1672-2191(2010)01-0017-03 收稿日期:2009-08-24 作者简介:陈晓勇(1980-),男,助教,主要从事薄膜加工成型、流变学和树脂改性研究。电子信箱:zweigxychen@https://www.wendangku.net/doc/7f186013.html, 生命、医药和新材料等学科的高速发展要求化学学科能够快速、高效、多样、大规模地合成化合物以供选择,从而迅速满足生命、医药和新材料等学科的特别要求,如快速提高合成药物的质量和开发速度等。诺贝尔化学奖获得者Sharpless 提出点击化学概念[1],即希望化学反应像操作个人电脑一样(仅需点击鼠标)可控、简单、高效、快捷。该概念一经提出,便广受关注,现在更是国内外化学、生命、医药和材料学界共同关注的热点之一。它是一种基于高效、高选择性的C -X(X 为杂原子)成键反应来实现大量新化合物制备的一种可靠、实用的合成方法,是组合化学的简化与发展[2-4]。 点击化学应用最为成熟的是亚铜离子催化叠氮化物和端基炔生成1,4-二取代的1,2,3-三唑的Huisgen 偶极环加成反应(合成路线草图如下)[5]。 点击化学有如下特征:①原料来源广,反应适用范围广;②操作简单,条件温和,对氧、水不敏感;③产物收率高,选择性高;④易提纯产物,后处理简单;⑤快速、高通量合成;⑥反应需要高热力学驱动力(>83.7kJ/mol)。目前大概有如下4种类型的点击化学:①环加成,特别是在亚铜盐络合物催化下的炔基和有机叠氮或者叠氮和腈基之间的1,3-偶极环加成反应,也包括杂环Diels -Alder 反应;②亲核开环,特别是张力杂环的亲电试剂开环;③非醇醛的羰基化学反应;④碳碳多键的加成反应,特别是如环氧化的氧化反应[6]。 点击化学技术已渗透到诸多领域,如生命、高分子、超分子化学、功能材料、蛋白质组学、生物偶联技术和生物医药等[7]。文中仅对这几年点击化学在高分子学科中的应用、研究和发展方面进行综述。 1 在高分子研究中的进展 高分子科学由于其本身结构、合成过程和后处理工艺的复杂性与难度,点击化学在其中应用特别广泛与深入。 1.1 点击化学与非传统聚合法联用 传统聚合方法之外的聚合在制备新型聚合物材料方面的巨大优势已得到高分子学界的广泛认可,点击化学与这些非传统聚合法联用更是有利于巩固这个优势并拓展这些聚合法的应用范围。点击化学与ATRP(原子转移活性自由基聚合)联用最多,因为A T R P 方法通常使用卤化物作引发

点击化学简介

万方数据

万方数据

万方数据

点击化学简介 作者:罗璇, 林丹, 孙玉婷, LUO Xuan, LIN Dan, SUN Yuting 作者单位:罗璇,LUO Xuan(湖北武汉市七里中学,430050), 林丹,孙玉婷,LIN Dan,SUN Yuting(华中师范大学化学教育研究所,湖北武汉,430079) 刊名: 化学教育 英文刊名:CHINESE JOURNAL OF CHEMICAL EDUCATION 年,卷(期):2009,30(10) 参考文献(13条) 1.Kolb H C.Finn M G.Sharpless K B查看详情 2001 2.Bohacek R S.McMartin C.Guida W C查看详情 1996 3.Merrifield R B查看详情 1963 4.董卫莉.赵卫光查看详情 2006(03) 5.Rostovtsev V.Green L G.Fokin V V查看详情 2002 6.Pringle W.Sharpless K B查看详情 1999 7.Kolb H C查看详情 2001 8.李娟查看详情 2007(11) 9.Sharpless K B查看详情 2006 10.Collman J P.Devaraj N K.Chidsey C E D查看详情 2006 11.Punna S.Kaltgrad E.Finn M G查看详情 2005 12.Kacprza K M.Maier N M.Lindner W查看详情 2006 13.张涛.郑朝晖查看详情 2008(08) 本文链接:https://www.wendangku.net/doc/7f186013.html,/Periodical_hxjy200910003.aspx

点击化学的进展及应用修订稿

点击化学的进展及应用 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

点击化学的进展及应用 点击化学(Click chemistry),又称“链接化学”、“动态组合化学”,意为通过小的化学单元的连接,以较高的产率快速地进行化学合成,得到目标产物。这一概念最早由Barry Sharpless于2001年提出,在化学合成领域引起极大的关注,点击化学的主要特征有产率高,无副产物或副产物无害,反应原料易得,条件简单,选择性强,需较高热力学驱动力等[1]。经过十余年的发展,点击化学在有机合成方面有着很大的贡献,更是在药物开发和生物医用材料合成等诸多领域中成为最为吸引人的合成理念。本文主要介绍了一些经典的点击化学反应体系,并且结合其在有机合成中的实际应用,着重探讨与其相关的一些科研成果,主要包括组织再生,靶向药物递送,纳米材料表面修饰等几个方面。 点击化学反应主要有4种类型,环加成反应、亲核开环反应、非醇醛的羰基化学以及碳碳多键的加成反应。 环加成反应中,Huisgen环加成(CuAAC)是点击化学反应最为经典的体系,即叠氮化物与末端或内部炔烃之间在一价铜催化下,进行1,3—偶极环加成,得到1,2,3—三唑。叠氮化物与末端炔基容易安装在分子中,且较为稳定,该反应速率快,副产物少,广泛应用于在聚合物偶联、后修饰中,但催化所需的一价铜的毒性限制了其应用。因此,环张力引发的叠氮—炔环加成(SPAAC)被提出,由环烯和叠氮化物进行反应。此反应最大的改善在于无铜点击化学反应,避免了一价铜的毒性,通过叁键的角应变以及存在于环烯中的环应变提高了反应速率。但上面两个反应中用到叠氮化物,在反应的过程中具有一定的危险性。另外,我们极为熟悉的Diels—Alder反应,即共轭双烯与取代烯烃反应生成取代环己烯,也属于点击化学的这一类型[1]。 图1 Huisgen环加成反应 图2 叠氮—炔环加成反应 图3 Diels—Alder反应 巯基—烯反应是碳碳多键加成类型的主要反应,具有立体选择性、高产率等点击化学的特性,可在光或热引发下进行,常用于树枝状聚合物的合成与材料表面修饰,在材料和生物医学科学中有很多应用。但巯基化合物常常气味难闻,有毒,且容易被氧化,自身并不稳定,所以一定程度上限制了该反应的应用[1]。 图4 巯基—烯反应 亲核开环反应主要是三元杂原子由于环张力进行亲核开环,以释放其内在的张力能,如环氧衍生杂环丙烷、环状硫酸酯、环状硫酰胺、吖丙啶离子和环硫离子等。在这些三元杂环化合物中,环氧衍生物和吖丙啶离子是点击化学反应中最常应用的底物,可以通过它们的开环形成各种高选择性的化合物。

诱变育种的意义

.诱变育种的意义:提高变异的频率,创造人类需要的变异类型,从中选择、培育出优良的生物品种。 2.原核细胞与真核细胞相比最主要特点:没有核膜包围的典型细胞核。 3.细胞分裂间期最主要变化:DNA的复制和有关蛋白质的合成。 4.构成蛋白质的氨基酸的主要特点是: (a-氨基酸)都至少含一个氨基和一个羧基,并且都有一氨基酸和一个羧基连在同一碳原子上。 5.核酸的主要功能:一切生物的遗传物质,对生物的遗传性,变异性及蛋白质的生物合成有重要意义。 6.细胞膜的主要成分是:蛋白质分子和磷脂分子。 7.选择透过性膜主要特点是: 水分子可自由通过,被选择吸收的小分子、离子可以通过,而其他小分子、离子、大分子却不能通过。 8.线粒体功能:细胞进行有氧呼吸的主要场所。 9.叶绿体色素的功能:吸收、传递和转化光能。 10.细胞核的主要功能:遗传物质的储存和复制场所,是细胞遗传性和代谢活动的控制中心。 新陈代谢主要场所:细胞质基质。 11.细胞有丝分裂的意义:使亲代和子代保持遗传性状的稳定性。 12.ATP的功能:生物体生命活动所需能量的直接来源。 13.与分泌蛋白形成有关的细胞器:核糖体、内质网、高尔基体、线粒体。14.能产生ATP的细胞器(结构):线粒体、叶绿体、(细胞质基质(结构))能产生水的细胞器*(结构):线粒体、叶绿体、核糖体、(细胞核(结构))能碱基互补配对的细胞器(结构):线粒体、叶绿体、核糖体、(细胞核(结构))14.确切地说,光合作用产物是:有机物(一般是葡萄糖,也可以是氨基酸等物质)和氧 15.渗透作用必备的条件是:一是半透膜;二是半透膜两侧要有浓度差。16.矿质元素是指:除C、H、O外,主要由根系从土壤中吸收的元素。17.内环境稳态的生理意义:机体进行正常生命活动的必要条件。 18.呼吸作用的意义是:(1)提供生命活动所需能量;(2)为体内其他化合物的合成提供原料。 19.促进果实发育的生长素一般来自:发育着的种子。 20.利用无性繁殖繁殖果树的优点是:周期短;能保持母体的优良性状。21.有性生殖的特性是:具有两个亲本的遗传物质,具更大的生活力和变异性,对生物的进化有重要意义。 22.减数分裂和受精作用的意义是: 对维持生物体前后代体细胞染色体数目的恒定性,对生物的遗传和变异有重要意义。 23.被子植物个体发育的起点是:受精卵生殖生长的起点是:花芽的形成 24.高等动物胚胎发育过程包括:受精卵→卵裂→囊胚→原肠胚→组织分化、器官形成→幼体。

诱变育种

诱变育种 第一节诱变育种的概念、意义与特点 诱变育种就是人为地采用物理、化学的因素,诱发有机体产生遗传性的变异,并经过人工选择、鉴定、培育新品种的途径。诱变育种的目标就是改变或增加一个满意品种的某一特性,而在其她方面保持品种不变。如果需要一个适应性好、独特的、非常合意的与受欢迎的品种,这种方法特别吸引人。 诱变育种的特点:1)提高突变率,扩大变异谱;2)适于进行个别性状的改良;3)育种程序简单,年限短;4)变异的方向与性质不定(已有人把人工合成低聚核苷酸片段引入基因组中,以一定方式改变某一基因,进行定向诱变)。 作为一种育种方法,诱发突变技术在培育那些在种内有足够的遗传变异与由显性基因确定其特性的作物,就是可有可无的或无前途的。但就是,显性突变型曾被诱发,特别就是抗病型,部分由于寄生植物的基因与病原体的基因之间的相互作用。在完全不育或无性繁殖的植物中,诱变育种就是品种改良的唯一方法,例如专性无融合生殖植物,它不产生有合子胚的种子。无融合生殖在柑橘类与某些苹果属、树莓属的种中就是普通的。 诱变育种就是常规育种的一个补充或在园艺植物育种某些方面潜在替代者:1)在适应性广泛的种中诱发变异性,假若进一步的杂交提供有限的变异性与改良,而品种已接近选择的极限;2)诱发一个新的特性,如果没有通过杂交能传递的已知基因源,例如抗病性、企望的生长型或自交亲与性;3)在有性繁殖中将会消失的特定突变,通过营养繁殖产生与保存;4)打破与不良的特性或基因多效影响的连锁;5)使现存的嵌合体显露与均质化,并使突变型获得稳定;6)在远缘亲本之间杂交中遏制不亲与性;7)诱发单倍体;8)在无融合生殖植物中产生过渡性有性状态。 成功的诱变育种需要:1)处理可用于筛选的大的植物群体;2)预期的特性突变率高;3)可以用视力诊断或简单测定鉴别突变的有效方法。 第二节诱变因素 在诱发突变中,有两类诱变剂被使用:物理的与化学的。物理的诱变剂有:1)紫外灯发出的紫外线(UV)照射;2)电磁辐射:X射线发生器发出的X射线;从放射性同位素钴60或铯137发出的?射线;3)微粒辐射:从核反应堆发出的热中子或慢中子;从放射性同位素磷32或硫35发出的β粒子(电子)。化学诱变剂主要用于种子繁殖植物。较常用的有:叠氮化物、秋水仙碱、烷化剂、碱基类似物等。 1.物理的诱变因素 物理诱变因素的辐射能对植物诱发化学反应,结果造成DNA结构的变化。这些变化如果在DNA中保持重复,证明就是突变。 1、1紫外线的能量与穿透力低,能成功地用于处理花粉粒。 1、2电磁辐射与中子容易穿透植物组织。 1.3X射线:辐射源就是X光机。X射线又称阴极射线,就是一种电磁辐射,它不带电核,就是一种 中性射线。一大部分的栽培作物用物理诱变剂诱发的突变就是X射线辐射的结果。X射线的反应在有氧时会加强。 1.4?射线:辐射源就是60Co与137Cs及核反应堆。?射线也就是一种不带电荷的中性射线。应用 于植物育种的?射线照射装置有?照射室与?圃场,前者用于急性照射,后者用于慢性照射。1.5中子:辐射源为核反应堆、加速器或中子发生器。根据中子能量大小分为超快中子、快中 子、中能中子、慢中子、热中子。在生物研究中,通常用慢中子或热中子。热中子处理比用X射线照射更少受干扰因素的影响,如氧的浓度或温度。对多数作物来说,包括苹果,中子就是比X或?射线更有效的诱变剂。高密度中子主要造成氧独立的不可挽回的损害,包括染色体畸变。

浙江大学工业微生物学2000真题

浙江大学2000年工业微生物考研试题 一、是非题(共16分。只需注明 “ 对 ” 或 “ 错 ” ) ? 遗传型相同的个体在不同环境条件下会有不同的表现型。 EMP 和 HMP 代谢途径往往同时存在于同一种微生物的糖代谢中。 如果碱基的置换,并不引起其编码的肽链结构的改变,那么,这种突变现象称为沉默突变。 低剂量照射紫外线,对微生物几乎没有影响,但以超过某一阈值剂量的紫外线照射,则会导致微生物的基因突变。 在宿主细胞内, DNA 病毒转录生成 mRNA ,然后以 mRNA 为模板翻译外壳蛋白、被膜蛋白及溶菌酶。 总状毛霉和米根霉同属藻状菌纲。 大多数微生物可以合成自身所需的生长因子,不必从外界摄取。 产子囊孢子的细胞一定是双倍体,而出芽生殖的细胞可以是双倍体,也可以是单倍体。 E.coli K12( l ) 表示一株带有 l 前噬菌体( Prophage) 的大肠杆菌 K12 溶源菌株。 因为不具吸收营养的功能,所以,将根霉的根称为“假根”。 因为细菌是低等原核生物,所以,它没有有性繁殖,只具无性繁殖形式。 与单独处理相比,诱变剂的复合处理虽然不能使微生物的总突变率增大,但能使正突变率大大提高。 微生物系统分类单元从高到低依次为界、门、纲、科、目、属、种。 在自然条件下,某些病毒DNA 侵染宿主细胞后,产生病毒后代的现象称为转染(transfect) 。 一个操纵子中的结构基因通过转录、转译控制蛋白质的合成,而操纵基因和启动基因通过转录、转译控制结构基因的表达。 蓝细菌是一类含有叶绿素 a 、具有放氧性光合作用的原核生物。 二填充题(共 30分): 实验室常见的干热灭菌手段有 a 和 b 等。 实验室常用的有机氮源有 a 和 b 等,无机氮源有 c 和 d 等。为节约成本,工厂中常用e 等作为有机氮源。 细菌的个体形态主要有 a 、 b 和 c 等。 细菌肽聚糖由 a 和 b 交替交联形成基本骨架,再由 c 交差相连,构成网状结构。 a 是芽孢所特有的化学物质。一般它随着芽孢的形成而形成,随芽孢的萌发而消失。 微生物系统命名采用 a 法,即 b 加 c 。 中体 (mesosome) 是 a 内陷而成的层状、管状或囊状结构。它主要功能 b 。 鞭毛主要化学成分为 a ,鞭毛主要功能为 b 。 荚膜的主要化学成分有 a 和 b 等,常采用 c 方法进行荚膜染色。 霉菌细胞壁化学组成是 a 等;酵母菌细胞壁化学组成是 b 和 c 等。 培养基按其制成后的物理状态可分为 a 、 b 和 c 。 枝原体突出的形态特征是 a ,所以,它对青霉素不敏感。 碳源对微生物的主要作用 a 。 Actinomycetes 是一类介于 a 和 b 之间,又更接近于 a 的原核微生物。它的菌丝因其形态和功能不同可分为 c 、 d 和 e 。 霉菌的有性繁殖是通过形成 a 、 b 和 c 三类孢子而进行的。其过程都经历 d 、 e 、 f 三阶段。大多数霉菌是 g 倍体。

点击化学的研究与应用

点击化学的应用 摘要:“Click chemistry”[1],常译成“点击化学”,是2001年诺贝尔化学奖获得者美国化学家Sharpless提出的一种快速合成大量化合物的新方法,是继组合化学之后又一给传统有机合成化学带来重大革新的合成技术。 1.引言 2001年,笔者,Scripps研究所的化学家,给那些最佳的化学反应起了一个名字“点击化学”[2]。这些反应易于操作,并能高产率生成目标产物,很少甚至没有副产物,在许多条件下运作良好(通常在水中特别好),而且不会受相连在一起的其他官能团影响。“点击”这个绰号意味着用这些方法把分子片段拼接起来就像将搭扣两部分”喀哒”扣起来一样简单。无论搭扣自身接着什么,只要搭扣的两部分碰在一起,它们就能相互结合起来。而且搭扣的两部分结构决定了它们只能和对方相互结合起来。 2.点击化学反应 点击反应有着下列的共同特征: (1)许多反应的组件是衍生于烯烃和炔烃,这些都是石油裂化的产物。从能量与机理的角度,碳-碳多重键都可以成为点击化学反应的活性组件。 (2)绝大部分反应涉及碳-杂原子(主要是氮,氧,硫)键的形成。这与近年来重视碳-碳键形成的有机化学方向不同。 (3)点击反应是很强的放热反应,通过高能的反应物或稳定的产物都可以实现。 (4)点击反应一般是融合(fusion)过程(没有副产物)或缩合过程(产生的副产物为水)。 (5)很多点击反应不受水的负面影响,水的存在反而常常起到加速反应的作用。这些特征可在环氧化物与多种不同亲核试剂的开环反应中展现出来。如图1,因

为环氧化物是一个张力很大的三元环,开环反应是一个非常有利的过程。然而开环需要在特定的条件下发生:亲核试剂仅能沿着C-O键的轴向进攻其中一个碳原子,这样的轨道排列不利于与开环反应竞争的消去反应,从而避免了副产物并得到高的产率。此外,环氧化物与水反应的活性不高,而水的形成氢键能力与极性本质都有利于环氧化物与其它亲核试剂进行开环反应。 3.点击化学的反应类型 点击反应主要有4种类型:环加成反应,特别是1,3-偶极环加成反应[3],也包括杂环Diels-Alder反应[4];亲核开环反应,特别是张力杂环的亲电试剂开环;非醇醛的羰基化学;碳碳多键的加成反应。叠氮化合物和乙炔的环加成反应早在20世纪早期就有报道,但反应生成1,4-和1,5-二取代三唑混合物。后来使用Cu(?)催化剂可得到区域选择性的1,4-三唑且产率高达91%,反应时间也由原来的18 h 缩短为8h[6]。Cu(?)盐催化的反应机理[7]见图2。 亲核开环反应 亲核开环反应主要是三元杂原子张力环的亲核开环以释放它们内在的张力能,如环氧衍生杂环丙烷、环状硫酸酯、环状硫酰胺、吖丙啶离子和环硫离子等。在这些三元杂环化合物中,环氧衍生物和吖丙啶离子是点击反应中最常用的底物,可以通过它们的开环形成各种高区域选择性的化合物。此类反应可在醇P水混合

电离辐射和化学诱变剂在诱变育种中的机理解析

电离辐射和化学诱变剂在诱变育种中的机理解析 诱变育种的机理 问题的提出 最近在进行《育种在农业生产中的应用》教学,按照五种育种的难 点来看,我一直认为是单倍体育种,所以平时教学中重点就是解决 单倍体育种的原理、过程和优缺点。通过和学生的面对面交流抽 查,发现学生的掌握情况却是诱变育种最薄弱,这是我没有想到 的。这固然和学生的生活常识有一定的关系,如不知道具体的诱变 剂,最主要的可能是诱变育种的机理不够了解,影响了诱变育种的 理解、 问题:诱变育种的机理是什么?辐射射线或诱变剂如何导致基因突 变? 01 辐射诱变是利用各类射线如X射线、γ射线、α射线、β射线、中子等照射生物。 自然空间中来源于宇宙空间或地球岩石等的射线剂量极低,对各类生物虽然有一定影响,但影响极少。但若加大剂量或长时间使生物暴露在各

类射线的照射条件下,很容易诱发染色体的断裂和结构变异。各类染色结构变异中易位发生频率最高。 射线有两种类型,一种是波长较短的电磁波射线(X射线γ射线),另一种是高能量基本粒子(如α粒子、β粒子和中子)。X射线、γ射线和中子穿透力强,常用作外照射,α和β射线穿透力弱,如α射线仅能穿透软组织1m m,常用于内照射。 射线的作用分急性和慢性两种,急性是指短时间大剂量的照射;慢性是指低剂量长时间照射,二者均可导致染色体结构改变。一次照射剂量过大容易导致生物死亡。 通过辐射诱变已获得多种染色体结构变异类型,X射线诱发果蝇的染色体结构变异是诱发变异的经经典例证。早在1927年,H.J.M u l l e r报道了在果蝇中用X射线诱发的易位及其他染色体结构变异。 电离辐射的主要机理: 已知构成D N A分子的原子是由数量相等的质子和电子组成的。质子全部在原子核内,其中一半与电子结合成中子,另一半保持独立。而电子除一半与原子核内的质子结合为中子外,另一半分层包围在原子核的外围。因此正常的原子呈中性。 导致D N A分子上的原子(基团)发生电离。高能电磁波或射线粒子直接轰击原子,使其外围电子脱离轨道,原子释放出高能电子成为带正电荷的离子,称为初级电离或原发电离。活跃的高能电子高速运动引起途径的其他原子电离,称为次级电离。电离释放的电子被邻近原子(基团)捕获后形成带负电基因。

工业微生物学3章习题

工业微生物学3章 1、 什么是营养物质?营养物质有哪些生理功能? 营养指物体从外部环境摄取其生命活动所必需的能量和物质,以满足其生长和繁殖需要的过程,这些能量和物质即为营养物质。 营养物质的生理功能有:为生物提供必需的能量,结构合成物质,调节生物体的新陈代谢,为生物提供良好的生理环境。 4、什么是能源?试以能源为主,对微生物营养类型进行分类能源是指能为微生物的生命活动提供最初能量来源的营养物或辐射能。 能源是指能为微生物的生命活动提供必需的能量来源的营养物质和辐射能。 以能源,碳源不同可将微生物分成四大类: 7、什么是生长因子?它主要包括哪几类化合物?是否任何微生物都需要生长因子?如何才能满足微生物对生长因子的需求? 生长因子:某些微生物不能从普通的碳源。氮源合成,而需要另处少量加入来满足生长需要的有机物质。 主要包括:氨基酸,维生素,嘌呤和嘧啶及其衍生物、甾醇、胺类、C4~C6 的分枝或直链脂肪酸等。 各种微生物所需的生长因子互不相同,有的需要多种,有的不需要,培养条件也会影响微生物对生长因子的需求。 为了满足微生物对生长因子的需求,一般要在培养基本中添加少量的该种生长因子。 9、为什么实验室配制培养基时,一般采用蛋白胨而不是以蛋白质为氮源?为什么枯草杆菌能水原明胶,而大肠杆菌则不能? 蛋白胨是水解产物,微生物可直接利用,另处蛋白胨比蛋白质更易保存,所以实验室一般用蛋白质胨作氮源。 大肠杆菌是G+ 菌,它的细胞壁中含有脂多糖和外壁层,使蛋白分解酶无法穿过细胞壁,来到胞外水解明胶,而枯草杆菌是G-菌,情况相反,因而可以水解明胶。 13、什么是选择性培养基?它在工业微生物学工作中有何重要性?试举一例并分析其中的选择性原理。 根据某种某类微生物的特殊营养要求,或对某些物理,化学条件的抗性而设计的培养基,称为选择性培养基,其重要性在于它可以使混合菌样中的劣势变成优势菌,从而提高该菌的筛选效率。 例如,已知结晶紫可以抑制革兰氏阳性菌,那么,在革兰氏阳,阴性菌的混合培养物中加入结晶紫,即可使革兰氏阳性菌的生长受到抑制,而分离对象革兰氏阴性菌则可趁机大大增殖,在数量占据优势。 16、什么是微生物的最适生长温度?温度对同一微生物的生长速度,生长量代谢速度及各代谢产物的累积的影响不否相同?研究这一问题有何实践意义? 最适生长温度是某微生物分裂代时最短成生长速率最高时的培养温度。同一微生物的不同生理过程有着不同的最适温度,温度对同一微生物的生长速度,生长量,代谢速度及各代谢产物的累积量的影响各不相同。 研究这一问题,使我们能根据目标产物的情况,选择最适温度,以提高发酵生产效率。 19、 24、导酵母菌接种到含有葡萄糖和最低限度无机盐的培养液中,并分装到烧瓶A 和B 中,将烧瓶A 放在30 的好氧培养中,烧瓶B 放在30 的 氧培养。问: A 哪个培养能获得更多的A TP ?A B 哪个培养能获得更多的酒精:B C 哪个培养中的细胞世代时间更短?A D 哪个培养能获得更多的细胞量?A E 哪个培养液的吸光更高?A 能 源 CO2(自养型)------- 自养型 有机碳化物-------光能异养型 光: 光能营养型 化合物: 化能营养型

点击化学的进展及应用

点击化学的进展及应用 点击化学(Click chemistry),又称“链接化学”、“动态组合化学”,意为通过小的化学单元的连接,以较高的产率快速地进行化学合成,得到目标产物。这一概念最早由Barry Sharpless于2001年提出,在化学合成领域引起极大的关注,点击化学的主要特征有产率高,无副产物或副产物无害,反应原料易得,条件简单,选择性强,需较高热力学驱动力等[1]。经过十余年的发展,点击化学在有机合成方面有着很大的贡献,更是在药物开发和生物医用材料合成等诸多领域中成为最为吸引人的合成理念。本文主要介绍了一些经典的点击化学反应体系,并且结合其在有机合成中的实际应用,着重探讨与其相关的一些科研成果,主要包括组织再生,靶向药物递送,纳米材料表面修饰等几个方面。 点击化学反应主要有4种类型,环加成反应、亲核开环反应、非醇醛的羰基化学以及碳碳多键的加成反应。 环加成反应中,Huisgen环加成(CuAAC)是点击化学反应最为经典的体系,即叠氮化物与末端或内部炔烃之间在一价铜催化下,进行1,3—偶极环加成,得到1,2,3—三唑。叠氮化物与末端炔基容易安装在分子中,且较为稳定,该反应速率快,副产物少,广泛应用于在聚合物偶联、后修饰中,但催化所需的一价铜的毒性限制了其应用。因此,环张力引发的叠氮—炔环加成(SPAAC)被提出,由环烯和叠氮化物进行反应。此反应最大的改善在于无铜点击化学反应,避免了一价铜的毒性,通过叁键的角应变以及存在于环烯中的环应变提高了反应速率。但上面两个反应中用到叠氮化物,在反应的过程中具有一定的危险性。另外,我们极为熟悉的Diels—Alder反应,即共轭双烯与取代烯烃反应生成取代环己烯,也属于点击化学的这一类型[1]。 图1 Huisgen环加成反应 图2叠氮—炔环加成反应

最新浙江大学工业微生物真题

浙江大学工业微生物92-97 1992 年攻读硕士学位研究生入学考试试题 一填空(共15分) 1、细菌一般进行a 繁殖,即b 。酵母的繁殖方式分为有性和无性两类,无性繁殖又可分为c ,d 两种形式,有性繁殖时形成 e ;霉菌在有性繁殖中产生的有性孢子种类有 f ,g ,h ;在无性繁殖中产生的无性孢子种类有i ,j ,k ;放线菌以l 方式繁殖,主要形成m ,也可以通过n 繁殖。 2、一摩尔葡萄糖通过EMP途径和TCA循环彻底氧化,在原核微生物中产生a 摩尔ATP,在真核微生物中产生b 摩尔ATP,这是因为在真核微生物中,c 不能通过线粒体膜,只能借助于d 将EMP途径产生的磷酸二羟丙酮还原成 e ,后者可进入线粒体,将氢转移给f ,形成g ,自身又回复到磷酸二羟丙酮。这一过程称为“穿梭”,每次穿梭实际损失h 个ATP。 3、微生物基因突变的机制包括a 、b 及c 。诱发突变的方法分为物理方法和化学方法,物理方法主要是d , e , f 和g ;化学诱变剂包括h ,i 和j 。 二是非题(叙述正确的在括号写T,错误的写F,共10分) 1、自养型、专性厌氧型微生物不是真菌() 2、在酵母细胞融合时,用溶菌酶破壁() 3、从形态上看,毛霉属细菌都有假根() 4、营养缺陷型菌株不能在基本培养基上正常生长() 5、产黄青霉在工业生产上只用于生产青霉素() 6、分子氧对专性厌氧微生物的抑制和制死作用是因为这些微生物内缺乏过氧化氢酶() 7、同工酶是指能催化同一个反应,有相同控制特征的一组酶() 8、基因位移是借助于酶或定向酶系统实现的主动输送,因此不需要消耗能量() 9、培养基中加入一定量NaCl的作用是降低渗透压() 10、噬菌体的RNA必须利用寄主的蛋白质合成体系翻译,因此只能在寄主体内繁殖() 三. 名词解释(共15分) 1、抗代谢物 2、温和噬菌体 3、阻遏酶 4、转化 5、活性污泥 四在恒化器中培养微生物,在稳态操作时,μ=D,D为稀释率,μ可用Monod公式描述:求:a. 恒化器出口底物浓度S0和微生物浓度X0 b. 当稀释率D增加到一定程度后会产生“清洗”现象,求发生清洗现象的最小稀释率Dcrit c. 单位体积细胞产率可以用细胞出口浓度X0与稀释率的乘积DX0表示。求当DX0达到最大值时的稀释率Dmax 五. 简要叙述工业微生物研究和实验中的微生物培养基必须具备的要素和对于大规模生产 时对培养基的基本要求。(15分) 六. 以肌苷酸生产菌为例,说明营养缺陷型菌株筛选的机理及筛选的方法。(15分) 七. 试述革兰氏阳性菌和阴性菌在细胞壁组成上的差别,并判断下述几种微生物的染色结果是什么。 a. 枯草芽孢杆菌 b. 金黄葡萄球菌 c. 大肠杆菌 d. 乳链球菌 e.假单孢菌 1993年攻读硕士学位研究生入学考试试题 一填空(共15分,每格0.5分)

太空诱变育种解析

太空诱变是利用太空中的强辐射、微重力、高真空、弱磁场等诱变因子对植物种子、组织、器官或生命个体的基因变异的诱变。 太空诱变育种 摘要:现在,越来越多的国家利用太空诱变来培育新品种,同时在这一方面取得了良好的成果,由此开辟了一条植物育种的新的途径 关键字:太空诱变特点安全性应用展望 太空育种.又称航天育种、空间诱变育种,是利用太空技术.通过高空气球、返回式卫星、飞船等航天器将作物的种子、组织、器官或生命个体等诱变材料搭载到200~400 km高空的宇宙空间,利用强辐射、微重力、高真空、弱磁场等宇宙空间特殊环境诱变因子的作用.使生物基因发生变异,再返回地面进行选育,培育新品种、新材料的作物育种新技术。其核心内容是利用太空环境的综合物理因素对植物或生物遗传性的强烈动摇和诱变,在较短的时间内创造出目前地面诱变育种方法难以获得的罕见突变种质材料和基因资源,选育突破性新品种,由此而开辟一条植物育种的新途径。 太空诱变的主要因素 1.微重力 太空的重力环境明显不同于地面,未及地球上重力十分之一的微重力(10-3~10-6 g)是引起植物遗传变异的重要原因之一。许多实验证明,植物感受和转换微重力信号,是通过质膜调节细胞内Ca2+水平或磷脂/蛋白质排列顺序的变化等,引起ATP酶、蛋白质激酶、NAD氧化还原酶及光系统中许多酶类的活性变化等,从而在细胞分裂期微管的组装与去组装、染色体移动、微丝的构建、光系统的激活等方而起作用,进而影响细胞分裂、细胞运动、细胞间信息传递、光合作用和生长发育等生理生化过程,并出现细胞核酶变、分裂紊乱、浓缩染色体增加、核小体数目减少等。已有的研究结果还指出,微重力是通过增加植物对其它诱变因素的敏感性和干扰DNA损伤修复系统的正常运作,从而加剧生物变异,提高变异率。 2.空间辐射 空间辐射源包括来自地磁场俘获的银河宇宙射线和太阳磁暴的各种电子、质子、仅粒子、低能重离子和高能重离子等。它们能穿透宇宙飞行器的外壁,作用于太空飞行器中的生物。研究结果表明,空间诱变与地面辐射处理发生的变异情况有许多类似之处,辐射敏化剂预处理能增加生物损伤。DNA和生物膜是射线作用的靶子。空间辐射主要导致生物系统遗传物质的损伤,如突变、肿瘤形成、染色体畸变、细胞失活、发育异常等。重离子辐射生物学研究的结果表明,质子、高能重离子等能非常有效地引起细胞内遗传物质DNA分子的双链断裂和细胞膜结构改变,且其中非重接性断裂的比例较高,从而对细胞有更强的杀伤及致突变和致癌变能力嘲。对植物的研究证明,空间条件尤其是高能离子具有强烈的致变作用,导致细胞死亡、突变、恶性转化,而且在微重力条件下辐射的诱变作用将会加强门。 3.其它诱变因素 植物材料在空间飞行时。是受各种空间因素综合作用的,包括高真空、交变磁场、航天器发射过程中的强振、飞行舵内的温度和湿变条件及其他未知因素。一般认为.空间辐射和微重力的复合效应是主要的诱变因素。 太空育种的特点

相关文档