文档库 最新最全的文档下载
当前位置:文档库 › Matlab图像颜色空间转换

Matlab图像颜色空间转换

Matlab图像颜色空间转换
Matlab图像颜色空间转换

Matlab图像颜色空间转换

实验内容

用matlab软件编程实现下述任务:

读入彩色图像,提取其中的R、G、B颜色分量,并展示出来。

我们学习了多种表示图像的颜色空间,请编写程序将图像转换到YUV、YIQ、YCrCb、HIS、CMY等颜色空间,并展示出来。

颜色空间的转化关系参考以下公式:

原始图片

三个色调分量

YUV与RGB之间的转换

Y=0、229R+0、587G+0、114B

U=-0、147R-0、289G+0、436B

V=0、615R-0、515G-0、100B

YIQ与RGB之间的转换

Y=0、299R+0、587G+0、114B

I=0、596R-0、275G-0、321B

Q=0、212R-0、523G+0、311B

YCrCb与RGB之间的转换

Y = 0、2990R + 0、5870G + 0、1140B?

Cr = 0、5000R - 0、4187G - 0、0813B + 128

Cb = -0、1687R - 0、3313G + 0、5000B + 128

HSI与RGB之间的转换

I=(R+G+B)/3

H=arccos{ 0、5*((R-G)+(R-B)) / ((R-G)^2 + (R-B)(G-B))^0、5} S=1-[min(R,G,B)/ I ]

CMY与RGB之间的转换

??????????-??????????=??????????B G R Y M C 111

心得体会

查阅了很多资料,并且学习了关于matlab 实现图像颜色空间转换的过程。不同的颜色空间在描述图像的颜色时侧重点不同。如RGB(红、绿、蓝三原色)颜色空间适用于彩色监视器与彩色摄像机,HSI(色调、饱与度、亮度)更符合人描述与解释颜色的方式(或称为HSV,色调、饱与度、亮度),CMY(青、深红、黄)、CMYK(青、深红、黄、黑。)主要针对彩色打印机、复印机等,YIQ(亮度、色差、色差)就是用于NTSC 规定的电视系统格式,YUV(亮度、色差、色差)就是用于PAL 规定的电视系统格式,YCbCr(亮度单一要素、蓝色与参考值的差值、红色与参考值的差值)在数字影像中广泛应用。近年来出现了另一种颜色空间lαβ,由于其把亮度与颜色信息最大限度的分离,在该颜色空间可以分别处理亮度或颜色而不相互影响。

通过这次实验,实现了五种颜色空间的转换,瞧到了不同的绚丽结果,掌握了一些基本的知识。

程序

clear

rgb=imread('G:\Learning\MultiMedia\666、jpg');

matlab 图像的几何变换与彩色处理

实验四、图像的几何变换与彩色处理 一、实验目的 1理解和掌握图像的平移、垂直镜像变换、水平镜像变换、缩放和旋转的原理和应用; 2熟悉图像几何变换的MATLAB操作和基本功能 3 掌握彩色图像处理的基本技术 二、实验步骤 1 启动MATLAB程序,读入图像并对图像文件分别进行平移、垂直镜像变换、水平镜像变换、缩放和旋转操作 %%%%%%平移 >> flowerImg=imread('flower.jpg'); >> se=translate(strel(1),[100 100]); >> img2=imdilate(flowerImg,se); >> subplot(1,2,1); >> imshow(flowerImg); >> subplot(1,2,2); >> imshow(img2);

I1=imread('flower.jpg'); I1=double(I1); H=size(I1); I2(1:H(1),1:H(2),1:H(3))=I1(H(1):-1:1,1:H(2),1:H(3)); I3(1:H(1),1:H(2),1:H(3))=I1(1:H(1),H(2):-1:1,1:H(3)); Subplot(2,2,1); Imshow(uint8(I1)); Title('原图'); Subplot(2,2,2); Imshow(uint8(I3)); Title('水平镜像'); Subplot(2,2,3); Imshow(uint8(I2)); Title('垂直镜像'); img1=imread('flower.jpg'); figure,imshow(img1); %%%%%%缩放 img2=imresize(img1,0.25); figure,imshow(img2); imwrite(img2,'a2.jpg');

PANTON国际色卡CMYK色值对照表

PANTONE国际色卡四色模拟专色CMYK色值对照表 前三个为LAB色,后三个为RGB值,当然你可以在CDR或其他软件里很轻易的 用RGB值转换成CMYK值, 100C 93 -8 50 243 237 134 #F3ED86 101C 92 -9 66 245 236 98 #F5EC62 102C 91 -7 100 250 230 0 #FAE600 103C 71 0 91 202 173 0 #CAAD00 104C 62 -1 74 172 150 0 #AC9600 105C 48 -1 49 129 114 20 #817214 106C 91 -6 65 246 231 97 #F6E761 107C 90 -4 81 250 226 47 #FAE22F 108C 88 0 95 254 219 0 #FEDB00 109C 86 5 100 255 209 0 #FFD100 110C 73 7 94 219 174 0 #DBAE00 111C 61 4 75 175 143 0 #AF8F00 112C 55 2 62 153 128 0 #998000 113C 90 -2 67 250 225 90 #FAE15A 114C 89 -2 70 250 224 81 #FAE051 115C 89 -1 72 251 222 74 #FBDE4A 116C 85 7 93 255 206 0 #FFCE00 117C 68 10 83 206 157 0 #CE9D00 118C 60 8 73 179 138 0 #B38A00 119C 50 1 49 138 118 26 #8A761A 120C 89 0 53 249 223 121 #F9DF79 1205C 90 0 31 243 226 167 #F3E2A7 121C 89 2 57 251 219 110 #FBDB6E 1215C 89 1 40 245 221 146 #F5DD92 122C 87 5 68 253 212 79 #FDD44F 1225C 84 11 69 253 199 69 #FDC745 123C 84 12 79 255 199 38 #FFC726 1235C 79 22 85 255 179 0 #FFB300 124C 75 16 85 235 171 0 #EBAB00 1245C 64 13 69 198 146 0 #C69200 125C 61 12 72 187 137 0 #BB8900 1255C 56 10 59 170 128 14 #AA800E

Matlab图像颜色空间转换

Matlab图像颜色空间转换 实验内容 用matlab软件编程实现下述任务: 读入彩色图像,提取其中得R、G、B颜色分量,并展示出来。 我们学习了多种表示图像得颜色空间,请编写程序将图像转换到YUV、YIQ、YCrCb、HIS、CMY等颜色空间,并展示出来。 颜色空间得转化关系参考以下公式: 原始图片 三个色调分量 YUV与RGB之间得转换 Y=0、229R+0、587G+0、114B U=-0、147R-0、289G+0、436B V=0、615R-0、515G-0、100B

YIQ与RGB之间得转换 Y=0、299R+0、587G+0、114B I=0、596R-0、275G-0、321B Q=0、212R-0、523G+0、311B YCrCb与RGB之间得转换 Y = 0、2990R + 0、5870G + 0、1140B? Cr = 0、5000R 0、4187G 0、0813B + 128 Cb = 0、1687R 0、3313G + 0、5000B + 128

HSI与RGB之间得转换 I=(R+G+B)/3 H=arccos{ 0、5*((RG)+(RB)) / ((RG)^2 + (RB)(GB))^0、5} S=1[min(R,G,B)/ I ] CMY与RGB之间得转换

心得体会 查阅了很多资料,并且学习了关于matlab实现图像颜色空间转换得过程。不同得颜色空间在描述图像得颜色时侧重点不同。如RGB(红、绿、蓝三原色)颜色空间适用于彩色监视器与彩色摄像机,HSI(色调、饱与度、亮度)更符合人描述与解释颜色得方式(或称为HSV,色调、饱与度、亮度),CMY(青、深红、黄)、CMYK(青、深红、黄、黑。)主要针对彩色打印机、复印机等,YIQ(亮度、色差、色差)就是用于NTSC规定得电视系统格式,YUV(亮度、色差、色差)就是用于PAL规定得电视系统格式,YCbCr(亮度单一要素、蓝色与参考值得差值、红色与参考值得差值)在数字影像中广泛应用。近年来出现了另一种颜色空间lαβ,由于其把亮度与颜色信息最大限度得分离,在该颜色空间可以分别处理亮度或颜色而不相互影响。 通过这次实验,实现了五种颜色空间得转换,瞧到了不同得绚丽结果,掌握了一些基本得知识。 程序 clear rgb=imread('G:\Learning\MultiMedia\666、jpg'); rgb2hsi(rgb); rgb_r=rgb(:,:,1);

常用RGB颜色表

常用RGB颜色表(一) 2009-06-19 21:41 R G B值R G B值R G B值黑色0 00#000000黄色2552550#FFFF00浅灰蓝色176224230#B0E0E6象牙黑413633#292421香蕉色22720787#E3CF57品蓝65105225#4169E1灰色192192192#C0C0C0镉黄25515318#FF9912石板蓝10690205#6A5ACD 冷灰128138135#808A87dougello23514285#EB8E55天蓝135206235#87CEEB 石板灰112128105#708069forum gold255227132#FFE384 暖灰色128128105#808069金黄色2552150#FFD700青色0255255#00FFFF 黄花色218165105#DAA569绿土569415#385E0F 白色225225225#FFFFFF瓜色227168105#E3A869靛青84684#082E54古董白250235215#FAEBD7橙色255970#FF6100碧绿色127255212#7FFFD4天蓝色240255255#F0FFFF镉橙255973#FF6103青绿色64224208#40E0D0白烟245245245#F5F5F5胡萝卜色23714533#ED9121绿色02550#00FF00白杏仁255235205#FFFFCD桔黄2551280#FF8000黄绿色1272550#7FFF00 cornsilk255248220#FFF8DC淡黄色245222179#F5DEB3钴绿色6114564#3D9140蛋壳色252230201#FCE6C9翠绿色020187#00C957 常用RGB颜色表(二) 2009-06-19 21:42 花白255250240#FFFAF01284242#802A2A3413934#228B22 gainsboro220220220#DCDCDC163148128#A394801242520#7CFC00 ghostWhite248248255#F8F8FF1385415#8A360F5020550#32CD32蜜露橙240255240#F0FFF01355136#873324189252201#BDFCC9象牙白250255240#FAFFF021010530#D2691E10714235#6B8E23亚麻色250240230#FAF0E625512564#FF7D404812820#308014 navajoWhite255222173#FFDEAD240230140#F0E68C4613987#2E8B57 253245230#FDF5E6188143143#BC8F8F0255127#00FF7F 255245238#FFF5EE1999720#C76114 255250250#FFFAFA1157418#734A12紫色16032240#A020F0 943818#5E2612紫罗蓝色13843226#8A2BE2 25500#FF00001608245#A0522D jasoa160102211#A066D3 15610231#9C661F1396919#8B4513湖紫色15351250#9933FA 2272313#E3170D24416496#F4A460淡紫色218112214#DA70D6 25512780#FF7F50210180140#D2B48C梅红色221160221#DDA0DD 1783434#B22222 1762331#B0171F00255#0000FF

数字图像处理四个实验报告,带有源程序

数字图像处理 实验指导书 学院:通信与电子工程学院 专业:电子信息工程 班级: 学号: 姓名: XX理工大学

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。 图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: 亮度图像(Intensity images) 二值图像(Binary images) 索引图像(Indexed images) RGB图像(RGB images)

VC编程实现灰度图像与彩色图像的相互转换要点

VC编程实现灰度图像与彩色图像的相互转换 PhotoShop的图像处理功能很强,其中有一个功能是将灰度图像转换为彩色图像,数字图像处理中,也经常要遇到灰度图像与彩色图像相互转换的问题,如何自己解决这个问题,值得大家探讨,现将我解决这类问题的方法陈述如下: 工程应用中经常要遇到需要把彩色图像到灰度图像的变换的问题,采集卡过来的图像为彩色图像,为加快处理速度,要把彩色图像转换为黑白图象,这个问题比较好解决,一般情况下彩色图像每个像素用三个字节表示,每个字节对应着R、G、B分量的亮度(红、绿、蓝),转换后的黑白图像的一个像素用一个字节表示该点的灰度值,它的值在0~255之间,数值越大,该点越白,既越亮,越小则越黑。转换公式为Gray(i,j)=0.11*R(i,j)+0.59*G(i,j)+0.3*B(i,j),其中Gray(i,j)为转换后的黑白图像在(i,j)点处的灰度值,我们可以观察该式,其中绿色所占的比重最大,所以转换时可以直接使用G值作为转换后的灰度。 至于灰度图像转换为彩色图像,技术上称为灰度图像的伪彩色处理,这是一种视觉效果明显而技术又不是很复杂的图像增强技术。灰度图像中,如果相邻像素点的灰度相差不大,但包含了丰富的信息的话,人眼则无法从图像中提取相应的信息,因为人眼分辨灰度的能力很差,一般只有几十个数量级,但是人眼对彩色信号的分辨率却很强,这样将黑白图像转换为彩色图像人眼可以提取更多的信息量。在转换过程中,经常采用的技术是灰度级-彩色变换,意思就是对黑白图像上的每一个像素点,取得该点的灰度值并送入三个通道经过实施不同的变换,产生相应的R、G、B的亮度值,即所求彩色图像对应像素点的彩色值,具体变换公式很多,我采用的是最常用的一种,变换曲线图如下: 上图中,三个图分别代表了三个变换通道,R、G、B指的是变换后对应点的R、G、B分量值,L指的是各个分量的最大值为255,G(x,y)为相应点的灰度值。理论上就这些,下面是我用VC实现的源代码,图一为我的灰度位图,图二为伪彩色处理后的结果图。我这个实现函数中是如何得到灰度位图的数据的就不多讲了,有兴趣的朋友可参考我在天极网上九月十号发表的《VC灰度位图处理》一文,那里应该讲的很

灰度图像处理及颜色模型转换

灰度图像处理程序代码代码 1.二值图像 function erzhi_Callback(hObject, eventdata, handles) % hObject handle to erzhi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能转换为二值图像','转换失败'); else j=im2bw(x); imshow(j); end 2.图像腐蚀 function fushi_Callback(hObject, eventdata, handles) % hObject handle to fushi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能进行图像腐蚀','失败'); else j=im2bw(x); se=eye(5); bw=bwmorph(j,'erode'); imshow(bw); 3.创建索引图像 function chuanjian_Callback(hObject, eventdata, handles) % hObject handle to chuanjian (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes2); x=(handles.img); if isrgb(x) msgbox('这是彩色图像,不能创建索引图像','创建失败'); else y=grayslice(x,16); axes(handles.axes2); imshow(y,jet(16)); end 4.轮廓图

常见医学图像格式

附录C 图像格式 译者:Synge 发表时间:2012-05-03浏览量:1604评论数:0挑错数:0 翻译:xiaoqiao 在fMRI的早期,由于大多数据都用不同研究脉冲序列采集,然后离线大量重建,而且各研究中心文件格式各不相同、大多数的分析软件也都是各研究单位内部编写运用。如果这些数据不同其他中心交流,数据的格式不影响他们的使用。因此图像格式就像巴别塔似的多式多样。随着fMRI领域的不断发展,几种标准的文件格式逐渐得到了应用,数据分析软件包的使用促进了这些文件格式在不同研究中心和实验室的广泛运用,直到近期仍有多种形式的文件格式存在。这种境况在过去的10年里随着公认的NIfTI格式的发展和广泛认可而优化。该附录就fMRI资料存储的常见问题以及重要的文件格式做一概述, 3.1 数据存储 正如第2章所述,MRI数据的存储常采用二进制数据格式,如8位或16位。因此,磁盘上数据文件的大小就是数据图像的大小和维度,如保存维度128 ×128×96的16位图像需要25,165,824位(3 兆字节)。为了保存图像的更多信息,我们希望保存原始数据,即元数据。元数据包含了图像的各种信息,如图像维度及数据类型等。这点很重要,因为可以获得二进制数据所不知道的信息,例如,图像是128 ×128×96维度的16位图像采集还是128 ×128×192维度的8位图像采集。在这里我们主要讨论不同的图像格式保存不同的数量及种类的元数据。

MRI的结构图像通常保存为三维的资料格式。fMRI数据是一系列的图像采集,可以保存为三维格式,也可以保存为四维文件格式(第4维为时间)。通常,我们尽可能保存为四维数据格式,这样可以减少文件数量,但是有些数据分析软件包不能处理四维数据。 3.2 文件格式 神经影像的发展中出现了很多不同图像格式,常见的格式见表1.在这里我们就DICOM、Analyze和NIfTI最重要的三种格式做一讨论。 表1. 常见医学图像格式 Analyze .img/.hdr Analyze软件, 梅奥临床医学中心 DICOM 无ACR/NEMA协会 NIfTI .nii或.img/.hdr NIH影像学信息工具倡议 MINC .mnc 蒙特利尔神经学研究所(MNI,扩展名NetCDF) 3.2.1 DICOM格式 现今大多MRI仪器采集后的重建数据为DICOM格式。该数据格式源于美国放射学协会(ACR)和国际电子产品制造商协会(NEMA)。DICOM不仅仅是图像的存储格式,而且是不同成像系统的不同形式数据之间转换的模式,MRI图像只是其中一种特殊形式。目前使用的DICOM遵照1993年协议,且目前主要的MRI仪器供应商都支持该格式。 通常,DICOM把每一层图像都作为一个独立的文件,这些文件用数字命名从而反映相对应的图像层数(在不同的系统有一定差异)。文件中包含文件头信息,且必须要特定的软

图像格式转换源代码

求delphi源码图像格式转换 浏览次数:555次悬赏分:20 |解决时间:2010-6-4 16:33 |提问者:黑色城堡没有爱 毕业设计,Delphi语言编写的图像格式转换,各种图像格式相互转换。另加一点特效处理~~~~~跪谢 问题补充: scorpio-butterfly@https://www.wendangku.net/doc/8414617988.html, 最佳答案 常见图象格式转换技术 作者:lyboy99 e-mail:lyboy99@https://www.wendangku.net/doc/8414617988.html, url: https://www.wendangku.net/doc/8414617988.html, 给大家提供几个常用的图象格式转换方法和其转换函数 希望可以对你有帮助 1. ICO图标转换BMP格式 2. 32x32 BMP格式图象转换为ICO格式 3.转换BMP->JPEG文件格式 4.JPEG 转换为BMP函数 5.Bmp转换为JPEG文件格式函数 ------------------------------------------------------------------------------------------------------------------------- 1.Chinese : ICO图标转换BMP格式 English :(Conversion from ICO to BMP) -------------------------------------------------------- var Icon : TIcon; Bitmap : TBitmap; begin Icon := TIcon.Create; Bitmap := TBitmap.Create; Icon.LoadFromFile('c:picture.ico'); Bitmap.Width := Icon.Width; Bitmap.Height := Icon.Height; Bitmap.Canvas.Draw(0, 0, Icon ); Bitmap.SaveToFile('c:picture.bmp'); Icon.Free; Bitmap.Free; ===================================

灰度图像转彩色图像代码

clc; clear all; close all; I = imread('q.jpg'); I1 = I; I2 = I; I3 = I; I1(I1>60 & I1<120) = 255; I2(I2>20 & I2<50) = 255; I3(I3>80 & I3<160) = 255; J = cat(3, I1, I2, I3); figure; subplot(1, 2, 1); imshow(I, []); title('By lyqmath 原图', 'FontWeight', 'Bold', 'Color', 'r'); subplot(1, 2, 2); imshow(J, []); title('By lyqmath 彩色图', 'FontWeight', 'Bold', 'Color', 'r'); 二. I = imread('q.jpg'); GS8=grayslice(I,8); GS64=grayslice(I,64); subplot(1,3,1), imshow(I), title('原始灰度图像'); subplot(1,3,2), subimage(GS8,hot(8)), title('分成8层伪彩色'); subplot(1,3,3), subimage(GS64,hot(64)), title('分成64层伪彩色');

k=imread('q.jpg'); [x y z]=size(k); % z should be one for the input image k=double(k); for i=1:x for j=1:y if k(i,j)>=0 & k(i,j)<50 m(i,j,1)=k(i,j,1)+5; m(i,j,2)=k(i,j)+10; m(i,j,3)=k(i,j)+10; end if k(i,j)>=50 & k(i,j)<100 m(i,j,1)=k(i,j)+35; m(i,j,2)=k(i,j)+28; m(i,j,3)=k(i,j)+10; end if k(i,j)>=100 & k(i,j)<150 m(i,j,1)=k(i,j)+52; m(i,j,2)=k(i,j)+30; m(i,j,3)=k(i,j)+15; end if k(i,j)>=150 & k(i,j)<200 m(i,j,1)=k(i,j)+50;

Java 图片处理 格式转换

Java 图片处理(包括 Jmagick 的应用) 图片处理( 的应用)
作者: 佚名, 出处:IT 专家网,
2010-10-29 08:30
责任编辑: 谢妍妍,
近期有使用到图片的压缩处理,由于在之前用 Java 处理时,在低像素的情况下, Java 处理的效果确实很差,然后尝试了用网上推荐的免费开源的第三方软件,利用 Java 的 jni 调用 dll 文件进行处理,效果还可以。在此记录下,方便以后继续积累。
近期有使用到图片的压缩处理, 由于在之前用 Java 处理时, 在低像素的情况下, Java 处理的效果确实很差,然后尝试了用网上推荐的免费开源的第三方软件,利用 Java 的 jni 调用 dll 文件进行处理,效果还可以。在此记录下,方便以后继续积累。
1、纯 Java 类处理图片代码
Java 代码
以下是代码片段: 以下是代码片段: /** * 转换图片大小,不变形 * * @param img * 图片文件 * @param width * 图片宽 * @param height * 图片高 */ public static void changeImge(File img, int width, int height) { try { Image image = ImageIO.read(img); //图片尺寸的大小处理, 如果长宽都小于规定大小, 则返回, 如果有一个大于规定大小, 则等比例缩放 int srcH = image.getHeight(null); int srcW = image.getWidth(null); if (srcH <= height && srcW <= width) { return;

彩色空间转换

实验五彩色空间转换一、 实验目的 掌握MATLAB 中彩色空间的转换 二、实验步骤 1、由RGB 空间转换到YIQ: 读入5.jpg 图像; clc;clear; f = imread('5.jpg') yiq_image=rgb2ntsc(f); imshow(yiq_image) 显示结果如下: 2、由YIQ 彩色空间转换到RGB 空间下: rgb_image=ntsc2rgb(yiq_image); figure,imshow(rgb_image) 转换结果如图:

2、YCbCr 和RGB 彩色空间的相互转换 ycbcr_image=rgb2ycbcr(f); figure,imshow(ycbcr_image) rgb_image=ycbcr2rgb(ycbcr_image); figure,imshow(rgb_image) 效果如下图: 3、HSV 和RGB 彩色空间的相互转换 >> hsv_image=rgb2hsv(f); >> figure,imshow(hsv_image); >> rgb_image=hsv2rgb(hsv_image); >> figure,imshow(rgb_image); 效果如下图: 4、CMY 和RGB 彩色空间的相互转换 >> cmy_image=imcomplement(f); >> figure,imshow(cmy_image); >> rgb_image=imcomplement(cmy_image); >> figure,imshow(rgb_image); 效果如下图:

5、RGB 彩色空间到HSI 彩色空间的转换 hsi=rgb2hsi(f); figure,subplot(141),imshow(hsi) subplot(142),imshow(hsi(:,:,1)) subplot(143),imshow(hsi(:,:,2)) subplot(144),imshow(hsi(:,:,3)) 效果如下图: 三、实验总结 通过本次实验我掌握了MATLAB 中彩色空间的转换的基本方法。本次实验与上次实验联系比较紧密。但本次实验于上次实验相比,难度上有了一些变化,尤其是在RGB 彩色空间到HSI 彩色空间的转换的时候,出现了一点问题。由于在系统中本身没有rgb2hsi这个函数,所以运行时出现了错误,但通过,上网查找资料终于解决了这一问题。总体来说本次实验收获还是比较大的。

颜色的RGB值表示法

颜色的RGB值表示法 从物理光学试验中得出:红、绿、蓝三种色光是其他色光所混合不出来的。而这三种色光以不同比例的混合几乎可以得出自然界所有的颜色。 如红光与不同比例的绿光混合可以得出橙、黄、黄绿等色;红光与不同比例的蓝紫光混合可以得出品红、红紫、紫红蓝;紫光与不同比例的绿光混合可以得出绿蓝、青、青绿。如果蓝紫、绿、红三种光按不同比例混合可以得出更多的颜色,一切颜色都可通过加色混合得出。由于加色混合是色光的混合,因此随着不同色光混合量的增加,色光的明度也渐加强,所以也叫加光混合。当全色光混合时则可趋于白色光,它较任何色光都明亮。 一种颜色的数值一般用这种颜色的RGB值来表示。RGB值指某种颜色中的红(Red)、绿(Green)、蓝(Blue)成分,理论上讲红绿蓝三种基色按照不同的比例混合可以调配出任何一种颜色来。 比如我们调一种桔红色,下图是Photoshop颜色面板中的显示。 这种颜色的十进制颜色值为R=239;G=125;B=49,转换成十六进制为 R=EF;G=7D;B=31。 C语言中写成“RGB(239, 125, 49)”,也可以写成十六进制的形式“0xEF7D31”,在网页HTML代码中写成“#EF7D31”。

颜色中的RGB成分数值范围均为(0~255),用十六进制表示即(0x00~0xFF),这个范围正好占用一个字节(8位)。因此一种颜色含RGB三种成分占用三个字节(24位),这就是24位真彩色的由来了。 如何根据RGB值来判断这是种什么颜色? 下面介绍几种典型颜色的RGB值,格式为:颜色(R,G,B)。 想象一下有红、绿、蓝三盏射灯打出三束光。 这三束光叠加在一起时产生白色,如果三盏灯的亮度都减半就产生了灰色,如果三盏灯都关掉就会一片漆黑了。 白色(255,255,255)灰色(127,127,127)黑色(0,0,0) 关掉绿灯和蓝灯,只亮红灯,那么只会看到一片红色;只亮绿灯或蓝灯则只会看到绿色或蓝色。 红色(255,0,0)绿色(0,255,0)蓝色(0,0,255) 关掉其中一盏灯,用其他两盏灯的光线叠加,则蓝+绿=青,红+蓝=洋红,红+绿=黄。 青色(0,255,255)洋红色(255,0,255)黄色(255,255,0)

图像处理matlab源码加实验报告

大学 2016 —2017 学年第 1 学期 数字图像处理课程设计 年级与专业学号姓名 题目:图像的代数运算 目标:1.深入理解图像处理中代数运算的基本作用; 2.掌握在MTLAB中对图像进行代数运算的方法; 3.通过实验分析比较各种代数运算算法的效果。 课程设计日期: 2016年11月11号

一、问题背景 随着移动设备的日渐普及,在日常的生活我们可以直接采集到清晰的图像,但是在工业或勘测领域,仍存在许多图像需要进行处理,以便人眼或机器进行符合其认知逻辑的观察,进而得出结论或进行下一步的作业。 鉴于工业或勘测我们无法直接参与,本文仅通过最为简单的图像代数运算,结合matlab进行实验,借助处理后的直观结果,对图像处理做一些最基本的研究。 二、实验原理 图像的代数运算是图像的标准算术操作的实现方法,是两幅输入图像之间进行的点对点的加、减、乘、除运算后得到输出图像的过程。如果输入图像为A(x,y)和B(x,y),输出图像为C(x,y),则图像的代数运算有如下四种形式: C(x,y) = A(x,y) + B(x,y) C(x,y) = A(x,y) - B(x,y) C(x,y) = A(x,y) * B(x,y) C(x,y) = A(x,y) / B(x,y) 图像的代数运算在图像处理中有着广泛的应用,它除了可以实现自身所需的算术操作,还能为许多复杂的图像处理提供准备。例如,图像减法就可以用来检测同一场景或物体生产的两幅或多幅图像的误差。 使用MATLAB的基本算术符(+、-、*、/ 等)可以执行图像的算术操作,但是在此之前必须将图像转换为适合进行基本操作的双精度类型。为了更方便地对图像进行操作,MATLAB图像处理工具箱包含了一个能够实现所有非稀疏数值数据的算术操作的函数集合。下表列举了所有图像处理工具箱中的图像代数运算函数。 表2-1 图像处理工具箱中的代数运算函数 能够接受uint8和uint16数据,并返回相同格式的图像结果。虽然在函数执行过程中元素是以双精度进行计算的,但是MATLAB工作平台并不会将图像转换为双精度类型。 代数运算的结果很容易超出数据类型允许的范围。例如,uint8数据能够存储的最大数值是255,各种代数运算尤其是乘法运算的结果很容易超过这个数值,有时代数操作(主要是除法运算)也会产生不能用整数描述的分数结果。图像的代数运算函数使用以下截取规则使运算结果符合数据范围的要求:超出数据范围的整型数据将被截取为数据范围的极值,分数结果将被四舍五入。例如,如果数据类型是uint8,那么大于255的结果(包括无穷大

图像格式转换实验报告

实验1 图像格式转换实验报告 学 号:12224506 姓 名:陈振辉 班 级:5班 一、实验目的 掌握两种以上图像的格式,重点掌握BMP 图像格式。 二、实验原理: 1、JPEG 文件的解码过程。 敷设技于管路护层防含线槽试以正常杂设方案以卷技术地缩小进行自动作,

①.读入文件的相关信息 按照上述的JPEG 文件数据存储方式,把要解码的文件的相关信息一一读出,为接下来的解码工作做好准备。参考方法是,设计一系列的结构体对应各个标记,并存储标记内表示的信息。其中图像长宽、多个量化表和哈夫曼表、水平/垂直采样因子等多项信息比较重 要。以下给出读取过程中的两个问题。 1)整个文件的大体结构 JFIF 格式的JPEG 文件(*.jpg)的一般顺序为: SOI(0xFFD8)APP0(0xFFE0)[APPn(0xFFEn)]可选 DQT(0xFFDB)SOF0(0xFFC0)DHT(0xFFC4)SOS(0xFFDA)压缩数据EOI(0xFFD9)2)字的高低位问题 JPEG 文件格式中,一个字(16位)的存储使用的是 Motorola 格式, 而不是 Intel 格式。 也就是说, 一个字的高字节(高8位)在数据流的前面, 低字节(低8位)在数据流的后面,与平时习惯的Intel 格式不一样。. 3)读出哈夫曼表数据 在标记段DHT 内,包含了一个或者多个的哈夫曼表。 不同位数的码字数量JPEG 文件的哈夫曼编码只能是1~16位。这个字段的16个字节分别表示1~16位的编码码字在哈 夫曼树中的个数。编码内容这个字段记录了哈夫曼树中各个叶子结点的权。所以,上一字段(不同位数的码字数量)的16个数值之和就应该是本字段的长度,也就是哈夫曼树中叶 子结点个数。 4)建立哈夫曼树 读出哈夫曼表的数据后,就要建立哈夫曼树。 ②.初步了解图像数据流的结构 a) 在图片像素数据流中,信息可以被分为一段接一段的最小编码单元(Minimum CodedUnit ,MCU )数据流。所谓MCU ,是图像中一个正方矩阵像素的数据。矩阵的大小 是这样确定的:查阅标记SOF0,可以得到图像不同颜色分量的采样因子,即Y 、Cr 、Cb 三个分量各自的水平采样因子和垂直采样因子。大多图片的采样因子为4:1:1或 1:1:1。其中,4:1:1即(2*2):(1*1):(1*1));1:1:1即(1*1):(1*1): (1*1)。记三个分量中水平采样因子最大值为Hmax ,垂直采样因子最大值为Vmax ,那么 单个MCU 矩阵的宽就是Hmax*8像素,高就是Vmax*8像素。 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

实验8多媒体实验颜色空间转换

多媒体实验报告——颜色空间的转换 一、实验目的 通过本章的课程设计,加深对数字图像基础知识的理解,并获得如何处理图像的实际经验,并达到以下目的 1、熟练使用matlab进行图像的读取和显示; 2、了解各种颜色空间的不同; 3、掌握各种颜色空间的转换方法。 二、实验内容 1、完成实验指导书3.5节的内容,掌握颜色空间的转换方法; 2、在以上基础上完成下列程序的编写: 练习1:将图片flowers.tif图像转换为hsv空间图像,并提取hsv空间下的每个分量,对转换后的hsv图像进行调整,并将调整后的图像重新转换为rgb空间图像,要求:(1)用一个显示原始图像。(2)用另一个窗口分四个区域显示hsv的三个分量,以及调整后的图像。 练习2:仿照上面的练习,将rgb空间转换为ycbcr空间,显示要求同上。 三、实验结果(粘贴程序以及程序运行结果,或运行结果的说明) 练习1: (1)编程如下: clear all; clc pic = imread('flowers.tif'); phsv = rgb2hsv(pic); figure(1) subimage(pic):colorbar; figure(2) ph = phsv(:,:,1); ps = phsv(:,:,2); pv = phsv(:,:,3); pm = cat(3,ph,ps,pv); phsv = hsv2rgb(pm); subplot(2,2,1),subimage(ph):colorbar; xlabel('(a)色调分量图像','FontSize',14,'FontName','隶书','color','b');

数字图像处理代码Ch5《彩色图像处理》

例5.1 函数说明。 clc,clear,close all; %函数demo f=imread('Fig0604(a)(iris).tif'); subplot 131;imshow(f);title('(a)RGB图像'); [X1,map1]=rgb2ind(f,8,'nodither'); subplot 132;imshow(X1,map1);title('(b)未经抖动处理的颜色数减少到8的图像'); [X2,map2]=rgb2ind(f,8,'dither'); subplot 133;imshow(X2,map2);title('(c)经抖动处理的颜色数减少到8的图像'); g=rgb2gray(f); g1=dither(g); figure;subplot 121;imshow(g); title('(d)使用函数rgb2gray得到的图(a)的灰度图像'); subplot 122;imshow(g1); title('(e)抖动处理后的灰度图像(二值图像)'); 运行结果:

例5.2 RGB转化为HSI。 clc,clear,close all; %从RGB转化到HSI f=imread('Fig0602(b)(RGB_color_cube).tif'); subplot 221;imshow(f); title('(a)RGB图像'); f1=rgb2hsi(f); H=f1(:,:,1); S=f1(:,:,2); I=f1(:,:,3); subplot 222;imshow(H);title('(b)色调图像'); subplot 223;imshow(S);title('(c)饱和度图像'); subplot 224;imshow(I);title('(d)亮度图像'); 运行结果:

RGB颜色转换方法

RGB转换方法 从#后第1位开始每2位为一组,表示一个颜色的值先换成2进制再换成16进制 第1组为红色 第2组为绿色 第3组为蓝色 下面我把从0到255的十六进制和十进制都列出,等号前为十六进制,等号后为对应的十进制你可以把代码代入进去就知道RGB的色值了 00=0 01=1 求二进制数1011.00的十进制表示。 02=2 解:1x24+0x23+1x22+1x21+1x20+0x2-1+1x2-2+1x2-3 03=3 =16+0+4+2+1+0+0.25+0.125=23.375

04=4 05=5 06=6 07=7 08=8 09=9 0A=10 0B=11 0C=12 0D=13 0E=14 0F=15 10=16 11=17 12=18 13=19 14=20 15=21 16=22 17=23 18=24 19=25

1B=27 1C=28 1D=29 1E=30 1F=31 20=32 21=33 22=34 23=35 24=36 25=37 26=38 27=39 28=40 29=41 2A=42 2B=43 2C=44 2D=45 2E=46 2F=47

31=49 32=50 33=51 34=52 35=53 36=54 37=55 38=56 39=57 3A=58 3B=59 3C=60 3D=61 3E=62 3F=63 40=64 41=65 42=66 43=67 44=68 45=69

47=71 48=72 49=73 4A=74 4B=75 4C=76 4D=77 4E=78 4F=79 50=80 51=81 52=82 53=83 54=84 55=85 56=86 57=87 58=88 59=89 5A=90 5B=91

相关文档