文档库 最新最全的文档下载
当前位置:文档库 › 最新汇川变频器在设备同步控制上的应用教学内容

最新汇川变频器在设备同步控制上的应用教学内容

最新汇川变频器在设备同步控制上的应用教学内容
最新汇川变频器在设备同步控制上的应用教学内容

汇川变频器在皮带机同步控制上的应用

一. 系统配置

皮带同步采用汇川变频器控制,有四种方法实现:

1. 采用MD320+MD320(功率根据机器配置)系列变频器分别

控制主从电动机,通过电气比例控制+下垂控制实现同步

2. 采用两台MD320(功率根据机器配置)的控制方案,利用

MD320内置PID控制同步;

3. 采用MD320+MD320+PG卡(功率根据机器配置)的控制方

案控制同步, MD320控制主电机工作在速度模

式,MD320+PG卡控制从电机工作在力矩控制模式.

4.采用MD380M+MD380M(功率根据机器配置) 系列变频器

分别控制主从电动机,主机采用开环矢量速度模式,从机变频采

用开环转矩跟随模式.

二.系统概述

在生产线的多传动系统中,往往采用多电机驱动同一负载,根据涂装工艺的要求,各部份之间要求达到线速度比例协调.高精度,可靠地保证这个比例系数运行是保证产品质量,确保生产正常运行的重要条件.传统的开环同步控制已不能满足要求,要在任何时候保证这种速度比例关系,就要求这种比例协调应有微调功能,不应在运行过程中出现明显的滞后现象.下面将三种方案分别加以说明:

1. 主电机采用MD320从电机采用MD320且都为速度模式:

开环控制时根据机械传动比算出满足同步是主从电机的

速度关系,然后将主变频的模拟输出进行比例运算后给从变

频器,再结合下垂控制功能,实现同步控制.这种控制方式优

点: 对变频器功能要求不高,控制简单,成本低;

缺点:比例同步精度低,但机械传动精度要求高,而随着机

械的磨损,同步精度就无法保证.

参数配置:

1.变频器工作在V/F控制模式(F1组参数需正确设置).

2.主机配置参数如下:

F0-01=0:端子控制方式

F0-02=3:频率源选择AI1

F0-05=40:主机加速时间

F0-06=40:主机减速时间

F0-09=1:主机启动

F0-11=9:故障复位

F0-12=11:外部故障输入

3.从机配置参数如下:

F0-02=1端子控制方式

F0-03=2 频率源选择

F0-17=5 加速时间

F0-18=5 减速时间

F4-00=01启动

F4-02=09:故障复位

F4-01=11:外部故障输入

F4-03=08:自由停车

F4-16=速度比例AI1最大输入对应设定

F4-17=0.0S AI1输入滤波时间

F8-15=现场调试下垂频率

2.主从电机均采用MD320且都为速度模式,从变频器采用内置PID进行控制:

主传动采用基本的速度控制模式,从传动在控制中运用内置PID 调节器,主变频发出0-50KHz的脉冲对应主电机的实际输出频率给从电机变频器作为主速信号,根据张力装置处电位器的位置反馈PID运算后作为辅助频率源与主频率源(来自主变频速度信号)叠加作为实际频率输出.

优点:精度较高,能自动微调,对机械传动精度的依赖小,速度动态响应性和稳定性高;

缺点: PID参数的调整需要经验,变频器要具备PID运算功能,或用外置PID板和PLC,要实现高精度控制还需做速度闭环.

参数配置:

1.变频器工作在无PG的矢量控制模式,必须进行电机参数识别(F1组参数需正确设置).

2. 主机配置参数如下:

F0-01=0 开环矢量控制方式

F0-02=1 端子控制方式

F0-03=2 主频率源选择AI1

F0-07=0 频率源选择

F0-17=40 主机加速时间

F0-18=40 主机减速时间

F4-00=1 主机启动

F4-02=9 故障复位

F4-01=11 外部故障输入

F5-06=0 监视运行频率

F6-10=1 自由停车

F8-00=5.0 点动频率(根据实际设定)

3. 从机配置参数如下:

F0-01=0 开环矢量控制方式

F0-02=1 端子控制方式

F0-03=5 主频率源选择AI1

F0-04=8 辅助频率源选PID

F0-05=1 辅助频率源Y范围选择

F0-06=30% 辅助频率源Y范围

F0-07=1 频率源选择

F0-17=0.1 加速时间

F0-18=0.1 减速时间

F4-00=01 启动

F4-01=11:外部故障输入

F4-02=09:故障复位

F4-03=08:自由停车

F4-30=49.92 PULSE(脉冲)输入最大频率F4-31=100% PULSE(脉冲)输入最大频率F4-32=0.05 PULSE(脉冲)输入滤波时间FA-00=0 PID给定源

FA-01=50.0 PID给定值

FA-02=0 PID反馈源

FA-03=0 PID作用方向

FA-05=0.5 PID比例量

FA-06=8.00 PID积分时间

FA-07=0.0 PID微分时间

FA-08=0.0 PID采样时间

FA-09=0.0 PID偏差极限

FA-10=需调试微分限幅

3. 采用MD320+MD320+PG卡(功率根据机器配置)的速度

加力矩控制方案:

主传动(MD320)采用基本的速度控制模式(无PG矢量控

制),主传动变频器实际输出转矩(0-10VDC对应)作为从传动

变频器(工作在力矩模式)的力矩设定值,以保证从变频器的

输出频率自动跟踪负载速度的变化,实现与主电机速度的比

例协调.

优点:控制简单,同步好;

缺点:从变频器必须有力矩控制功能,需加PG卡和旋转编

码器,成本较较高

参数配置:

1.变频器均工作在无PG的矢量控制模式,必须进行电机参数识别(F1组参数需正确设置).

2.主机配置参数如下:

F0-02=1 端子控制方式

F0-03=2 主频率源选择AI1

F0-07=0 频率源选择

F0-17=40 主机加速时间

F0-18=40 主机减速时间

F4-00=1 主机启动

F4-02=9 故障复位

F4-01=11 外部故障输入

F5-07=3 AO1监视输出转矩

5. 从机配置参数如下:

F0-01=1 选择有速度传感器的矢量控制F0-10=50 最大频率

F0-12=50 上限频率

F0-17=5.0 加速时间

F0-18=5.0 减速时间

F0-02=1 端子控制方式

F2-08=1 选择转矩控制有效

F2-09=1 选择AI1为转矩设定源

F2-11=编码器脉冲数

汇川MD330变频器说明书(新)精编版

张力控制专用变频器MD330 用户手册 (ver:060.13)

第一章概述 本手册需与《MD320用户手册》配合使用。本手册仅介绍与卷曲张力控制有关的部分,其他的基本功能请参考《MD320用户手册》。 当张力控制模式选为无效时,变频器的功能与MD320完全相同。 MD330用于卷曲控制,可以自动计算卷径,在卷径变化时仍能够获得恒张力效果。在没有卷径变化的场合实现恒转矩控制,建议使用MD320变频器。 选用张力控制模式后,变频器的输出频率和转矩由张力控制功能自动产生,F0组中频率源的选择将不起作用。 第二章张力控制原理介绍 一、典型收卷张力控制示意图

二、张力控制方案介绍 对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。 A、开环转矩控制模式 开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。 根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。 MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。 与开环转矩模式有关的功能模块: 1、张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。 2、卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。 3、转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。摩擦补偿可以克服系统阻力对张力产生的影响。 B、闭环速度控制模式 闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。 该控制模式的原理是通过材料线速度与实际卷径计算一个匹配频率设定值f1,再通过张力(位置)反馈信号进行PID运算产生一个频率调整值f2,最终频率输出为f=f1+f2。f1

汇川变频器在动力放线架上的应用案例及参数

汇川变频器在动力放线架上的应用 摘要: 本文介绍了汇川MD320在线缆行业的一些优势,以及在动力放线架的解决方案。 1 、引言 线缆行业目前正在向产品多样化、生产自动化等更高的技术层次发展。在线缆行业中,应用最广泛的就是放线架,而动力放线架又是其中技术含量较高的一种设备。动力放线架一般要求变频器含有PID调节的功能,并且PID是可以双向控制的。目前在行业应用中,只有DANFOSS和SIEMENSE可以不加任何辅助配件就可实现这样的要求。 汇川MD320是目前拥有此项功能的仅有的国产变频器,出色的矢量控制性能和良好的可靠性,更保证了汇川变频器在线缆行业的优越表现。 2 、工艺介绍 动力放线架作为多种设备的最前端,在线缆行业中有着广泛的应用。一般来说,对动力放线架的要求有以下几点: a 在引取速度加快时,放线速度也跟着引取速度快速加速; b 在引取速度减速时,放线速度也跟着引取速度减慢; c 当稳定运行在某个速度时,放线架的摆杆要稳定; d 当出现松线和断线的时候,要求放线盘可以进行自动反转。 以上的几点要求全部有变频器的PID功能完成,而且要求变频器对速度的反映要相当灵敏。

3 、控制方案 MD系列变频器是汇川技术推出的代表未来变频器发展方向的新一代模块化高性能变频器。与传统意义上的变频器相比,在满足客户不同性能、功能需求方面,它不是通过多个系列产品来实现(从而增加额外的制造、销售、使用、维护成本),而是在客户需求合理细分的基础上,进行模块化设计,通过单系列产品的多模块组合,创建一个客户化量身定做的平台。 MD320变频器在频率源的组合方面灵活多样。主、辅频率源分别可由10种选择,而且还可以实现主/辅、主/主+辅、主+辅等频率切换方式。 主频率源X选择:0:数字设定(不记忆) 辅助频率源Y选择:0:数字设定(不记忆) 1:数字设定(记忆) 1:数字设定(记忆) 2:AI1 2:AI1 3:AI2 3:AI2 4:AI3 4:AI3 5:脉冲设定(X5) 5:脉冲设定(X5) 6:多段速6:多段速 7:PLC 7:PLC 8:PID 8:PID

汇川变频器常规问题解答(060801)

1、MD300系列功率范围是多少? MD320系列功率范围是多少? MD300A系列功率范围是多少? MD300系列功率范围是:单相0.4~2.2Kw,三相0.75-30Kw。 MD320系列功率范围是:单相0.4~2.2Kw ,三相0.75~355KW。(280G、355P) MD300A系列功率范围是:0.4、0.75Kw 2、单相220V变频器的输出电压范围是多少? F1组电机额定频率为50Hz,变频器输出25Hz时,变频器的输出电压(加在电机上的输入电压)是多少? 单相220V变频器的输出电压范围是:0~220V。 F1组电机额定频率为50Hz,变频器输出25Hz时,变频器的输出电压(加在电机上的输入电压)是:110V。 3、MD300S1.5和MD300T1.5的额定输出电流分别是多少?为什么差1.732倍? MD300S1.5 额定输出电流是:7.0A MD300T1.5的额定输出电流是:3.8A 因MD300T1.5额定输出电压比MD300S1.5额定输出电压大1.732倍,故MD300T1.5额定输出电流比MD300S1.5额定输出电流小1.732倍。 4、客户紧急需要三相220V 15Kw的变频器,汇川三相220V系列非标是在三相380V系列 哪个功率的变频器的基础上改制的,为什么? 汇川三相220V系列非标是在三相380V系列30kw功率的变频器的基础上改制的,因为三相220V,15kw系列非标的额定输出电流为52A, 三相380V系列30kw功率的变频器的额定输出电流也为60A,功率模块的电流范围是相当的。 5、变频器选用V/F控制时,确定电机磁通值的二个变频器相关参数是哪个?电机欠磁通运 行和过磁通运行分别有哪些危害? 变频器选用V/F控制时,确定电机磁通值的二个变频器相关参数是:F1组参数中F1-02额定电压、F1-04额定频率。

汇川变频器常用参数

汇川变频器常用参数 代码功能设定范围代码功能设定范围 0-- 操作面板命令0- 无操作 F0-00 命令源选择FP-01 1-- 端子命令参数初始 化 1- 恢复出厂值 2-- 清除记录信 息 F0-01 频率源选择0-- 数字设定F8-00 多段速0 1--AL1 F8-01 多段速1 2--AL2 F8-02 多段速2 3--PULSE脉冲设定(DI5)F8-03 多段速3 4-- 多段速F8-04 多段速4 5--PLC F8-05 多段速5 6--PID F8-06 多段速6 7--AL1+AL2 F8-07 多段速7 8-- 通迅设定F8-08 多段速8 9--PID+AL1 10--PID+AL2 F0-03 预置频率 F0-04 最大频率 F0-05 上限频率源0-- 数字设定(F0-06) 1--AL1 2--AL2 3--PULSE脉冲设定(DI5) F0-06 上限频率数字设定 F0-07 下限频率数字设定 F0-09 加速成时间 1 F0-10 减速成时间 1 F1-02 电机额定电流 F1-05 转矩提升 F2-00 DI1 端子功能选择0-- 无功能 F2-01 DI2 端子功能选择1-- 正转运行(FWD) F2-02 DI3 端子功能选择2-- 反转运行(REV) F2-03 DI4 端子功能选择3-- 三线式运行控制 F2-04 DI5 端子功能选择13-- 多段速端子1 14-- 多段速端子2 15-- 多段速端子3 F4-10 停机方式0-- 减速停机 1-- 自由停机

汇川变频器故障代码 FB-20 第一次故障类型0-- 无故障 1-- 保留 2-- 加速过电流(ERR02)3-- 减速过电流(ERR03) 4-- 恒速过电流(ERR04)5-- 加速过电压(ERR05) 6-- 减速过电压(ERR06)7-- 恒速过电压(ERR07) 8-- 缓冲电阻过载故障 9-- 欠压故障(ERR09) (ERR08) 10-- 变频过载(ERR10)11-- 电机过载(ERR11) 12-- 输入缺相(ERR12)13-- 输出缺相(ERR13) 14-- 模块过热(ERR14)15-- 外部故障(ERR15) 16-- 通迅超时故障(ERR16)17-- 接触器吸合故障(ERR17) 18-- 电流检测故障(ERR18)19-- 电机调谐故障(ERR19) 20-- 保留(ERR20)21--EEPROM读写故障(ERR21) 22-- 保留(ERR22)23-- 电机对地短路故障(ERR23) 24-- 保留(ERR24)25-- 保留(ERR25) 26-- 运行时间到达(ERR26)31-- 软件故障(ERR27) 40-- 快速限流超时故障 41-- 切换电机故障(ERR41)(ERR40)

PWM变频控制技术

PWM 变频控制技术 变频调速原理 变频器工作原理:变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。在诸多交流异步电动机调速技术中,如调压调速、变极调速、串级调速、滑差调速、变频调速等,其中由于变频调速具有的优点: (1)调速时平滑性好,效率高; (2)调速范围较大,精度高; (3)起动电流低,对系统及电网无冲击,节电效果明显; (4)易于实现过程自动化; 因此,变频调速技术是当前应用最广泛的一种调速技术。在中小功率的变频调速系统中使用最多的变压变频调速,简称U/F 控制,相应的变频调速控制器为电压源型变频调速器(VSI )。由电机学知识可知异步电动机的转速与电源频率有以下关系: )1(60s p f n -= (2-1) 式中:n —电机的转速(r/min ); p —磁极对数; s —转差率(%); f —电源频率(Hz )。 从式(2-1)可以看出,改变电源频率就可以改变电机转速。另外,根据的电势公式知道,外加电压近似地与频率和磁通的乘积成正比。即 φf C E U 1≈∝ (2-2) 式中C 1为常数。因此有: f U f E =∝φ (2-3) 若外加电压不变,则磁通随频率而改变,如频率下降,磁通会增加,造成磁路饱和,励磁电流增加,功率因数下降,铁心和线圈过热,显然这是不允许的。为此,要在降频的同时还要降压,这就要求频率与电压协调控制。此外,在很多场合为了保持在调速时,电动机产生最大转矩不变,也需要维持磁通不变,这亦由频率和电压协调控制来实现。通过改变异步电动机的供电频率,从而可以任意调节电机转速,实现平滑的无级调速。 SPWM 模式下交直交变频器工作原理 SPWM 波形就是在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度一也最大,而脉冲间的间隔则最小。反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,如图所示。这样的电压脉冲系列可以使负载电流中的谐波成分大为减小,

汇川变频器调试

回转调试步骤:回转变频器由于是一拖多,控制方式默认为V/F ,所以电机不需要进行调谐,具体调试步骤如下: 1. 将F0-05 (控制类型)设置为2; 2. 设置FP-01 为1,恢复出厂; 3. 断电; 4. F1-01 (额定功率)按实际值设; 5. F1-03 (额定电流)按实际值设; 6. F3-11 (减速度0)设置为4.0; 7. F3-14 (减速度2)设置为0.8; & F4-12 (抱闸反馈)设置为0; 9. F5-05 (制动闭合速度)设置为2.0; 10. F5-06 (制动闭合延时)设置为3.0; 11. F5-08 (直流制动电流)设置为60; 12. F5-10 (停机直流制动时间)2.0; 13. F5-11 (停机直流制动等待时间)0.0; 14. F5-12 (停机直流制动速度)1.8; 15. F5-13 (回转停车切换速度)设置为4.0; 16. F5-31 (抱闸延迟)设置为4.0;

变幅调试步骤: 1. 将F0-05 (控制类型)设置为1; 2. 设置FP-01 为1,恢复出厂; 3. 断电; 4. 将F0-01 (命令源)改为0; 5. F1-03 (额定电流)按电机铭牌设(先设置电流) 6. F1-02 (额定电压)按电机铭牌设; 7. F1-01 (额定功率)按电机铭牌设; & F1-05 (额定速度)按电机铭牌设; 9. F1-11 (静止调谐)设置为1; 10?按“ RUN键进行调谐; 11?待调谐完毕后,设置F0-01 (命令源)为1; 12. 设置F2-00 为25; 13. 设置F2-01 为1.5; 14. 设置F2-03 为25; 15. 设置F2-04 为1.2; 16. 设置F3-11 (减速度)为15.0; 17. 设置F4-12 (抱闸反馈)为0; 18. 确认F5-05 (制动闭合速度)为0.0; 佃.确认F5-12 (停车直流制动速度)为0.0;

汇川变频器说明书样本

资料内容仅供您学习参考,如有不半之处?请联系改正或者删除。 张力控制专用变频器 MD330 用户手册 (ver: 060.13)

资料内容仅供您学习参考,如有不、"|之处,请联系改正或者删除。 瓯 !干叱十 本手册需与《MD320用户手册》配合使用。本手册仅介绍与卷曲张力控 制有关的部分,其它的基本功能请参考《MD320用户手册》。 当张力控制模式选为无效时,变频器的功能与MD320完全相同。 MD330用于卷曲控制,能够自动计算卷径,在卷径变化时仍能够获得恒 张力效 果。在没有卷径变化的场合实现恒转矩控制,建议使用MD320变频 器。 选用张力控制模式后,变频器的输出频率和转矩由张力控制功能自动产 生,F0组中频率源的选择将不起作用。 第二章张力控制原理介绍 典型收卷张力控制示意图 II 灯仝

二.张力控制方案介绍 对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。 A.开环转矩控制模式 开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率杲跟随材料的速度自动变化。 根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就能够控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。 MD系列变频器在闭环矢量(有速度传感器矢量控制)下能够准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG 卡)O

汇川变频器调试

汇川变频器调试 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

回转调试步骤: 回转变频器由于是一拖多,控制方式默认为V/F,所以电机不需要进行调谐,具体调试步骤如下: 1.将F0-05(控制类型)设置为2; 2.设置FP-01为1,恢复出厂; 3.断电; 4.F1-01(额定功率)按实际值设; 5.F1-03(额定电流)按实际值设; 6.F3-11(减速度0)设置为; 7.F3-14(减速度2)设置为; 8.F4-12(抱闸反馈)设置为0; 9.F5-05(制动闭合速度)设置为; 10.F5-06(制动闭合延时)设置为; 11.F5-08(直流制动电流)设置为60; 12.F5-10(停机直流制动时间); 13.F5-11(停机直流制动等待时间); 14.F5-12(停机直流制动速度); 15.F5-13(回转停车切换速度)设置为; 16.F5-31(抱闸延迟)设置为; 变幅调试步骤: 1.将F0-05(控制类型)设置为1;

2.设置FP-01为1,恢复出厂; 3.断电; 4.将F0-01(命令源)改为0; 5.F1-03(额定电流)按电机铭牌设(先设置电流); 6.F1-02(额定电压)按电机铭牌设; 7.F1-01(额定功率)按电机铭牌设; 8.F1-05(额定速度)按电机铭牌设; 9.F1-11(静止调谐)设置为1; 10.按“RUN”键进行调谐; 11.待调谐完毕后,设置F0-01(命令源)为1; 12. 设置F2-00为25; 13.设置F2-01为; 14.设置F2-03为25; 15.设置F2-04为; 16.设置F3-11(减速度)为; 17.设置F4-12(抱闸反馈)为0; 18.确认F5-05(制动闭合速度)为; 19.确认F5-12(停车直流制动速度)为; 行走调试步骤: 行走变频器由于是一拖多,控制方式默认为V/F,所以电机不需要进行调谐,具体调试步骤如下: 1.将F0-05(控制类型)设置为3;

变频调速技术ACS6000概述

变频调速技术 现代工业生产过程中,各种设备的传动部件大都离不开电动机,且电动机的传动在许多场合要求能够调速。电动机的调速运行方式很多,以电动机类型分大致可分为直流调速与交流调速两种,而交流调速方式又可分为变极调速、改变转差率调速和变频调速等几种方式。 20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优势,并且它的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节电效果明显,而且易于实现过程自动化,深受工业行业的青睐。 1. 交流变频调速的优异特性 (1) 调速时平滑性好,效率高。低速时,特性静关率较高,相对稳定性好。 (2) 调速范围较大,精度高。 (3) 起动电流低,对系统及电网无冲击,节电效果明显。 (4) 变频器体积小,便于安装、调试、维修简便。 (5) 易于实现过程自动化。 (6) 必须有专用的变频电源,目前造价较高。 (7) 在恒转矩调速时,低速段电动机的过载能力大为降低。 2. 与其它调速方法的比较 这里仅就交流变频调速系统与直流调速系统做一比较。 在直流调速系统中,由于直流电动机具有电刷和整流子,因而必须对其进行检查,电机安装环境受到限制。例如:不能在有易爆气体及尘埃多的场合使用。此外,也限制了电机向高转速、大容量发展。而交流电机就不存在这些问题,主要表现为以下几点: 第一,直流电机的单机容量一般为12-14MW,还常制成双电枢形式,而交流电机单机容量却可以数倍于它。第二,直流电机由于受换向限制,其电枢电压最高只能做到一千多伏,而交流电机可做到6-10kV。第三,直流电机受换向器部分机械强度的约束,其额定转速随电机额定功率而减小,一般仅为每分钟数百转

变频器常用的频率参数

1.给定频率 用户根据生产工艺的需求所设定的变频器输出频率称为给定频率。例如,原来工频供电的风机电动机现改为变频调速供电,就可设置给定频率为 50Hz,其设置方法有两种:①用变频器的操作面板来输入频率的数字量50;②从控制接线端上用外部给定(电压或电流)信号进行调节,最常见的形式就是通过外接电位器来完成。 2.输出频率 输出频率指变频器实际输出的频率。当电动机所带的负载变化时,为使拖动系统稳定,此时变频器的输出频率会根据系统情况不断地调整。因此,输出频率在给定频率附近经常变化。 3.基准频率 基准频率也叫基本频率。一般以电动机的额定频率作为基准频率的给定值。 基准电压指输出频率到达基准频率时变频器的输出电压,基准电压通常取电动机的额定电压。 4.上限频率和下限频率 上限频率和下限频率分别指变频器输出的最高、最低频率,常用fH和fL 表示。根据拖动系统所带负载的不同,有时要对电动机的最高、最低转速给予限制,以保证拖动系统的安全和产品的质量。另外,由操作面板的误操作及外部指令信号的误动作引起的频率过高和过低,设置上限频率和下限频率可起到保护作用。常用的方法就是给变频器的上限频率和下限频率赋值。 当变频器的给定频率高于上限频率,或者低于下限频率时,变频器的输出频率将被限制在上限频率或下限频率。例如,设置 fH=60Hz,fL=10Hz。若给定频率为50Hz或20Hz,则输出频率与给定频率一致;若给定频率为70Hz或5Hz,则输出频率被限制在 60Hz或1OHz。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供

汇川变频器调试

回转调试步骤: 回转变频器由于是一拖多,控制方式默认为V/F,所以电机不需要进行调谐,具体调试步骤如下: 1.将F0-05(控制类型)设置为2; 2.设置FP-01为1,恢复出厂; 3.断电; 4.F1-01(额定功率)按实际值设; 5.F1-03(额定电流)按实际值设; 6.F3-11(减速度0)设置为4.0; 7.F3-14(减速度2)设置为0.8; 8.F4-12(抱闸反馈)设置为0; 9.F5-05(制动闭合速度)设置为2.0; 10.F5-06(制动闭合延时)设置为3.0; 11.F5-08(直流制动电流)设置为60; 12.F5-10(停机直流制动时间)2.0; 13.F5-11(停机直流制动等待时间)0.0; 14.F5-12(停机直流制动速度)1.8; 15.F5-13(回转停车切换速度)设置为4.0; 16.F5-31(抱闸延迟)设置为4.0;

1.将F0-05(控制类型)设置为1; 2.设置FP-01为1,恢复出厂; 3.断电; 4.将F0-01(命令源)改为0; 5.F1-03(额定电流)按电机铭牌设(先设置电流); 6.F1-02(额定电压)按电机铭牌设; 7.F1-01(额定功率)按电机铭牌设; 8.F1-05(额定速度)按电机铭牌设; 9.F1-11(静止调谐)设置为1; 10.按“RUN”键进行调谐; 11.待调谐完毕后,设置F0-01(命令源)为1; 12. 设置F2-00为25; 13.设置F2-01为1.5; 14.设置F2-03为25; 15.设置F2-04为1.2; 16.设置F3-11(减速度)为15.0; 17.设置F4-12(抱闸反馈)为0; 18.确认F5-05(制动闭合速度)为0.0; 19.确认F5-12(停车直流制动速度)为0.0;

变频调速及其控制技术的现状与发展趋势

变频调速及其控制技术的现状与发展趋势 摘要:变频调速技术以其卓越的调速性能、显著的节电效果在各个领域得到广泛的应用,为节能降耗、改善控制性能、提高产品的产量和质量提供了重要手段。本文首先回顾了变频调速技术的发展历史和现状,然后总结了变频调速中的关键控制技术,并介绍了智能控制理论在变频调速系统中的应用情况,最后指出了变频调速技术的发展趋势。 关键字:变频调速技术矢量控制异步电动机PWM技术智能控制 1变频调速技术的发展历史及现状 变频调速技术涉及到电力、电子、电工、信息与控制等多个学科领域。随着电力电子技术、计算机技术和自动控制技术的发展,以变频调速为代表的近代交流调速技术有了飞速的发展。交流变频调速传动克服了直流电机的缺点,发挥了交流电机本身固有的优点(结构简单、坚固耐用、经济可靠、动态响应好等),并且很好地解决了交流电机调速性能先天不足的问题。交流变频调速技术以其卓越的调速性能、显著的节电效果以及在*****领域的广泛适用性,而被公认为是一种最有前途的交流调速方式,代表了电气传动发展的主流方向。交流调速技术为节能降耗、改善控制性能、提高产品的产量和质量提供了至关重要的手段。变频调速理论已形成较为完整的科学体系,成为一门相对独立的学科。变频装置有交-直-交系统和交-交系统两大类。

交-直-交系统又分为电压型和电流型,其中,电压型变频器在工业中应用最为广泛。本文所涉及的就是此类变频调速理论和技术。 20世纪是电力电子变频技术由诞生到发展的一个全盛时代。最初的交流变频调速理论诞生于20世纪20年代,直到60年代,由于电力电子器件的发展,才促进了变频调速技术向实用方向发展。70年代席卷工业发达国家的石油危机,促使他们投入大量的人力、物力、财力、去研究高效率的变频器,使变频调速技术有了很大的发展并得到推广应用。80年代,变频调速已产品化,性能也不断提高,发挥了交流调速的优越性,广泛地应用于工业各部门,并且部分取代了直流调速。进入90年代,由于新型电力电子器件如IGBT(绝缘栅双极晶体管Insolated Gate Bipolar Transistor),IGCT(集成门极换向型晶闸管Integrated Gate Commutated Thyristor)等的发展及性能的提高、计算机技术的发展,如由16位机发展到32位机以及DSP(数字信号处理器Digital signal processor)的诞生和发展等以及先进控制理论和技术的完善和发展(如磁场定向矢量控制、直接转矩控制)等原因,极大地提高了变频调速的技术性能,促进了变频调速技术的发展,使变频器在调速范围、驱动能力、调速精度、动态响应、输出性能、功率因数、运行效率及使用的方便性等方面大大超过了其它常规交流调速方式,其性能指标也超过了直流调速系统,达到取代直流调速系统的地步。目前,交流变频调速以其优越的性能而深受各行业的普遍欢迎,在电力、轧钢、造纸、化工、水泥、煤炭、纺织、铁路、食品、船舶、机床等传统工业的改造中和航天航空等新技术的发展应用中无不看

汇川变频器MD330张力开环调试

一、MD330开环转矩张力控制原理介绍 1.典型开环张力控制示意图 对张力控制有两个途径,一是控制电机的输出转矩,二是控制电机的转速,MD330开环控制模式是针对第一种控制途径,并且不需要张力反馈。这里的开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与是不是加装编码器构成速度闭环无关。转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。 根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。 MD330系列变频器在闭环矢量(加装编码器矢量控制)下,可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。 2. 变频器内部与开环转矩模式有关的功能模块

??张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。 ??卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。 当采用线速度计算卷径时 (1) (2)ω=2πn/60 其中,V为线速度m/min, ω为角速度rad/s, n为转速r/min,R为卷轴半径m,是根据实际线速度和 角速度实时计算出来,同时可通过FH-18监测实际卷径值, 卷轴空轴(FH-12)≤2R≤卷轴满轴(FH-11)。 ?转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。摩擦补偿可以克服系统阻力对张力产生的影响。 对应参数:FH-33、FH-36

汇川调试步骤

1.将F0-05(控制类型)设置为0; 2.设置FP-01为1,恢复出厂; 3.断电; 4.将F0-01(命令源)改为0; 5.F1-01(额定功率)按电机铭牌设; 6.F1-02(额定电压)按电机铭牌设; 7.F1-03(额定电流)按电机铭牌设; 8.F1-05(额定速度)按电机铭牌设; 9.F1-11(静止调谐)设置为1; 10.按RUN键进行调谐; 11.待调谐完毕后,设置F0-01(命令源)为1; 12.设置F3-11(减速度)为12; 13.设置F4-12(抱闸反馈)为24,如无夹钳,则设置为0;14.设置F4-28(Y4端子输出)为7,如无夹钳,则设置为0;15.设置F5-12(停车直流制动速度)为2.0; 16. 设置F5-21(制动释放延时)为0.1; 17. 设置F5-22(制动闭合速度)为2.0; 18. 设置F5-24(辅助抱闸反馈时间)为4.0; 19. 设置F5-28(平滑启动时间)为0; 20. 设置F5-29(主抱闸闭合延时)为0.2,如无夹钳,则设置为0; 21. 设置F5-30(辅助抱闸闭合延时)为1.0, 如无夹钳,则设置为0; 22. 设置F6-06到F6-10(提升超速)按实际值设; 参照说明书76页 23. 如果测速开关为一个则需将F9-00设置为9,如两个保持为0; 注意:测速开关为一个,则需将X13和X14短接.

1. 将F0-05(控制类型)设置为1; 2. 设置FP-01为1,恢复出厂; 3. 断电; 4. 将F0-01(命令源)改为0; 5. F1-01(额定功率)按电机铭牌设; 6. F1-02(额定电压)按电机铭牌设; 7. F1-03(额定电流)按电机铭牌设; 8. F1-05(额定速度)按电机铭牌设; 9. F1-11(静止调谐)设置为1; 10.按RUN键进行调谐; 11.待调谐完毕后,设置F0-01(命令源)为1;12.设置F2-00为25; 13.设置F2-01为1.5; 14.设置F2-03为25; 15.设置F2-04为1.2; 16. 设置F3-11(减速度)为15; 17. 设置F4-12抱闸反馈为0; 18. 设置F5-05(制动闭合速度)为0; 19. 设置F5-12(停车直流制动速度)为0;

汇川变频器张力控制功能参数说明

卷曲张力控制专用变频器 MD330 用户手册

第一章概述 本手册需与《MD320用户手册》配合使用。本手册仅介绍与卷曲张力控制有关的部分,其他的基本功能请参考《MD320用户手册》。 当张力控制模式选为无效时,变频器的功能与MD320完全相同。 MD330用于卷曲控制,可以自动计算卷径,在卷径变化时仍能够获得恒张力效果。在没有卷径变化的场合实现恒转矩控制,建议使用MD320变频器。 选用张力控制模式后,变频器的输出频率和转矩由张力控制功能自动产生,F0组中频率源的选择将不起作用。 第二章张力控制原理介绍 一、典型收卷张力控制示意图

二、张力控制方案介绍 对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。 A、开环转矩控制模式 开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。 根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。 MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。 与开环转矩模式有关的功能模块: 1、张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。 2、卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。 3、转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。摩擦补偿可以克服系统阻力对张力产生的影响。 B、闭环速度控制模式 闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。 该控制模式的原理是通过材料线速度与实际卷径计算一个匹配频率设定值f1,再通过张力(位置)反馈信号进行PID运算产生一个频率调整值f2,最终频率输出为f=f1+f2。f1

新版 汇川MD 变频器说明书

张力控制专用变频器 新版 MD330 用户手册 (ver:060.14) 第一章概述

本手册需与《MD320用户手册》配合使用。本手册仅介绍与卷曲张力控制有关的部分,其他的基本功能请参考《MD320用户手册》。 当张力控制模式选为无效时,变频器的功能与MD320完全相同。 MD330用于卷曲控制,可以自动计算卷径,在卷径变化时仍能够获得恒张力效果。在没有卷径变化的场合实现恒转矩控制,建议使用MD320变频器。 选用张力控制模式后,变频器的输出频率和转矩由张力控制功能自动产生,F0组中频率源的选择将不起作用。 第二章张力控制原理介绍 一、典型收卷张力控制示意图 二、张力控制方案介绍

对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。 A、开环转矩控制模式 开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。 根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。 MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。 与开环转矩模式有关的功能模块: 1、张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。 2、卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。 3、转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。摩擦补偿可以克服系统阻力对张力产生的影响。 B、闭环速度控制模式 闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。 该控制模式的原理是通过材料线速度与实际卷径计算一个匹配频率设定值f1,再通过张力(位置)反馈信号进行PID运算产生一个频率调整值f2,最终频率输出为f=f1+f2。f1可以基本使收(放)卷辊的线速度与材料线速度基本匹配,然后f2部分只需稍微调整即可

深圳汇川科技变频空压机调试细节说明

深圳汇川科技单变频空压机调试方案 1.接线 参见《单变频空压机图纸》 2.检查(线路及元件) 主电路(R S T) 电动机线路(U V W) 控制变压器保险接线端子风扇电磁阀压力传感器电流传感器接触器温度传感器 3.通电后逻辑调试(排除故障) 1)相序错误 对调电源线R、S、T中的任意2相 2)压力传感器故障 检查压力传感器接线是否正常 3)风机变频器通讯故障 单变频空压机方案中没有风机通讯,所以要在空压机控制器面板上,将风机的控 制方式改为:工频。 4.变频器自学习 1)按下急停开关 安全起见,调谐要在急停状态下进行 2)断开电机的负载 变频器自学习(调谐)要在空载下进行,所以要脱开电机的负载,如果不方便 断开负载,可以找一台厂家、型号都一样的电机进行调谐。 5.设置主变频器及电动机参数 F0-02=0 键盘设定有效 F0-17=50 加速时间为50S F0-18=50 减速时间为50S F3-11=30 振荡抑制增益 F1-01=? 电动机额定功率(根据实际电机参数设定,注意电机的服务系数) F1-02=?电动机额定电压(根据实际电机参数设定) F1-03=?电动机额定电流(根据实际电机参数设定) F1-04=?电动机额定频率(根据实际电机参数设定) F1-05= ?电动机额定转速(根据实际电机参数设定) 6.上述参数设置完毕后,将F1-11设定为2,变频器显示键盘会显示TUNE,在按下RUN, 变频器运行约2分钟左右后,TUNE消失,调谐完毕。调谐完毕后,变频器会自动计算F1-06、F1-07、F1-08、F1-09、F1-10的参数。请记录这5个参数。 注:为什么要进行自学习?????? 注意: 7. F0-02=1,命令源选择为“端子命令通道”。 F4-00=1 正转运行 F8-13=1 禁止反转

变频常用参数设置

变频器参数设置(一) 变频器的设定参数较多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象,因此,必须对相关的参数进行正确的设定。 1 、控制方式: 即速度控制、转距控制、 PID 控制或其他方式。采取控制方式后,一般要根据控制精度进行静态或动态辨识。 2 、最低运行频率: 即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。 3 、最高运行频率: 一般的变频器最大频率到 60Hz ,有的甚至到 400 Hz ,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。 4 、载波频率: 载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。 5 、电机参数: 变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 6 、跳频: 在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。 变频器参数设置(二)

变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。 一、加减速时间 加速时间就是输出频率从 0 上升到最大频率所需时间,减速时间是指从最大频率下降到 0 所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。 加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。 二、转矩提升 又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围 f/V 增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。 三、电子热过载保护 本功能为保护电动机过热而设置,它是变频器内 CPU 根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于 “ 一拖一 ” 场合,而在 “ 一拖多 ” 时,则应在各台电动机上加装热继电器。电子热保护设定值 (%)=[ 电动机额定电流 (A)/ 变频器额定输出电流(A)]×100% 。

最新汇川变频器在设备同步控制上的应用教学内容

汇川变频器在皮带机同步控制上的应用 一. 系统配置 皮带同步采用汇川变频器控制,有四种方法实现: 1. 采用MD320+MD320(功率根据机器配置)系列变频器分别 控制主从电动机,通过电气比例控制+下垂控制实现同步 2. 采用两台MD320(功率根据机器配置)的控制方案,利用 MD320内置PID控制同步; 3. 采用MD320+MD320+PG卡(功率根据机器配置)的控制方 案控制同步, MD320控制主电机工作在速度模 式,MD320+PG卡控制从电机工作在力矩控制模式. 4.采用MD380M+MD380M(功率根据机器配置) 系列变频器 分别控制主从电动机,主机采用开环矢量速度模式,从机变频采 用开环转矩跟随模式. 二.系统概述 在生产线的多传动系统中,往往采用多电机驱动同一负载,根据涂装工艺的要求,各部份之间要求达到线速度比例协调.高精度,可靠地保证这个比例系数运行是保证产品质量,确保生产正常运行的重要条件.传统的开环同步控制已不能满足要求,要在任何时候保证这种速度比例关系,就要求这种比例协调应有微调功能,不应在运行过程中出现明显的滞后现象.下面将三种方案分别加以说明:

1. 主电机采用MD320从电机采用MD320且都为速度模式: 开环控制时根据机械传动比算出满足同步是主从电机的 速度关系,然后将主变频的模拟输出进行比例运算后给从变 频器,再结合下垂控制功能,实现同步控制.这种控制方式优 点: 对变频器功能要求不高,控制简单,成本低; 缺点:比例同步精度低,但机械传动精度要求高,而随着机 械的磨损,同步精度就无法保证. 参数配置: 1.变频器工作在V/F控制模式(F1组参数需正确设置). 2.主机配置参数如下: F0-01=0:端子控制方式 F0-02=3:频率源选择AI1 F0-05=40:主机加速时间 F0-06=40:主机减速时间 F0-09=1:主机启动 F0-11=9:故障复位 F0-12=11:外部故障输入 3.从机配置参数如下: F0-02=1端子控制方式

相关文档
相关文档 最新文档