文档库 最新最全的文档下载
当前位置:文档库 › 北大随机过程课件:第 2 章 第 5 讲 马尔可夫链应用分析举例

北大随机过程课件:第 2 章 第 5 讲 马尔可夫链应用分析举例

北大随机过程课件:第 2 章 第 5 讲 马尔可夫链应用分析举例
北大随机过程课件:第 2 章 第 5 讲 马尔可夫链应用分析举例

107509-概率统计随机过程课件-第十三章马尔可夫链第一节第二节(上)

第十三章 马尔可夫链 马尔可夫过程是一类特殊的随 机过程, 马尔可夫链是离散状态的马尔可夫过程,最初是由俄国数学家马尔可夫1896年提出和研究的. 应用十分广泛,其应用领域涉及 计算机,通信,自动控制,随机服务,可靠性,生物学,经济,管理,教育,气象,物理,化学等等. 第一节 马尔可夫链的定义 一.定义 定义 1 设随机过程} ),({T t t X ∈的状态空间S 是有限集或可列集,对任意正整数n ,对于T 内任意1+n 个参数121+<

如果条件概率 })(,,)(,)(|)({221111n n n n j t X j t X j t X j t X P =???===++})(|)({11n n n n j t X j t X P ===++,(13.1) 恒成立,则称此过程为马尔可夫链. 式(13.1)称为马尔可夫性,或称无后效性. 马氏性的直观含义可以解释如下: 将n t 看作为现在时刻,那末,121,,,-???n t t t 就是过去时刻,而1+n t 则是将来时刻.于是,(13.1)式是说,当已知系统现时情况的条件下,系统将来的发展变化与系统的过去无关.我们称之为无后效性. 许多实际问题都具有这种无后 效性. 例如 生物基因遗传从这一代 到下一代的转移中仅依赖于这一代而与以往各代无关. 再如,每当评估一个复杂的计 算机系统的性能时,就要充分利用系统在各个时刻的状态演变所具有

的通常概率特性:即系统下一个将到达的状态,仅依赖于目前所处的状态,而与以往处过的状态无关. 此外,诸如某公司的经营状况 等等也常常具有或近似具有无后效性. 二. 马尔可夫链的分类 状态空间S 是离散的(有限集或可列集),参数集T 可为离散或连续的两类. 三.离散参数马尔可夫链 (1)转移概率 定义2 在离散参数马尔可夫链 },,,,,),({210??????=n t t t t t t X 中, 条件概率 )(})(|)({1m ij m m t p i t X j t X P ===+ 称为)(t X 在时刻(参数)m t 由状态i 一 步转移到状态j 的一步转移概率, 简称转移概率.

随机过程-C4马尔可夫链

练习四:马尔可夫链 随机过程练习题 1.设质点在区间[0,4]的整数点作随机游动,到达0点或4点后以概率1停留在原处, 在其它整数点分别以概率 3 1 向左、右移动一格或停留在原处。求质点随机游动的一步和二步转移的概率矩阵。 2.独立地重复抛掷一枚硬币,每次抛掷出现正面的概率为p ,对于2≥n 求,令n X =0, 1,2或3,这些值分别对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反), (反,正)或(反,反)。求马尔可夫链},2,1,0,{ =n X n 的一步和二步转移的概率矩阵。 3.设}0,{≥n X n 为马尔可夫链,试证: (1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++ (2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P }|,,,{111100++=====n n n n i X i X i X i X P ==?+++m n n n X i X P ,,{22 }|11+++=n n m n i X i 4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始分布和转移概率矩阵为==0{X P p i 4,3,2,1,4 1}==i i ,???? ?? ? ??=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证 }41|4{}41,1|4{12102<<=≠<<==X X P X X X P 5.设}),({T t t X ∈为随机过程,且)(11t X X =,,),(22 t X X = ),(n n t X X =为独 立同分布随机变量序列,令2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证 }0,{≥n Y n 是马尔可夫链。 6.已知随机游动的转移概率矩阵为???? ? ??=5.005.05.05.0005.05.0P ,求三步转移概率矩阵) 3(P 及 当初始分布为1}3{,0}2{}1{000======X P X P X P 时经三步转移后处于状态 3的概率。 7.已知本月销售状态的初始分布和转移概率矩阵如下: (1))4.0,2.0,4.0()0(=T P ,???? ? ??=6.02.02.02.07.01.01.08.08.0P ;

随机过程——马尔可夫过程的应用

随机过程——马尔可夫过程的应用 年级:2013级 专业:通信工程3班 姓名:李毓哲 学号:31

摘要:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础, 是目标检测、估计、滤波灯信号处理理论的基础,在通信、雷达、自动检测、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论讲日益广泛与深入。 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。通信工程中存在大量的随机现象和随机问题。如:信源是随机过程;信道不仅对随机过程进行了变换,而且会叠加随机噪声等。 马尔可夫过程是一类非常重要的随机过程。随着现代科学技术的发展,很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。 关键词:随机过程,马尔可夫过程,通信工程,应用

目录 一、摘要 二、随机过程 、随机过程的基本概念及定义 、随机过程的数学描述 、基于MATLAB的随机过程分析方法三、马尔可夫过程 马尔可夫过程的概念 马尔可夫过程的数学描述 四、马尔可夫过程的应用 马尔可夫模型在通信系统中的应用 马尔可夫模型在语音处理的应用 马尔可夫模型的其他应用 五、结论 参考文献

二、随机过程 、随机过程的基本概念及定义 自然界变换的过程通常可以分为两大类——确定过程和随机过程。如果每次试验所得到的观测过程都相同,且都是时间t的一个确定函数,具有确定的变换规律,那么这样的过程就是确定过程。反之,如果每次试验所得到观测过程都不相同,是时间t的不同函数,没有为确定的变换规律,这样的过程称为随机过程。 、随机过程的数学描述 设随机试验E的样本空间Ω,T是一个数集(T∈(-∞,∞)),如果对于每一个t ∈T,都有一个定义在样本空间Ω上的随机变量 X(w,t),w∈Ω,则称依赖于t的一族随机变量{X(w,t),t∈T}为随机过程或随机函数,简记为{X(t),t∈T }或X(t),其中t称为参数,T称为参数集。当T={0,1,2,…},T={1,2,…},T={…,-2,-1,0,1,2,…}时,{X(w,t)t∈T}称为随机序列或时间序列。 、基于MATLAB的典型随机过程的仿真 信号处理仿真分析中都需要模拟产生各种随机序列,通常都是先产生白噪声序列,然后经过变换得到相关的随机序列,MATLAB有许多产生各种分布白噪声的函数。

北大随机过程课件:第 3 章 第 2 讲 马尔可夫过程

马尔可夫过程 ?1马尔可夫过程概论 6 1.1马尔可夫过程处于某个状态的概率 6 1.2马尔可夫过程的状态转移概率 6 1.3参数连续状态离散马尔可夫过程的状态转移的切普曼-柯尔莫哥洛夫方程 切普曼-柯尔莫哥洛夫方程 齐次切普曼-柯尔莫哥洛夫方程 转移概率分布函数、转移概率密度函数 6 1.4马尔可夫过程状态瞬时转移的跳跃率函数和跳跃条件分布函数 瞬时转移概率分布函数 6 1.5确定马尔可夫过程Q矩阵 跳跃强度、转移概率Q矩阵 ?2参数连续状态离散马尔可夫过程的前进方程和后退方程 柯尔莫哥洛夫-费勒前进方程(利用Q矩阵可以导出、转移概率的微分方程)福克-普朗克方程(状态概率的微分方程) 柯尔莫哥洛夫-费勒后退方程(利用Q矩阵可以导出、转移概率的微分方程)?3典型例题 排队问题、机器维修问题、随机游动问题的分析方法 ?4马尔可夫过程的渐进特性 稳态分布存在的条件和性质 稳态分布求解 ?5马尔可夫过程的研究 1概论 1.1 定义及性质 1.2 状态转移概率 1.3 齐次马尔可夫过程的状态转移概率 1.5跳跃强度、转移概率Q矩阵 2 前进方程和后退方程 2.1 切普曼-柯尔莫哥洛夫方程 2.2柯尔莫哥洛夫-费勒前进方程 2.2福克-普朗克方程 2.3柯尔莫哥洛夫-费勒后退方程 3典型的马尔可夫过程举例 例1 例2 例3 例4,随机游动 4马尔可夫过程的渐进特性 4.1 引理1 4.2 定理2 4.3 定理

5马尔可夫过程的研究 6关于负指数分布的补充说明:

1概论 1.1定义:马尔可夫过程 ()t ξ: 参数域为T ,连续参数域。以下分析中假定[0,)T =∞; 状态空间为I ,离散状态。以下分析中取{0,1,2,}I ="; 对于T t t t t m m ∈<<<<+121",若在12m t t t T <<<∈"这些时刻观察到随机过程的值是12,,m i i i ",则 1m m t t T +>∈时刻的条件概率满足: {}{}1111()/(),,()()/(), m m m m m m P t j t i t i P t j t i j I ξξξξξ++======∈" 则称这类随机过程为具有马尔可夫性质的随机过程或马尔可夫过程。 1.2 定义:齐次马尔可夫过程 对于马尔可夫过程()t ξ,如果转移概率{}21()/()P t j t i ξξ==只是时间差12t t ?=τ的函数,这类马尔可夫过程称为齐次马尔可夫过程。 1.3 性质 马尔可夫过程具有过程的无后效性; 参数连续状态离散的马尔可夫过程的条件转移概率为: {}{}212112()/()0()/(),,P t j t t t P t j t i t t i j I ξξξξ′′=≤≤===≤∈ 马尔可夫过程的有限维联合分布律可以用转移概率来表示 {} {}{}{}32132211123(),(),()()/()()/()(),,,P t k t j t i P t k t j P t j t i P t i t t t i j k I ξξξξξξξξ=========≤≤∈ 马尔可夫过程的有限维条件分布律可以用转移概率来表示

随机过程与马尔可夫链习题答案

信息论与编码课程习题1——预备知识 概率论与马尔可夫链 1、某同学下周一上午是否上课,取决于当天情绪及天气情况,且当天是否下雨与心情好坏没有关系。若下雨且心情好,则50%的可能会上课;若不下雨且心情好,则有10%的可能性不上课;若不下雨且心情不好则有40%的可能性上课;若下雨且心情不好,则有90%的可能不会上课。假设当天下雨的概率为30%,该同学当天心情好的概率为20%,试计算该同学周一上课的可能性是多大? 分析: 天气情况用随机变量X 表示,“0”表示下雨,“1”表示不下雨;心情好坏用Y 表示,“0”表示心情好用“0”表示,心情不好用“1”表示;是否上课用随机变量Z 表示,“0”表示上课,“1”表示不上课。由题意可知 已知[]5.00,0|0====Y X Z P ,[]5.00,0|1====Y X Z P []1.00,1|1====Y X Z P ,[]9.00,1|0====Y X Z P []4.01,1|0====Y X Z P ,[]6.01,1|1====Y X Z P []9.01,0|1====Y X Z P ,[]1.01,0|0====Y X Z P []3.00==X P ,[]7.01==X P []2.00==Y P ,[]8.01==Y P 即题目实际上给出了八个个条件概率和四个概率 [][][][]0,0|00|000===?==?===X Y Z P X Y P X P Z P [][][]0,1|00|10===?==?=+X Y Z P X Y P X P [][][]1,0|01|01===?==?=+X Y Z P X Y P X P [][][]1,1|01|11===?==?=+X Y Z P X Y P X P 由于X ,Y 相互独立,则有 [][][][]0,0|0000===?=?===X Y Z P Y P X P Z P [][][]0,1|010===?=?=+X Y Z P Y P X P [][][]1,0|001===?=?=+X Y Z P Y P X P [][][]1,1|011===?=?=+X Y Z P Y P X P []5.02.03.00??==Z P 1.08.03.0??+9.02.07.0??+1.08.07.0??+ =? 注意:全概率公式的应用 2、已知随机变量X 和Y 的联合分布律如又表所示, 且()Y X Y X g Z +==2 11,,()Y X Y X g Z /,22==, 求:

随机过程-C4马尔可夫链复习过程

随机过程-C4马尔可 夫链

收集于网络,如有侵权请联系管理员删除 练习四:马尔可夫链 随机过程练习题 1.设质点在区间[0,4]的整数点作随机游动,到达0点或4点后以概率1 停留在原处,在其它整数点分别以概率3 1 向左、右移动一格或停留在原 处。求质点随机游动的一步和二步转移的概率矩阵。 2.独立地重复抛掷一枚硬币,每次抛掷出现正面的概率为p ,对于2 ≥n 求,令n X =0,1,2或3,这些值分别对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反),(反,正)或(反,反)。求马尔可夫链},2,1,0,{Λ=n X n 的一步和二步转移的概率矩阵。 3.设}0,{≥n X n 为马尔可夫链,试证: (1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ΛΛ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++Λ (2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P ΛΛ }|,,,{111100++=====n n n n i X i X i X i X P Λ==?+++m n n n X i X P ,,{22Λ }|11+++=n n m n i X i 4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始分布和转移概率矩阵为 ==0{X P p i 4,3,2,1,4 1}==i i ,???? ? ? ? ??=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证 }41|4{}41,1|4{12102<<=≠<<==X X P X X X P 5.设}),({T t t X ∈为随机过程,且)(11t X X =,,),(22Λt X X =Λ ),(n n t X X =为独立同分布随机变量序列,令 2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证}0,{≥n Y n 是马尔可夫链。 6.已知随机游动的转移概率矩阵为??? ?? ??=5.005.05.05.0005.05.0P ,求三步转移概率矩 阵)3(P 及当初始分布为1}3{,0}2{}1{000======X P X P X P 时经三步转 移后处于状态3的概率。 7.已知本月销售状态的初始分布和转移概率矩阵如下: (1))4.0,2.0,4.0()0(=T P ,???? ? ??=6.02.02.02.07.01.01.08.08.0P ;

随机过程报告——马尔可夫链.doc

马尔可夫链 马尔可夫链是一种特殊的随机过程,最初由 A.A .M arkov 所研究。它的直观背景如下 : 设有一随机运动的系统 E ( 例如运动着的质点等 ) ,它可能处的状态记为E 0 , E1 ,..., E n ,.... 总共有可数个或者有穷个。这系统只可能在时刻t=1,2, n, 上改变它的状态。随着的运动进程,定义一列随机变量 Xn,n=0,1, 2, ?其中Xn=k,如在 t=n 时,位于 Ek。 定义 1.1 设有随机过程 X n, n T ,若对任意的整数 n T 和任意的 i 0 , i1 ,...i n 1 I , 条件概率满足 { i n 1 X i ,..., X n i n }{ i n 1 X n i n } P X n 1 0 P X n 1 则称 X n, n T为马尔可夫链,简称为马氏链。 实际中常常碰到具有下列性质的运动系统。如果己知它在t=n 时的状态,则关于它在 n时以前所处的状态的补充知识,对预言在 n时以后所处的状态,不起任何作用。或者说,在己知的“现在”的条件下,“将来”与“过去”是 无关的。这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性” 。假设马尔可夫过程 X n, n T 的参数集T是离散时间集合,即T={0,1,2, }, 其相应 Xn可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。 定义 1.2 条件概率 P( n) { j X n i } ij p X n 1 称为马尔可夫链X n, n T 在时刻n的一步转移矩阵,其中i,j I ,简称为转移概率。 一般地,转移概率 P ij( n )不仅与状态 i,j 有关,而且与时刻 n有关。当 P ij( n)不依赖于时刻 n时,表示马尔可夫链具有平稳转移概率。若对任意的 i ,j I,马尔可夫

马尔可夫链

马尔可夫过程 编辑词条 一类随机过程。它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 ( 过去 ) 。例如森林中动物头数的变化构成——马尔可夫过程。在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。关于该过程的研究,1931年A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。 目录 马尔可夫过程 离散时间马尔可夫链 连续时间马尔可夫链 生灭过程 一般马尔可夫过程 强马尔可夫过程 扩散过程 编辑本段马尔可夫过程 Markov process 1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。1954年前后,W.费勒将半群方法引入马尔可夫过程的研究。流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。 类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。如果将荷叶编号并用X0,X1,X2,…分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{Xn,n≥0} 就是马尔可夫过程。液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。还有些过程(例如某些遗

随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链 5.1连续时间的马尔可夫链 考虑取非负整数值的连续时间随机过程}.0),({≥t t X 定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意 121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有 })(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++ =})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链. 由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关. 记(5.1)式条件概率一般形式为 ),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij = 其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij 以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程. 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记 i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有 },{}{t h P s h t s h P i i i >=>+> 可见,随机变量i h 具有无记忆性,因此i h 服从指数分布. 由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

北大随机过程课件:第 3 章 第 4 讲 排队过程

马尔可夫过程排队过程 1 排队过程的基本参数和问题 排队模型的一般描述:A/R/S/N 排队系统的基本参数 排队的基本问题 排队问题的李特公式 2.排队问题的分析方法 3. 排队问题的Little定律 4.排队问题举例: 例1 排队问题M/M/1/∞(无限队长) ξ是一个参数连续状态离散的马尔可夫过程。 (1)()t (2) 求解Q矩阵: (3) 研究稳态t→∞的状态概率分布 (4) 达到稳定状态后,系统中顾客的平均数L, (5) 达到稳定状态后,系统中排队等待顾客的平均值L Q, (6) 达到稳定状态后,顾客在系统中的平均时间W, (7) 达到稳定状态后,顾客在系统中等待的平均时间WQ: (8) Little定律: M/M/1/∞排队模型总结: 系统中平均的顾客数和平均延迟与负载的关系:例2 排队问题M/M/1/N(有限队长) 例3 顾客成批到达的排队问题 例4 电话交换问题(M/M/N/N) 例5 M/M/s/∞排队系统 例6 队长为k>s、s个服务员的排队问题M/M/s/k 例7 机器维修问题

1 排队过程的基本参数和问题 排队模型的一般描述:A/R/S/N 排队系统的基本参数 A :顾客到达系统的规律(典型的是泊松到达率), R :顾客在系统中接受服务的规律(典型的是负指数分布), S :系统中服务人员的个数(典型的是一个服务员), N :系统中排队队长的限制(典型的有限队长N )。 排队的基本问题 在排队系统的平均顾客数L , 在排队等候的平均顾客数L Q , 顾客在系统中平均花费的时间W , 顾客在排队等候的平均时间W Q 。 排队问题的李特公式 W L λ=,Q Q W L λ= 2.排队问题的分析方法 马尔可夫模型的排队问题,M/M/…… 确定: 系统状态转换图, Q 矩阵, 稳态的线性方程组, 得到: 稳态分布的递推关系和稳态解, 分析: 系统中的平均顾客数、平均队长、系统中的时间、平均等待时间、李特公式。 3. 排队问题的Little 定律 W L λ=,Q Q W L λ= 排队系统中普适性的定律,统计量服从的公式,对到达过程、服务时间分布、服务规则无特殊要求。

随机过程报告——马尔可夫链

马尔可夫链 马尔可夫链是一种特殊的随机过程,最初由A.A .M arkov 所研究。它的直观背景如下:设有一随机运动的系统E (例如运动着的质点等),它可能处的状态记为,....E ,...,E ,E n 10总共有可数个或者有穷个。这系统只可能在时刻t=1,2,…n,…上改变它的状态。随着∑的运动进程,定义一列随机变量Xn,n=0,1, 2, ?其中Xn=k ,如在t=n 时,∑位于Ek 。 定义1.1 设有随机过程}{T n X n ∈,,若对任意的整数T n ∈和任意的,,...,110I i i i n ∈+条件概率满足 }i {},...,i X i {1n 100 01n 1n n n n n n i X X P i X X P ======++++ 则称}{T n X n ∈,为马尔可夫链,简称为马氏链。 实际中常常碰到具有下列性质的运动系统∑。如果己知它在t=n 时的状态,则关于它在n 时以前所处的状态的补充知识,对预言∑在n 时以后所处的状态,不起任何作用。或者说,在己知的“现在”的条件下, “将来”与“过去”是无关的。这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性”。 假设马尔可夫过程}{T n X n ∈,的参数集T 是离散时间集合,即T={0,1,2,…},其相应Xn 可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。 定义1.2 条件概率 }{P 1)(i X j X p n n n ij ===+ 称为马尔可夫链}{T n X n ∈,在时刻n 的一步转移矩阵,其中i ,j ∈I ,简称为转移概率。 一般地,转移概率)(P n ij 不仅与状态i,j 有关,而且与时刻n 有关。当)(P n ij 不依赖 于时刻n 时,表示马尔可夫链具有平稳转移概率。若对任意的i ,j ∈I ,马尔可夫

北大随机过程课件:第 3 章 第 6 讲 特征函数与母函数

特征函数、母函数、矩母函数 确定随机变量的概率密度函数/分布律 方便求解独立随机变量和的分布函数一类问题 可以通过微分运算求随机变量的数字特征 1.特征函数: 设随机变量ξ的分布函数为F(x), 概率密度函数为f(x), 称: (){}()()jt jtx jtx t E e e dF x e f x dx ξ∞∞?∞?∞ Φ===∫∫ 为随机变量ξ的分布函数的特征函数,或ξ的特征函数,特征函数是概率密度函数的付氏变换。 特征函数的性质: 1.特征函数与概率密度函数相互唯一地确定; 2.两个相互统计独立的随机变量和的特征函数等于各个随机变量特征函数的积; 3.特征函数与随机变量的数字特征的关系:()0()|{}k k k t t j E ξ=Φ= 典型随机变量的特征函数 1. 两点分布的特征函数:()jt t q pe Φ=+ 2. 二项式分布的特征函数:()()n jt t q pe Φ=+ 3. 几何分布:()1jt jt pe t qe Φ=? 4. 泊松分布(λ):(1)()jt e t e λ??Φ= 5. 正态分布2(,)N σ?:22 ()exp{}2t t j t σΦ=?? 6. 均匀分布[0,1]:1()jt e t jt ?Φ= 7. 负指数分布:()t jt λ λΦ=?

2.母函数 研究分析非负整值随机变量时,可以采用母函数法: 对于一个取非负整数值n=0,1,2,……,的随机变量x ,,其相应的矩生成函数定义为: 0()()n n z p x n z ∞ =Φ==?∑ (1/)z Φ是序列()p x n =的正常的z 变换 母函数的性质: 1. 两个相互统计独立的随机变量和的母函数等于各个随机变量的母函数的积。 2. 随机个独立同分布的非负整值随机变量和的矩生成函数是原来两个母函数的复合(见附 合泊松过程的应用) 3.()000(),()!1,2,k k z z z p z k p k ==Φ=Φ==" 通过母函数有理分式的幂级数展开等方法,得到随机变量的概率分布表达式。 3. ()1(){(1)(1)}1,2,k z z E X X X k k =Φ=??+="" 通过矩生成函数的微分可以得到随机变量的数字特征: 均值: '1{}()|z E X z ==Φ 方差: 22''''2111{}{}[{}]()|()|[()|]z z z D X E X E X z z z ====?=Φ+Φ?Φ 典型随机变量的母函数 1. 两点分布的母函数:()z q pz Φ=+ 2. 二项式分布的母函数:()()n z q pz Φ=+ 3. 泊松分布(λ):(1)()z z e λ??Φ= 4. 几何分布:()1pz z qz Φ=?

随机过程报告记录——马尔可夫链

随机过程报告记录——马尔可夫链

————————————————————————————————作者:————————————————————————————————日期:

马尔可夫链 马尔可夫链是一种特殊的随机过程,最初由A.A .M arkov 所研究。它的直观背景如下:设有一随机运动的系统E (例如运动着的质点等),它可能处的状态记为 ,....E ,...,E ,E n 10总共有可数个或者有穷个。这系统只可能在时刻t=1,2,…n,…上 改变它的状态。随着∑的运动进程,定义一列随机变量Xn,n=0,1, 2, ?其中Xn=k ,如在t=n 时,∑位于Ek 。 定义1.1 设有随机过程}{T n X n ∈,,若对任意的整数T n ∈和任意的 ,,...,110I i i i n ∈+条件概率满足 }i {},...,i X i {1n 100 01n 1n n n n n n i X X P i X X P ======++++ 则称}{T n X n ∈,为马尔可夫链,简称为马氏链。 实际中常常碰到具有下列性质的运动系统∑。如果己知它在t=n 时的状态,则关于它在n 时以前所处的状态的补充知识,对预言∑在n 时以后所处的状态,不起任何作用。或者说,在己知的“现在”的条件下, “将来”与“过去”是无关的。这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性”。 假设马尔可夫过程}{T n X n ∈,的参数集T 是离散时间集合,即T={0,1,2,…},其相应Xn 可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。 定义1.2 条件概率 }{P 1)(i X j X p n n n ij ===+ 称为马尔可夫链}{T n X n ∈,在时刻n 的一步转移矩阵,其中i ,j ∈I ,简称为转 移概率。 一般地,转移概率)(P n ij 不仅与状态i,j 有关,而且与时刻n 有关。当)(P n ij 不依赖于时刻n 时,表示马尔可夫链具有平稳转移概率。若对任意的i ,j ∈I ,马尔可夫

相关文档
相关文档 最新文档