文档库 最新最全的文档下载
当前位置:文档库 › 无人机影像空三后处理流程

无人机影像空三后处理流程

无人机影像空三后处理流程
无人机影像空三后处理流程

1、数据的准备

A、原始影像以及曝光点数据

无人机低空航摄采用的是普通数码相机,需要进行相机畸变纠正才能用于后期空三处理。但是我们采用的是双拼相机,原始影像是分为前后相机,而且相片好是一一对应的,这个是必须注意的。

曝光点数据是指的每张相片曝光时的坐标数据,它也是与相片一一对应的。B、像控点数据像控点数据包括像控点坐标和点之记以及像控点刺点图,点之记主要是记录像控点所在位置的信息,刺点图记录的是像控点在图像上的准确位置,方便空三加密是刺控制点。

2、数据预处理

数据预处理与空三软件有关,也与相机有关。普通相机的相片需进行畸变纠正,双拼相机的影像需进行前后相片的拼接,拼接过程已经进行了畸变纠正。一般相片预处理时需将相片按照航带分开并按照飞行方向适当旋转(相邻航线的相片旋转角度相差180 度),有的空三软件需将相片格式转换为tif 格式才能做后期处理,在转格式和旋转相片时,为了保持相片信息不丢失,最好是PhotoShop软件来处理,为了提高效率,可以采用PS的批处理命令。如果是用MAP-AT软件的话,相片可放在一个目录,格式也不需转换,直接用JPEG格式,但

是仍需按照航带旋转相片,这是为了方便批处理建立空三的工程文件。像控点数据按照编号和航带分好目录。

3、空三加密处理

空三加密处理是航摄中最重要的步骤,也是最繁琐的步骤。不同的软件空三步骤有些许不同,但是大同小异。一般都是先做内定向,然后是相对定向,最后做绝对定向,绝对定向是需要控制点数据的。所谓加密其实就是平差过程,为了提高加密精度一般在最后都会在绝对定向的基础上做一次在整体的光束法平差,光束法整体平差不引入中间步骤的参数,是以精度最高。当然这只是理论上的流程,真正的处理过程比较繁琐也不是全按照流程,只要知道每一步流程的作业就行。

这里以MAP-AT软件为例讲解下空三流程:

(略,可参考MAP-AT处理流程文档)

4、生成DEM和DOM

做完空三之后就可以生成DEM和DOMT,在相对定向之后可以将部分加密点假设为已知点,所以相对定向之后就可以做这一步了,如果只是需要没用坐标的正射影像的话,可以在相对定向之后做这一步。生成DEM其实就是软件自动匹配加密点的过程,增加加密点的密度

就可以得到不能分辨率的DEM但是电脑自动匹配的加密点总会有错误的,所以如果要出DEM

成果是必须要人工编辑的。生成DEM需要所在影像的高程数据,也就是DEM可以用电脑自

动生成的DE(未编辑的),也可以用已有的DEM数据,如等高线数据等。但是已有格式DEM 可能和软件所用格式不同,须进行格式。DEM的格式,有点空三软件是自带,有的需用ARCGIS 或者ERDA勞软件来处理。

5、镶嵌匀色

在上一步中生成的DOME射影像都是单张相片纠正过来的,为了得到整幅影像需进行镶嵌处理,镶嵌的意思就是不同的相片按照坐标和纹理进行拼接处理。不同的相片对比度和色

调不一致,所以在拼接前还需进行匀光匀色处理,匀光是统一对比度,匀色是统一色调。匀光匀色软件很多,有的是空三软件自带的(如DPGrid),有的是单独的,有的和镶嵌软件是

一体的。但是所有的镶嵌匀色软件处理步骤都大同小异。匀光匀色有不同的算法,主要是两

种,一种是整体的自适应算法,这个算法是根据所有形象的对比度和色调信息计算出一个整体统一的

对比度和色调,然后将所以的相片的对比度和色调改成这个值。这种方法的好处是不需要编辑模板,但是整体效果不是很好,这是因为由于成像条件不同,所以可能相同地物的对比度和色调本身不一致,用这种算法处理之后在拼接的地方拼接的痕迹很明显。另外一种算法是预先按照测区所在地的不同地物,选择一张相片(最好是包含所有地物)作为模板,用图像处理软件(如PS)将模板相片中相同地物的色调调整一致,并将整体效果调至最好。最后用此模板作为匀光匀色的标准来调整所有相片的色调和对比度。这种方法的好处是相片匀光匀色效果好,整体效果也不错,而且拼接痕迹不明显。一般生产是采用这种方法,但是编辑模板对处理结果影响较大,如果模板选得不好,整体效果也不好,这个和经验有关。做完匀光匀色之后就是相片的镶嵌了,镶嵌过程中为了是纹理一致,需要编辑拼接线,这个对后期成果影像较大。编辑拼接线主要是为了避开房屋,因为房屋的高差大,所以变形也打,一般是无法完全纠正的,所以不同照片中相同房屋的纹理不会完全对应,为了得到相同的纹理,同一栋房屋应选择同一照片中的纹理。还有就是可能有些相片在拼接的地方纹理不好,需选择纹理的较好的相片。总之要得到质量好的整幅影像,镶嵌匀色的工作量也很大。

现在用到的镶嵌匀色软件很多:1、ERDAS2、GeoDogging 3、航天远景易拼图4DPGrid 自带模块5、Inpho 自带模块。

6、成果输出

最后一步是成果输出,成果可以分为空三加密成果,DEM成果和DOM成果。

空三加密成果就是空三加密的之后得到的每张相片的内外方元素以及平差之后的各参数的误差分布和中误差,这些必须大道规范的要求,后期处理的成果才算是合格的。

DEM如果作为成果输出是需要进行编辑的,但是一般空三软件只有简单的或者没有DEM

编辑的功能,需将空三成果转换为DEM编辑软件识别的格式之后在导入相应软件进行编辑。DEM编辑主要是将高程加密点贴近地面,一般在房屋和有树木的地方加密点是贴在房屋和树

顶上的。而且由于空三本身误差的存在,不同相对(一个相对分为左影像和右影像)的匹配点不同,高程也不尽相同。一个模型中周边的变形是最大的,所以DEM在中间的精度最好。

将不同模型的DEM拼接成一个时一般是选取模型中间的加密点,取平均值得来的。

DOM是大部分航摄的最终也是最主要的成果。做完上一步之后得到的就是DOM成果,标

准成果是需要按照地理坐标分幅输出的,DEM和DOM都一样。

最后如果可能的话,还会需要DLG成果,DLG是在空三成果的基础上在数据采集软件上进行的。

无人机航空摄影正射影像及地形图制作项目技术方案精编版

无人机航空摄影正射影像及地形图制作项目技 术方案精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

无人机大比例尺地形图航空摄影、正射影 像制作项目技术方案 1、概述 根据项目需求对项目区进行彩色数码航空摄影,获取真彩数码航片,并制作正射影像 及地形图。 作业范围 呼伦贝尔市北部区域约400平方公里。如下图:

飞行区域(红色) 作业内容 对甲方指定的范围进行1:2000航空摄影,获取高分辨率的彩色影像。 行政隶属 任务区范围隶属于呼伦贝尔市。 作业区自然地理概况和已有资料情况 作业区自然地理概况 (1)地理位置 呼伦贝尔市地处东经115°31′~126°04′、北纬47°05′~ 53°20′。东西630公里、南北700公里,总面积万平方公里?[2]??,占自治区面积的%,相当于山东省与江苏省两省面积之和。南部与相连,东部以为界与为邻,北和西北部以为界与接壤,西和西南部同交界。边境线总长公里,其中中俄边界公里,中蒙边界公里。 (2)地形概况 呼伦贝尔市西部位于内蒙古高原东北部,北部与南部被大兴安岭南北直贯境内。东部为大兴安岭东麓,东北平原——边缘。地形总体特点为:西高东低。地势分布呈由西到东地势缓慢过渡。 (3)气候状况 呼伦贝尔地处温带北部,大陆性气候显着。以与额尔古纳河交汇处为北起点,向南大致沿120°E经线划界:以西为中温带大陆性草原气候;以东的大兴安岭山区为中温带季风性混交林气候,低山丘陵和平原地区为中温带季风性森林草原气候,“乌玛-奇乾-根河-图里河-新帐房-加格达奇-125°E蒙黑界”以北属于寒温带季风性针叶林气候。 已有资料情况 甲方提供的航飞范围。 2、作业依据 (1)《全球定位系统(GPS)测量规范》GB/T18314-2009; (2)全球定位系统实时动态测量(RTK)技术规范》CH/T2009-2010; (3)《低空数字航空摄影规范》CH/Z3005-2010; (4)《低空数字航空摄影测量外业规范》CH/Z3004-2010; (5)《航空摄影技术设计规范》GB/T19294-2003; (6)《摄影测量航空摄影仪技术要求》MH/T1005-1996; (7)《航空摄影仪检测规范》MH/T1006-1996;

无人机航空影像空三加密流程

无人机航空影像数据处理 流程 中国测绘科学研究院 北京东方道迩信息技术有限责任公司

目录 1、无人机航空影像数据处理流程 (3) 2、无人机航空影像数据要求 (4) 3、无人机航空影像数据空三加密流程 (5) 3.1畸变差校正 (5) 3.2建立测区工程 (7) 3.3.1工程目录及相机检校文件设置 (8) 3.3.2设置航空影像数据 (10) 3.3.3设置控制点数据 (14) 3.3空三加密 (15) 3.4.1数据预处理 (16) 3.4.2航带初始点提取 (19) 3.4.3自动相对定向及修改 (21) 3.4.4自由网平差 (31) 3.4.5控制点提取及区域网平差 (35) 4、DEM与DOM制作 (37) 4.1 DEM匹配及编辑修改 (37) 4.1.1工程及格式转换 (37) 4.1.2核线影像生成及DEM匹配 (40) 4.1.3 DEM编辑修改 (46) 4.2 DOM纠正及分幅 (52) 4.3.1 DOM纠正及拼接 (52) 4.3.2 DOM分幅 (60)

1、无人机航空影像数据处理流程 高分辨率遥感影像一体化测图系统PixelGrid作为卫星影像数据处理的能力和效率在生产过程中已经得到了很好的验证,其数据适用范围之广、处理效率之高在国内都是其它同类软件无法比拟的。 无人机航空摄影是一种新型的航空影像数据获取方式,由于无人机种类不同以及所搭配的相机不同,其获取数据的质量也不相同,PixelGrid 针对国内测绘部分中低空领域普及的无人机航空拍摄数据,提供了高效快速的处理。 其无人机航空影像作业流程图如下: 图1-1 无人机航空影像处理流程

无人机航空摄影正射影像及地形图制作项目技术方案设计

无人机大比例尺地形图航空摄影、正射影像制作项目技术方案

1、概述 根据项目需求对项目区进行彩色数码航空摄影,获取真彩数码航片,并制作正射影像及地形图。 1.1作业范围 呼伦贝尔市北部区域约400平方公里。如下图:

飞行区域(红色) 1.2作业内容 对甲方指定的范围进行1:2000航空摄影,获取高分辨率的彩色影像。 1.3行政隶属 任务区范围隶属于呼伦贝尔市。 1.4作业区自然地理概况和已有资料情况 1.5 作业区自然地理概况 (1)地理位置 呼伦贝尔市地处东经115°31′~126°04′、北纬47°05′~53°20′。东西630公里、南北700公里,总面积26.2万平方公里[2] ,占自治区面积的21.4%,相当于山东省与江苏省两省面积之和。南部与兴安盟相连,东部以嫩江为界与黑龙江省大兴安岭地区为邻,北和西北部以额尔古纳河为界与俄罗斯接壤,西和西南部同蒙古国交界。边境线总长1733.32公里,其中中俄边界1051.08公里,中蒙边界682.24公里。 (2)地形概况 呼伦贝尔市西部位于内蒙古高原东北部,北部与南部被大兴安岭南北直贯境内。东部为大兴安岭东麓,东北平原——松嫩平原边缘。地形总体特点为:西高东低。地势分布呈由西到东地势缓慢过渡。 (3)气候状况 呼伦贝尔地处温带北部,大陆性气候显著。以根河与额尔古纳河交汇处为北起点,向南大致沿120°E经线划界:以西为中温带大陆性草原气候;以东的大兴安岭山区为中温带季风性混交林气候,低山丘陵和平原地区为中温带季风性森林草原气候,“乌玛-奇乾-根河-图里河-新帐房-加格达奇-125°E蒙黑界”以北属于寒温带季风性针叶林气候。 1.6已有资料情况 甲方提供的航飞范围。 2、作业依据 (1)《全球定位系统(GPS)测量规范》GB/T 18314-2009; (2)全球定位系统实时动态测量(RTK)技术规范》CH/T2009-2010; (3)《低空数字航空摄影规范》CH/Z3005-2010; (4)《低空数字航空摄影测量外业规范》CH/Z3004-2010;

无人机航空摄影正射影像及地形图制作项目技术方案设计

无人机大比例尺地形图航空摄影、正射影像制作项目技术案

1、概述 根据项目需求对项目区进行彩色数码航空摄影,获取真彩数码航片,并制作正射影像及地形图。 1.1作业围 呼伦贝尔市北部区域约400平公里。如下图:

飞行区域(红色) 1.2作业容 对甲指定的围进行1:2000航空摄影,获取高分辨率的彩色影像。 1.3行政隶属 任务区围隶属于呼伦贝尔市。 1.4作业区自然地理概况和已有资料情况 1.5 作业区自然地理概况 (1)地理位置 呼伦贝尔市地处东经115°31′~126°04′、北纬47°05′~53°20′。东西630公里、南北700公里,总面积26.2万平公里 [2] ,占自治区面积的21.4%,相当于省与省两省面积之和。南部与兴安盟相连,东部以嫩江为界与省大兴安岭地区为邻,北和西北部以额尔古纳河为界与俄罗斯接壤,西和西南部同蒙古国交界。边境线总长1733.32公里,其中中俄边界1051.08公里,中蒙边界682.24公里。 (2)地形概况 呼伦贝尔市西部位于高原东北部,北部与南部被大兴安岭南北直贯境。东部为大兴安岭东麓,东北平原——松嫩平原边缘。地形总体特点为:西高东低。地势分布呈由西到东地势缓慢过渡。 (3)气候状况 呼伦贝尔地处温带北部,大陆性气候显著。以根河与额尔古纳河交汇处为北起点,向南大致沿120°E经线划界:以西为中温带大陆性草原气候;以东的大兴安岭山区为中温带季风性混交林气候,低山丘陵和平原地区为中温带季

风性森林草原气候,“乌玛-奇乾-根河-图里河-新帐房-加格达奇-125°E蒙黑界”以北属于寒温带季风性针叶林气候。 1.6已有资料情况 甲提供的航飞围。 2、作业依据 (1)《全球定位系统(GPS)测量规》GB/T 18314-2009; (2)全球定位系统实时动态测量(RTK)技术规》CH/T2009-2010; (3)《低空数字航空摄影规》CH/Z3005-2010; (4)《低空数字航空摄影测量外业规》CH/Z3004-2010; (5)《航空摄影技术设计规》GB/T 19294-2003; (6)《摄影测量航空摄影仪技术要求》MH/T 1005-1996; (7)《航空摄影仪检测规》MH/T 1006-1996; (8)《航空摄影产品的注记与包装》GB/T 16176-1996; (9)《基础航空摄影产品检查验收和质量评定实施细则》测绘局; (10)《基础航空摄影补充技术规定》测绘局; (11)《1∶500、1∶1000、1∶2000地形图航空摄影规》GB/T 6962-2005; (12)《1∶500、1∶1000、1∶2000地形图航空摄影测量外业规》GBT 7931-2008; (13)《1∶500、1∶1000、1∶2000地形图航空摄影测量业规》GBT 7930-2008; (14)《1∶500、1∶1000、1∶2000地形图航空摄影测量数字化测图规》GB 15967-1995;

无人机航拍正射影像的尝试

本资料来自网路,感谢原作者安老师!!! 虽天天上来学习,但基本潜水,久未上贴,实是无话可说。 将近一年,我和我的弟兄们只做了一件事:用无人机尝试航拍正射影像。年终将至,总该交作业了…… 一、无人机的调试 “工欲善其事,必先利其器”,飞行平台是航拍的必要条件,而能够进行正射影像航拍的无人机必须满足下面的条件: 1、飞行器必须定高飞行(允许有5%以内的误差),否则拍出的照片无法拼接; 2、飞行器必须有良好的寻迹能力,航线水平误差10%以内; 3、飞行器自身飞行姿态必须稳定,在没有正射云台的情况下,稳定的飞行姿态是保持相机正射的必要条件; 4、最后,最重要的,飞行器必须有齐备的安全保障,否则商业运作就是一句空话。 我们选用的是常规布局的固定翼飞机,虽“相貌平平”,但气动性能良好,完全可以满足我们的作业需要。 我们的无人机

自驾仪的选用着实让我费了一番心机。按道理应该选用国外成品自驾仪,但技术支持却让我不放心,在经过认真地比较分析后,我选用了国产的UP-10自驾仪。关于这款自驾仪的技术参数和指标,我就不赘述了,坛子里的“飞鼠”就是UP-10的开发者。找他要一份UP-10的说明书,就都清楚了。我只想谈谈我用这款自驾仪的体会。 安装在飞机里的UP-10自驾仪

自驾仪不同于其它的电子设备,买回来就能用。由于与之配用的飞机不同,各种参数的设置调整也不尽相同,还会有一些针对特殊需要的二次开发和改进工作。在这里我由衷地感谢“飞鼠”同志,其热情的服务态度,精湛的技术水平,稳定的产品质量,娴熟的二次开发能力,使我们的飞行试验一直很顺利。

敬业的凤凰卫视记者 我们前后共订购了“飞鼠”5套自驾仪。此间我们一起就改进自驾仪和地面工作站软件进行了多次试飞和研讨,“飞鼠”同志对自驾仪和飞控软件进行了十几项升级改进和二次功能开发。比如数传电台和天馈系统

无人机后期航片拼接软件PhotoScan详细使用教程

无人机后期航片拼接软件PhotoScan详细使用教程 摘要:本文主要介绍一款无人机航片后期处理软件——Agisoft Photoscan,手把手教你完成航片正射影像拼接、生成DEM。 PhotoScan是一款基于影像自动生成高质量三维模型的软件。使用时无需设置初始值,无需相机检校,利用最新的多视图影像三维重建技术,就可以对具有影像重叠的照片进行处理,也可以通过给予的控制点生成真实坐标的三维模型。无论是航拍影像还是高分辨率数码相机拍摄的影像都可以使用这个软件进行处理。整个工作流程无论是影像定向还是三维模型重建过程都是完全自动化的。PhotoScan可生成高分辨率真正射影像和带精细色彩纹理的DEM模型。使用控制点可达5cm精度。完全自动化的工作流程,即使非专业人员也可以在一台电脑上处理成百上千张航拍影像,生成专业级别的摄影测量数据。 航片拼接软件有很多,之前我们使用过Pix4D、Global mapper、EasyUAV、Photoscan,几款软件用下来,无论是操作流程,还是出图效果和速度,Photoscan的表现都要好于其他几款。

Photoscan是俄罗斯的东西,正版价格4万左右,但是提供30天全功能试用。对电脑硬件的依赖也比其他要低。很多人在用的Pix4DMapper是瑞士一家公司的产品,功能上和Photoscan大同小异,但是正版价格可以买2套Photoscan 了,而且使用下来,感觉对电脑的要求比Photoscan高不少,16G内存的电脑频频弹窗警告。 PhotoScan优势盘点: 支持倾斜影像、多源影像、多光谱影像的自动空三处理 支持多航高、多分辨率影像等各类影像的自动空三处理 具有影像掩模添加、畸变去除等功能 能够顺利处理非常规的航线数据或包含航摄漏洞的数据 支持多核、多线程CPU运算,支持CPU加速运算 支持数据分块拆分处理,高效快速地处理大数据 操作简单,容易掌握 处理速度快 不足: 缺少正射影像编辑修改功能 缺少点云环境下量测功能

数字正射影像图的设计制作设计说明书_本科论文

目录 一、前言 (1) (一)正射影象图的定义及应用 (1) (二)正射影象图制作过程 (4) 二、数字影象的获取 (5) 三、像片控制点获取及空三加密 (6) (一)像片控制点获取 (7) (二)数字空三加密 (7) 四、制作DEM (9) 五、匀色处理 (13) 六、对影象变形的处理 (15) (一)航摄中产生的影像变形分析 (15) (二)数字微分数字微分纠正的基本原理 (18) (三)影像变形在生产中几种处理方法 (21) 七、影象拼接 (24) 八、数字正射影像图的评价标准 (29) 九、附表 (33)

数字正射影像图的设计制作 内容摘要:数字正射影像图是数字测绘产品(4D产品)中的重要一员,它作为国家高精度空间基础数据数字有着广泛的应用领域;数字正射影像图制作工艺已经基本成熟,在实际生产中,对数字影像资料的正确获取、影像匀色处理、对影像变形的处理、影像拼接对最终的正射影像图的质量有着重要的影响,这个过程要在生产实践中总结经验,改善生产工艺与提高作图员对影像的感性认识才能做的更好。 关键词:正射影像图匀色处理影像变形的处理影像拼接 引言:20世纪以来,航空摄影测量与遥感成像技术的发展,使得测绘工作者能够以较高精度、快速高效地进行大面积测图。除了传统意义上的以手工绘制的线条和符号表达地图外,光学成像技术带来了另外一种测绘产品,即具有数学坐标信息、内容丰富、能够直观反映地表乃至地下信息的数字正射影像图。 一前言 (一)正射影象图的定义及应用 数字正射影像图(Digital Orthophoto Map,缩写DOM)是利用DEM对经过扫描处理的数字化航空像片或遥感影像(单色或彩色),经逐像元进行辐射改正、微分纠正和镶嵌,并按规定图幅范围裁剪生成的形象数据,带有公里格网、图廓(内、外)整饰和注记的平面图。 DOM同时具有地图几何精度和影像特征,精度高、信息丰富、直观真实、制作周期短。它可作为背景控制信息,评价其它数据的精度、现实性和完整性,也可从中提取自然资源和社会经济发展信息,为防灾治害和公共设施建设规划等应用提供可靠依据。 数字正射影像图是数字测绘产品(4D产品)中的重要一员。它是利用数字化自动摄影测量系统生产的一种新的数字化测绘产品,在生成正射影像的同时,还可以得到数字地面高程数据,等高线图,生成该区域内三维景观图等。

Pix4UAV处理无人机数据操作流程

Pix4UAV软件处理无人机数据操作流程 一、Pix4UAV处理无人机数据包括以下几个步骤: 1、数据整理 2、启动软件 3、新建工程 4、数据处理 5、成果数据查看 6、数据后处理 二、具体操作步骤如下: 1数据整理 1)影像数据和POS数据的文件名及其存放的路径都不要出现中文。原始数据的存储 路径和成果数据的最好不在同一盘(若只有一个可以存放数据的盘,则两者最好 不要在同一路径下,都放在根目录即可),否则有可能影响速度。 2)POS的格式可为*.txt、*.dat或者*.csv中的任意一种,内容中不能出现任何中 文字符。POS数据包含的内容依次为:影像名称纬度经度绝对航高Κφω, (若无IMU,则无需Κ、φ、ω,POS数据包含的内容依次为:影像名称纬度经 度绝对航高)。 图1 POS数据样例(有IMU数据) 图2 POS数据样例(无IMU数据) 3)影像格式最好是JPG的,如果是TIFF的要转成JPG的,可节省时间。 2启动软件,显示如下界面。

3新建工程 1)点击Project菜单,从列表中选择New Project。 2)弹出如下对话框,定义工程存放路径和工程名称。 点击Browse按钮,弹出如下对话框,定义工程存放的路径。

工程路径和工程名定义完成后,界面显示如下。 3)点击Next按钮,弹出加载影像数据的界面。

点击按钮,找到影像数据存放的路径并选中待处理的影像加载,加载数据完成后,显示界面如下。 4)点击next按钮,显示如下界面。定义坐标系、相机参数,并导入POS数据。

①坐标系设定。若默认的坐标系正确,则无需更改。若不正确,则点击Images coordinate system选项卡中的按钮,弹出如下的定义坐标系界面。 可以通过点击来选择投影和坐标系;也可以通过导入通用的prj文件来定义坐标系。 ②相机模型设定。相机模型的核查、修改或自定义。在Camera model选项卡中点击按钮。

无人机后期航片拼接软件PhotoScan详细使用教程(精编文档).doc

【最新整理,下载后即可编辑】 无人机后期航片拼接软件PhotoScan详细使用教程 摘要:本文主要介绍一款无人机航片后期处理软件——Agisoft Photoscan,手把手教你完成航片正射影像拼接、生成DEM。 PhotoScan是一款基于影像自动生成高质量三维模型的软件。使用时无需设置初始值,无需相机检校,利用最新的多视图影像三维重建技术,就可以对具有影像重叠的照片进行处理,也可以通过给予的控制点生成真实坐标的三维模型。 无论是航拍影像还是高分辨率数码相机拍摄的影像都可以使用这个软件进行处理。整个工作流程无论是影像定向还是三维模型重建过程都是完全自动化的。 PhotoScan可生成高分辨率真正射影像和带精细色彩纹理的DEM模型。使用控制点可达5cm精度。完全自动化的工作流程,即使非专业人员也可以在一台电脑上处理成百上千张航拍影像,生成专业级别的摄影测量数据。

航片拼接软件有很多,之前我们使用过Pix4D、Global mapper、EasyUAV、Photoscan,几款软件用下来,无论是操作流程,还是出图效果和速度,Photoscan的表现都要好于其他几款。 Photoscan是俄罗斯的东西,正版价格4万左右,但是提供30天全功能试用。对电脑硬件的依赖也比其他要低。很多人在用的Pix4DMapper是瑞士一家公司的产品,功能上和Photoscan大同小异,但是正版价格可以买2套Photoscan了,而且使用下来,感觉对电脑的要求比Photoscan高不少,16G内存的电脑频频弹窗警告。 PhotoScan优势盘点: 支持倾斜影像、多源影像、多光谱影像的自动空三处理 支持多航高、多分辨率影像等各类影像的自动空三处理 具有影像掩模添加、畸变去除等功能 能够顺利处理非常规的航线数据或包含航摄漏洞的数据 支持多核、多线程CPU运算,支持CPU加速运算 支持数据分块拆分处理,高效快速地处理大数据 操作简单,容易掌握 处理速度快 不足: 缺少正射影像编辑修改功能 缺少点云环境下量测功能

牙科综合治疗机装配工艺流程图

1 附件1: 牙科综合治疗机装配工艺流程图 治疗机 脚开关 副箱体 助手架 器械臂 灯、灯臂 主箱体 检验 LCD 观片灯 器械盘 检验 包 装 检 验 医生座椅 座 垫 靠 背 头 枕 俯仰系统 升降系统 牙科椅 机椅对接 检验 包装 入库

附件2:总概算表(单位:万元) 序号工程和费用名称建筑 面积 (m2) 建筑工程设备及安装工程 工器具 及生产 家具 其它 费用 合计 一般 土建 给排 水 暖通 空调 电力 电讯 照明小计 设备 购置 设备 安装 小计 1 工程费用 建筑工程 1.1.1 总装1、2车间2010 1.1.2 总装3、4车间1185 1.1.3 手机零件加工中心505 1.1.4 生产楼改造2330 1.1.5 办公楼改造2285 1.1.6 成品库扩建大棚500 2

序号工程和费用名称建筑 面积 (m2) 建筑工程设备及安装工程 工器具 及生产 家具 其它 费用 合计 一般 土建 给排 水 暖通 空调 电力 电讯 照明小计 设备 购置 设备 安装 小计 1.1.7 建筑物给排水 1.1.8 厂区给水及排污设施 1.1.9 建筑物电气改造 工艺设备 1.2.1 手机事业部2125.7 2125.7 1.2.2 生产部 1.2.3 技术质管部 网络系统 运输车辆 燃气锅炉 3

序号工程和费用名称建筑 面积 (m2) 建筑工程设备及安装工程 工器具 及生产 家具 其它 费用 合计 一般 土建 给排 水 暖通 空调 电力 电讯 照明小计 设备 购置 设备 安装 小计 压缩空气 厂区工程 厂大门、围墙改造 厂区绿化 职业安全卫生费用 小计8815 3172.2 2 其他费用 建设单位管理费 工程监理费 勘察设计费 4

正射影像图制作技术方案

东莞市市域卫星数字正射影像图投标文件技术方案 国家遥感应用工程技术研究中心 北京超图地理信息技术有限公司 2003年6月

目录 一、项目背景-------------------------------------------------------------------------------------------- 3 二、项目预期目标-------------------------------------------------------------------------------------- 4 三、项目建设原则-------------------------------------------------------------------------------------- 6 四、用户需求-------------------------------------------------------------------------------------------- 8 五、项目的设计思想及可行性技术方案---------------------------------------------------------- 10 六、数据处理和制图质量保证措施---------------------------------------------------------------- 21 七、关于技术保障的进一步说明------------------------------------------------------------------- 22 八、项目实施进度计划------------------------------------------------------------------------------- 24 九、技术服务、售后服务计划及承诺------------------------------------------------------------- 26

基于面向对象的无人机正射影像地物分类

Geomatics Science and Technology 测绘科学技术, 2018, 6(3), 165-173 Published Online July 2018 in Hans. https://www.wendangku.net/doc/883475590.html,/journal/gst https://https://www.wendangku.net/doc/883475590.html,/10.12677/gst.2018.63018 UAV Ortho-Images Classification Based on Object Xuelian Song1, Xirui Ruan1, Wei Zhang2, Wen Zhang1,3, Leilei Ding1, Xia Lei1, Caiyun Xie1, Wei Chen1, Zhiwei Wang1* 1Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang Guizhou 2Guizhou Survey & Design Research Institute for Water Resources and Hydropower, Guiyang Guizhou 3Guizhou Sunshine Grass Technology Co., Ltd., Guiyang Guizhou Received: Jun. 13th, 2018; accepted: Jun. 28th, 2018; published: Jul. 5th, 2018 Abstract Unmanned aerial vehicle can obtain high-resolution images quickly and accurately, which had become one of the most important means of remote sensing data acquisition. In this paper, ob-ject-oriented method of eCognition software is used to UAV ortho-images classification. ENVI OneButton was used to generate UAV orthographic mosaic image. We selected the appropriate multi-resolution segmentation parameters for image segmentation and optimal object feature combination using optimization function of eCognition software. Finally, the nearest neighbor method is used for classification. The results showed that the overall accuracy of the classification was 83%, and the Kappa reached 0.8. The objected-oriented classification method of eCognition software can obtain more accurate coverage information of ground objects. combined with UAV technology and objected-oriented classification method, the surface information can be acquired accurately by full use of the spectral ,shape, texture and other spatial information. Keywords Uav Image, Object Oriented, eCognition, Feature Selection, Classification 基于面向对象的无人机正射影像地物分类 宋雪莲1,阮玺睿1,张威2,张文1,3,丁磊磊1,雷霞1,谢彩云1,陈伟1,王志伟1* 1贵州省农业科学院草业研究所,贵州贵阳 2贵州省水利水电勘测设计研究院,贵州贵阳 3贵州阳光草业科技有限责任公司,贵州贵阳 *通讯作者。

无人机遥感图像自动拼接方法的研究

目录 摘要 ................................................................................................................................................................................................ I Abstract......................................................................................................................................................................................... I I 目录......................................................................................................................................................................................... IV 第1章绪论 . (1) 1.1 研究的背景和意义 (1) 1.2 国内外研究现状 (2) 1.3 本文的研究工作 (3) 1.4 本文的组织结构 (4) 第2章图像拼接的基础理论和相关技术 (5) 2.1图像拼接的特点 (5) 2.1.1 图像拼接的针对性 (5) 2.1.2 图像拼接的多样性 (5) 2.1.3 图像拼接的复杂性 (6) 2.2图像拼接的常用方法 (6) 2.3图像拼接的一般流程 (7) 2.4 图像配准 (7) 2.4.1 图像配准的分类 (7) 2.4.2 图像配准的常用方法 (9) 2.5 OpenCV技术简介 (10) 2.5.1 OpenCV模块 (10) 2.5.2 OpenCV的功能 (11) 2.6本章小结 (11) 第3章特征点检测算法 (12) 3.1 SIFT算法 (12) 3.1.1 尺度空间和极值检测 (12) 3.1.2 精确确定特征点 (14) 3.1.3 确定特征点的主方向 (16) 3.1.4 特征向量的生成 (16) 3.2 SURF 算法 (18) 3.2.1构建尺度空间 (19)

无人机航空摄影正射影像及地形图制作项目技术方案

无人机大比例尺地形图航空摄影、正射影 像制作项目技术方案 1、概述 根据项目需求对项目区进行彩色数码航空摄影,获取真彩数码航片,并制作正射影像及地形图。 1.1作业范围 呼伦贝尔市北部区域约400平方公里。如下图:

飞行区域(红色) 1.2作业内容 对甲方指定的范围进行1:2000航空摄影,获取高分辨率的彩色影像。 1.3行政隶属 任务区范围隶属于呼伦贝尔市。 1.4作业区自然地理概况和已有资料情况 1.5 作业区自然地理概况 (1)地理位置 呼伦贝尔市地处东经115°31′~126°04′、北纬47°05′~53°20′。东西630公里、南北700公里,总面积26.2万平方公里?[2]??,占自治区面积的21.4%,相当于山东省与江苏省两省面积之和。南部与兴安盟相连,东部以嫩江为界与黑龙江省大兴安岭地区为邻,北和西北部以额尔古纳河为界与俄罗斯接壤,西和西南部同蒙古国交界。边境线总长1733.32公里,其中中俄边界1051.08公里,中蒙边界682.24公里。 (2)地形概况 呼伦贝尔市西部位于内蒙古高原东北部,北部与南部被大兴安岭南北直贯境内。东部为大兴安岭东麓,东北平原——松嫩平原边缘。地形总体特点为:西高东低。地势分布呈由西到东地势缓慢过渡。 (3)气候状况 呼伦贝尔地处温带北部,大陆性气候显着。以根河与额尔古纳河交汇处为北起点,向南大致沿120°E经线划界:以西为中温带大陆性草原气候;以东的大兴安岭山区为中温带季风性混交林气候,低山丘陵和平

原地区为中温带季风性森林草原气候,“乌玛-奇乾-根河-图里河-新帐房-加格达奇-125°E蒙黑界”以北属于寒温带季风性针叶林气候。 1.6已有资料情况 甲方提供的航飞范围。 2、作业依据 (1)《全球定位系统(GPS)测量规范》GB/T 18314-2009; (2)全球定位系统实时动态测量(RTK)技术规范》CH/T2009-2010; (3)《低空数字航空摄影规范》CH/Z3005-2010; (4)《低空数字航空摄影测量外业规范》CH/Z3004-2010; (5)《航空摄影技术设计规范》GB/T 19294-2003; (6)《摄影测量航空摄影仪技术要求》MH/T 1005-1996; (7)《航空摄影仪检测规范》MH/T 1006-1996; (8)《航空摄影产品的注记与包装》GB/T 16176-1996; (9)《国家基础航空摄影产品检查验收和质量评定实施细则》国家测绘局; (10)《国家基础航空摄影补充技术规定》国家测绘局; (11)《1∶500、1∶1000、1∶2000地形图航空摄影规范》GB/T 6962-2005; (12)《1∶500、1∶1000、1∶2000地形图航空摄影测量外业规范》GBT 7931-2008; (13)《1∶500、1∶1000、1∶2000地形图航空摄影测量内业规范》GBT 7930-2008;

无人机影像完整解决方案讲课讲稿

无人机影像完整解决 方案

无人机小数码影像完整解决方案 一、无人机小数码影像优点 (2) 二、无人机小数码影像缺点 (3) 三、传统解决方案的精度与效率 (5) 四、VISIONTEK无人机小数码影像解决方案 (5) 1、产品组成 (6) 2、产品特点 (6) 五、传统解决方案和远景无人机小数码影像完整解决方案对比 (11) 六、低空无人机小数码完整解决方案应用行业 (12) 七、案例 (13) 一、无人机小数码影像优点 1.影像获取快捷方便 无需专业航测设备,普通民用单反相机即可作为影像获取的传感器,操控手经过短期培训学习即可操控整个系统。 2.成本低廉 无人机(带飞控系统)市场价格10万到100万,各种档次都有,而相机整套(机身加镜头)不到2万,整套系统成本低廉。 3.整个系统机动性强 整套设备不需要专门机场调运、调配,可用小型汽车装载托运,随时下车组装,3个工作人员2小时内可组装完毕。 4.受气候条件影响小 只要不下雨、下雪并且空中风速小于6级,即使是光照不足的阴天,飞机也可上天航拍。 5.飞行条件需求较低 不需要专门机场和跑道,可在普通公路上滑跑起降或采用弹射方式起飞和伞降方式降落。 6.满足大比例尺成图要求 满足《低空数字航空摄影测量内业规范》CH/Z 3003-2010 1:500、1:1000、1:2000大比例尺成图精度要求,满足传统航测规范 GB 7930-1987和GB/T 7930-2008 中1:1000和1:2000大比例尺成图精度要求。 7.影像获取周期短、时效性强 无人机遥感几乎不受场地和天气影响,飞行前准备工作可少于2个小时,因此可快速上天获取满足要求的遥感影像,从准备航飞到获取影像周期短,影像获取后可立即处理得到航测成果,时效性强。

基于无人机航测的宿迁学院正射影像图制作

基于无人机航测的宿迁学院正射影像图制作 随着无人机技术的发展,在测绘领域有着不可代替的作用,相较于传统大地测量模式,测绘无人机已经成为测绘行业发展的主力军,其具有作业灵活、效率高、精度高、作业成本低等特点,当前利用无人机快速获取影像数据,利用Inpho 软件对图像进行处理,制作正射影像图,已成为一种趋势。文章基于无人机航测技术,制作宿迁学院1:2000正射影像,为校区建设、规划提供技术支持。 标签:无人机;正射影像图;像片控制测量;空三加密 Abstract:With the development of unmanned aerial vehicle (UA V)technology,it plays an irreplaceable role in the field of surveying and mapping. Compared with the traditional geodetic model,the surveying and mapping of unmanned aerial vehicle has become the main force in the development of surveying and mapping industry. It has the characteristics of flexible operation,high efficiency,high accuracy,low operating cost and so on. At present,it has become a trend to use UA V to acquire image data quickly,to use Inpho software to process the image and to produce orthophoto map. Based on the aerial survey technology of unmanned aerial vehicle (UA V),this paper makes 1:2000 orthophoto image of Suqian College,and provides technical support for the construction and planning of the campus. Keywords:unmanned aerial vehicle (UA V);orthophotography;photo control measurement;air three encryption 引言 隨着测绘技术的不断更新和发展,无人机航测技术已经逐步取代传统的测量技术,成为主流测量手段。相较于传统的测量技术,无人机航测有着不可比拟的优势,作业效率高、成本低、灵活性强等。因此,基于无人机的低空摄影测量成为研究的热点,并具有广阔的发展前景和应用前景[1]。正射影像具有几何精度高、信息丰富、直观性强等优点,应用范围较广,因此利用无人机航测制作正射影像图成为必然发展趋势。本文基于无人机航测技术,利用Inpho软件对图像进行处理,制作宿迁学院1:2000正射影像。 1 概述 测区位于江苏省宿迁市宿城区,地处北纬33.96°,东经118.3°,北起杨公路,南至学院路,西临古黄河,东至黄河南路,测区面积接近1平方千米。地处平原地区,地形平坦,高差起伏不大,测区地面高程约为26m。 为了更好的获取质量较高的影像,选取较晴好的天气以及适合的季节进行航测,外业无人机操作的时候,选取相对比较空旷的区域,尽量远离高压线、水池、

探讨无人机正射影像图的制作

探讨无人机正射影像图的制作 发表时间:2018-08-13T09:40:11.970Z 来源:《基层建设》2018年第17期作者: 1李卫丽 2柳作文[导读] 摘要:随着人们对地理环境的认知不断增加,地理测绘也在不断普及,无人机与测绘之间的关系越来越密切,并且无人机测绘与传统的遥感测绘相比具有极大的优势,受到研究人员和生产者的欢迎。 1哈尔滨国土源土地房地产估价有限公司黑龙江哈尔滨 150000 2哈尔滨市市政工程设计院黑龙江哈尔滨 150000 摘要:随着人们对地理环境的认知不断增加,地理测绘也在不断普及,无人机与测绘之间的关系越来越密切,并且无人机测绘与传统的遥感测绘相比具有极大的优势,受到研究人员和生产者的欢迎。无人机测绘具有时效性高,分辨率高,重复使用,成本低,损失小,风险低等诸多优点。为土地资源调查,防灾,国民经济建设规划提供可靠理论依据。在本文中,我们首先讨论无人机低空遥感系统的配置和 应用现状,然后讨论无人机正射影像图片的制作过程。 关键词:无人机探测;正射影像;图片处理前言: 地理测绘技术在信息时代取得了质的飞跃,与数字地球的概念密切相关,已经成为城市建设不可或缺的工具。但是由于各种外在因素,无人机航拍难以实现快速,低成本的高分辨率遥感数据采集,严重影响了正射影像图的制作。因此如何能够制作出高分辨率,低成本的正射影像图是我们下一步所要努力的目标,本文将会将要分析。 1.无人机探测的相关分析 1.1无人机的简介和发展历史 作为一种新型遥感监测工具,无人驾驶机器被简称为“无人机”。在飞行过程中的无人机具有高度的智能化程度,能够根据规划路线自发飞行,提供实时图像传输和低空视频监控业务,灵活,方便,成本低是无人机探测的几个重要的特点。通过无人机可以有效获得的高分辨率遥感数据,因此无人机广泛应用于环境监测,土地调查,土地利用类型分析,探测灾害的发生等领域,非常具有实用性。无人机航拍可以获取地面信息,高空作业通过计算机平台的的数据采集的方式,提取并处理图像信息。无人机于1917年首次问世,初始无人机主要应用于军事目的,后来逐渐被用于作战,侦察,私人遥感飞行平台。由于20世纪80年代以来计算机技术和通信技术的飞速发展,开发出了数字化,重量轻,体积小,检测精度高的新型无人机,并且在各种领域开始发挥出作用。 1.2目前我国的无人机发展特征 目前,我国大多数从事无人机航拍的飞行员都是非专业测量测绘人员。由于飞行员缺乏测绘行业的相关专业知识,航空摄影测量的相关要点不能准确把握,因此处理大量由无人机获得的图像数据是困难的,也是不可能完成的。目前的航拍飞行队伍使用微型或小型无人机,这些迷你飞机成功地将简单和轻便的自动驾驶模块与简单的飞机模型设备相结合,具有很强悍的功能,但由于其运载能力低,飞行性能差和耐久性有限等因素的影响,导致无人机航拍的应用和推广受到限制。有些无人机航拍主要是将单个照相机作为远程感测传感器,高度和精度不能满足有些地形。因此,制定一个特殊的轻便小巧的数码航空相机,以满足无人驾驶飞机的探测要求,并充分发挥无人机的空中探测性能。 1.3无人机正射影像探测相比较传统方式的优势和劣势 与传统的遥感航空任务相比,无人机航摄不需要人来操作,而且操作方便,便于转移。对于一些比较危险的区域,例如核泄漏区或者易爆炸的区域,为了保障人的生命安全,无人机的优势显现出来。同时,无人机探测器还具有很高的成本效益,通过后期图片的处理,大大提高了探测的精准程度,提高了探测范围。无人机属于遥控的飞行器,在飞行执行任务时,不需要向相关部门审核批准,提高了便利性。无人机虽然具有以上优势,但是也有一些缺陷,例如后期图片处理工作比较复杂,如果处理不当的话,可能形成明显的失真或者系统误差的现象,这样会大大降低探测的精确度,导致探测工作失败。 2.无人机正射影像制作的方法步骤 2.1无人机航拍前期影像数据要求 无人机航空摄影的摄相片的倾斜角度有一定的要求,无人机的拍摄照片倾斜角为12度或更少,一般控制在5至6度,超过8度的频率应该不超过总数的10%。航拍摄影的要求非常严苛,航拍相片尺度是根据地形的不同特点,在保证准确性的前提下,尽力减少测绘周期,降低成本,提高测绘选材的整体优势。对于无人机的航拍设定方面,相同的导航路线,相邻图片之间的高度差不得超过30米,而且无人机的飞行最大高度差必须在50米以内,实际飞行高度和设计飞行高度偏差不得超过5%。为了更好地保证区域边界覆盖,跨越外部边界的航向的覆盖范围必须有两条或更多的基线,且覆盖边界的区域不应超过50%。通常图像上的重叠程度也有一定的要求,考虑到航线网络,区域结构,模型之间的连接等,为了满足航空摄影的需要,三个相邻的照片必须具有共同的重叠,几条航线的重叠率不得超过60% - 65%,特殊情况也不得超过75%,最低最低值不低于56%。水平方向重叠度为30%?35%,最小值不得小于13%。 2.2选取像控点测控拍照 在无人机航拍的前期,可以利用涂料标注在地面上,便于无人机发现和拍摄。标记地点应该设计在比较宽阔的场地,诸如平坦马路,篮球场,集体活动广场等地面比较宽阔的地方,每500-1000米设置一个测区,局部地区地势平坦开阔,例如打谷场,我们可以将1.2米×1.2米的十字线标志印在15米范围内的一个平坦且广阔的地区,这样坚实的地面,便于无人机航空测量全覆盖。对于无人机航拍的图像控制点采用GNSS-RTK方法进行测量,每个用于测量的基站的工作半径不超过5公里。无人机的路线部署由e-motion飞行控制软件直接进行,具体方法是先将飞行区域数据引入e-motion的飞行控制软件,以有效控制航拍区域,并确保在实际飞行过程中摄像机的覆盖区域符合要求。在无人机飞行期间,e-motion系统使用是基于计算机的自动导航系统,地面站监视器可以实时监视飞行控制软件的实时状态,根据航拍位置,信号强度,风速,各种警告信息以及天气情况选择最佳曝光参数。在无人机飞行的过程中,航拍照片的质量会一直受到监控,数码相机可以执行定点曝光,并自动获取图像和位置数据,以便在不同时间和不同地点拍摄的航拍图像,确保不同架次、不同时段所拍摄的航片影像校色准确、色彩均匀、相同地物的色彩一致。航拍工作完成之后,下一步利用 Post Flight Terra 3D 软件制作正射影像图,然后进行DOM 输出。 2.3图像的后期处理工作

相关文档
相关文档 最新文档