文档库 最新最全的文档下载
当前位置:文档库 › 无人机影像空三后处理流程

无人机影像空三后处理流程

无人机影像空三后处理流程
无人机影像空三后处理流程

无人机影像空三后处理流程

1、数据的准备

A、原始影像以及曝光点数据

无人机低空航摄采用的是普通数码相机,需要进行相机畸变纠正才能用于后期空三处理。但是我们采用的是双拼相机,原始影像是分为前后相机,而且相片好是一一对应的,这个是必须注意的。曝光点数据是指的每张相片曝光时的坐标数据,它也是与相片一一对应的。

B、像控点数据

像控点数据包括像控点坐标和点之记以及像控点刺点图,点之记主要是记录像控点所在位置的信息,刺点图记录的是像控点在图像上的准确位置,方便空三加密是刺控制点。

2、数据预处理

数据预处理与空三软件有关,也与相机有关。普通相机的相片需进行畸变纠正,双拼相机的影像需进行前后相片的拼接,拼接过程已经进行了畸变纠正。一般相片预处理时需将相片按照航带分开并按照飞行方向适当旋转(相邻航线的相片旋转角度相差180度),有的空三软件需将相片格式转换为tif格式才能做后期处理,在转格式和旋转相片时,为了保持相片信息不丢失,最好是PhotoShop软件来处理,为了提高效率,可以采用PS的批处理命令。如果是用MAP-AT软件的话,相片可放在一个目录,格式也不需转换,直接用JPEG格式,但是仍需按照航带旋转相片,这是为了方便批处理建立空三的工程文件。像控点数据按照编号和航带分好目录。

3、空三加密处理

空三加密处理是航摄中最重要的步骤,也是最繁琐的步骤。不同的软件空三步骤有些许不同,但是大同小异。一般都是先做内定向,然后是相对定向,最后做绝对定向,绝对定向是需要控制点数据的。所谓加密其实就是平差过程,为了提高加密精度一般在最后都会在绝对定向的基础上做一次在整体的光束法平差,光束法整体平差不引入中间步骤的参数,是以精度最高。当然这只是理论上的流程,真正的处理过程比较繁琐也不是全按照流程,只要知道每一步流程的作业就行。

这里以MAP-AT软件为例讲解下空三流程:

(略,可参考MAP-AT处理流程文档)

4、生成DEM和DOM

做完空三之后就可以生成DEM和DOM了,在相对定向之后可以将部分加密点假设为已知点,所以相对定向之后就可以做这一步了,如果只是需要没用坐标的正射影像的话,可以在相对定向之后做这一步。生成DEM其实就是软件自动匹配加密点的过程,增加加密点的密度就可以得到不能分辨率的DEM,但是电脑自动匹配的加密点总会有错误的,所以如果要出DEM成果是必须要人工编辑的。生成DEM需要所在影像的高程数据,也就是DEM,可以用电脑自动生成的DEM(未编辑的),也可以用已有的DEM数据,如等高线数据等。但是已有格式DEM可能和软件所用格式不同,须进行格式。DEM的格式,有点空三软件是自带,有的需用ARCGIS,或者ERDAS等软件来处理。

5、镶嵌匀色

在上一步中生成的DOM正射影像都是单张相片纠正过来的,为了得到整幅影像需进行镶嵌处理,镶嵌的意思就是不同的相片按照坐标和纹理进行拼接处理。不同的相片对比度和色调不一致,所以在拼接前还需进行匀光匀色处理,匀光是统一对比度,匀色是统一色调。匀光匀色软件很多,有的是空三软件自带的(如DPGrid),有的是单独的,有的和镶嵌软件是一体的。但是所有的镶嵌匀色软件处理步骤都大同小异。匀光匀色有不同的算法,主要是两种,一种是整体的自适应算法,这个算法是根据所有形象的对比度和色调信息计算出一个整体统一的对比度和色调,然后将所以的相片的对比度和色调改成这个值。这种方法的好处是不需要编辑模板,但是整体效果不是很好,这是因为由于成像条件不同,所以可能相同地物的对比度和色调本身不一致,用这种算法处理之后在拼接的地方拼接的痕迹很明显。另外一种算法是预先按照测区所在地的不同地物,选择一张相片(最好是包含所有地物)作为模板,用图像处理软件(如PS)将模板相片中相同地物的色调调整一致,并将整体效果调至最好。最后用此模板作为匀光匀色的标准来调整所有相片的色调和对比度。这种方法的好处是相片匀光匀色效果好,整体效果也不错,而且拼接痕迹不明显。一般生产是采用这种方法,但是编辑模板对处理结果影响较大,如果模板选得不好,整体效果也不好,这个和经验有关。做完匀光匀色之后就是相片的镶嵌了,镶嵌过程中为了是纹理一致,需要编辑拼接线,这个对后期成果影像较大。编辑拼接线主要是为了避开房屋,因为房屋的高差大,所以变形也打,一般是无法完全纠正的,所以不同照片中相同房屋的纹理不会完全对应,为了得到相同的纹理,同一栋房屋应选择同一照片中的纹理。还有就是可能有些相片在拼接的地方纹理不好,需选择纹理的较好的相片。总之要得到质量好的整幅影像,镶嵌匀色的工作量也很大。

现在用到的镶嵌匀色软件很多:1、ERDAS 2、GeoDogging 3、航天远景易拼图4DPGrid 自带模块5、Inpho自带模块。

6、成果输出

最后一步是成果输出,成果可以分为空三加密成果,DEM成果和DOM成果。

空三加密成果就是空三加密的之后得到的每张相片的内外方元素以及平差之后的各参数的误差分布和中误差,这些必须大道规范的要求,后期处理的成果才算是合格的。

DEM如果作为成果输出是需要进行编辑的,但是一般空三软件只有简单的或者没有DEM编辑的功能,需将空三成果转换为DEM编辑软件识别的格式之后在导入相应软件进行编辑。DEM编辑主要是将高程加密点贴近地面,一般在房屋和有树木的地方加密点是贴在房屋和树顶上的。而且由于空三本身误差的存在,不同相对(一个相对分为左影像和右影像)的匹配点不同,高程也不尽相同。一个模型中周边的变形是最大的,所以DEM在中间的精度最好。将不同模型的DEM拼接成一个时一般是选取模型中间的加密点,取平均值得来的。

DOM是大部分航摄的最终也是最主要的成果。做完上一步之后得到的就是DOM成果,标准成果是需要按照地理坐标分幅输出的,DEM和DOM都一样。

最后如果可能的话,还会需要DLG成果,DLG是在空三成果的基础上在数据采集软件上进行的。

Agisoft photoscan在无人机航空摄影影像数据处理中的应用

Agisoftphotoscan在无人机航空摄影影像数据处理中的应用 摘要:根据航空摄影测量数据处理的实践与经验,对利用Agisoftphotoscan软件进行无人机获取的影像数据进行处理,生成数字地表模型(DSM)和正射影像图(DOM)进行了探讨。 Abstract:According to the practice and experience of the management of aerial photography and survey data processing,this paper discussed the application of Agisoftphotoscan in UAV image data processing and the production of digital surface model (DSM)and digital orthophoto map (DOM). 关键词:Agisoftphotoscan;影像数据;建模;处理 Key words:Agisoftphotoscan;image data;modeling;dispose 0 引言 随着航空摄影测量技术的飞速发展,利用低空无人飞机进行航空摄影获取遥感数据已成为现实。但由于无人机飞行姿态不稳定,所获取的影像存在旋片角大、畸变严重等现象。由于以上特点,利用传统的航空摄影测量数据处理软件处理无人机航摄数据时,工作量大,工作周期长。Agisoftphotoscan软件是AGISOFT公司出品的3D扫描系统,在影像的快速拼接,DEM、DOM快速生成方面具有自己的优势。本文以青海省格尔木市夏日哈木镍钴矿区的无人机影像数据为资料,利用photoscan作为数据处理工具,就影像自动快速拼接、正射影像图(DOM)及三维地表模型(DSM)的生成方法进行了探讨与研究。 1原始数据的特点及来源 利用无人机航空摄影获取影像数据,速度快,效率高,但无人机航测不同于传统的大飞机航测,因为它体积小,重量轻,姿态稳定性方面不如大飞机,在飞行过程中伴随自驾仪对其姿态的不断调整,有时会产生较大的旋片角。而且由于所搭载的相机毕竟不如专业大飞机航测所用的相机,其影像畸变也较为严重。不过随着科学技术的不断发展及处理无人机航测影像软件的技术不断改进,以上问题已经得到解决和验证。 本测区影像数据就是通过无人机航空摄影测量技术所获取的,其分辨率按设计要求为0.2米,设计航高为1100米,实施航飞共计四个架次,布设40条航线,总航程445.83公里,测区范围总面积达120平方公里(图1),获取原始照片数据2185张(图2)。 2数据处理软件Agisoftphotoscan的分析介绍 Agisoftphotoscan是俄罗斯Agisoft公司研发的3D扫描软件,这是一款基于影像自动生成高质量三维模型的软件,它根据多视图三维重建技术,可以对任意照片进行处理,小到考古摆件,大到大量航片数据处理,软件仅通过导入具有一定重叠率的数码影像,便可实现高质量的正射影像生成及三维模型重建,整个工作流程无论是影像定向还是三维模型重建过程都是完全自动化。 我们将PhotoScan引入无人机航空摄影测量数据处理应用当中,结合夏日哈木矿区无人机航飞数据,实现了航测成果中DOM和DSM产品的生产。 实践结果得出它可以创建高分辨率的带有真实地理参考的正射影像(使用控制点可达5cm精度)以及高质量带有详细彩色纹理的数字地表模型,并可以将成果转换到大地坐标或者工程坐标系中。 3数据生产流程 3.1原始数据预处理及作业设备。根据无人机的用途及种类的不同,无人机所获取的POS数据其文件格式也各有不同,这里首先要将POS数据格式做一定的修改,让其能顺利导入软件PhotoScan当中去。 3.2导入影像。本测区面积较大,获取的影像数量较多,PhotoScan在处理这种大数据

无人机航空影像空三加密流程

无人机航空影像数据处理 流程 中国测绘科学研究院 北京东方道迩信息技术有限责任公司

目录 1、无人机航空影像数据处理流程 (3) 2、无人机航空影像数据要求 (4) 3、无人机航空影像数据空三加密流程 (5) 3.1畸变差校正 (5) 3.2建立测区工程 (7) 3.3.1工程目录及相机检校文件设置 (8) 3.3.2设置航空影像数据 (10) 3.3.3设置控制点数据 (14) 3.3空三加密 (15) 3.4.1数据预处理 (16) 3.4.2航带初始点提取 (19) 3.4.3自动相对定向及修改 (21) 3.4.4自由网平差 (31) 3.4.5控制点提取及区域网平差 (35) 4、DEM与DOM制作 (37) 4.1 DEM匹配及编辑修改 (37) 4.1.1工程及格式转换 (37) 4.1.2核线影像生成及DEM匹配 (40) 4.1.3 DEM编辑修改 (46) 4.2 DOM纠正及分幅 (52) 4.3.1 DOM纠正及拼接 (52) 4.3.2 DOM分幅 (60)

1、无人机航空影像数据处理流程 高分辨率遥感影像一体化测图系统PixelGrid作为卫星影像数据处理的能力和效率在生产过程中已经得到了很好的验证,其数据适用范围之广、处理效率之高在国内都是其它同类软件无法比拟的。 无人机航空摄影是一种新型的航空影像数据获取方式,由于无人机种类不同以及所搭配的相机不同,其获取数据的质量也不相同,PixelGrid 针对国内测绘部分中低空领域普及的无人机航空拍摄数据,提供了高效快速的处理。 其无人机航空影像作业流程图如下: 图1-1 无人机航空影像处理流程

Pix4UAV处理无人机数据操作流程

Pix4UAV软件处理无人机数据操作流程 一、Pix4UAV处理无人机数据包括以下几个步骤: 1、数据整理 2、启动软件 3、新建工程 4、数据处理 5、成果数据查看 6、数据后处理 二、具体操作步骤如下: 1数据整理 1)影像数据和POS数据的文件名及其存放的路径都不要出现中文。原始数据的存储 路径和成果数据的最好不在同一盘(若只有一个可以存放数据的盘,则两者最好 不要在同一路径下,都放在根目录即可),否则有可能影响速度。 2)POS的格式可为*.txt、*.dat或者*.csv中的任意一种,内容中不能出现任何中 文字符。POS数据包含的内容依次为:影像名称纬度经度绝对航高Κφω, (若无IMU,则无需Κ、φ、ω,POS数据包含的内容依次为:影像名称纬度经 度绝对航高)。 图1 POS数据样例(有IMU数据) 图2 POS数据样例(无IMU数据) 3)影像格式最好是JPG的,如果是TIFF的要转成JPG的,可节省时间。 2启动软件,显示如下界面。

3新建工程 1)点击Project菜单,从列表中选择New Project。 2)弹出如下对话框,定义工程存放路径和工程名称。 点击Browse按钮,弹出如下对话框,定义工程存放的路径。

工程路径和工程名定义完成后,界面显示如下。 3)点击Next按钮,弹出加载影像数据的界面。

点击按钮,找到影像数据存放的路径并选中待处理的影像加载,加载数据完成后,显示界面如下。 4)点击next按钮,显示如下界面。定义坐标系、相机参数,并导入POS数据。

①坐标系设定。若默认的坐标系正确,则无需更改。若不正确,则点击Images coordinate system选项卡中的按钮,弹出如下的定义坐标系界面。 可以通过点击来选择投影和坐标系;也可以通过导入通用的prj文件来定义坐标系。 ②相机模型设定。相机模型的核查、修改或自定义。在Camera model选项卡中点击按钮。

无人机航片处理软件

一、ERDAS LPS(Leica Photogrammetry Suite) 是徕卡公司推出的遥感及摄影测量系统。主要为处理地球空间影像提供了精密和面向生产的摄影测量工具。LPS可以处理来自多种航天、航空传感器的多种格式影像,包括黑/白、彩色和最高至16bits的多光谱等各类数字影像。 ss 二、DPGRID新一代数字摄影测量网格 数字摄影测量网格(Digital Thotogrammetry Grid--DPGrid)是由中国工程院院士、武汉大学教授张祖勋提出。DPGrid数字摄影测量网格系统打破传统的摄影测量流程,集生产、质量检测、管理为一体,合理地安排人、机的工作,充分应用当前先进的数字影像匹配、高性能并行计算、海量存储与网络通讯等技术,实现航空航天遥感数据的自动快速处理和空间信息的快速获取,其性能远远高于当前的数字摄影测量工作站,能够满足三维空间信息快速采集与更新的需要,实现为国民经济各部门与社会各方面提供具有很强现势性的三维空间信息。 2007年7月12日,该产品通过国家鉴定,鉴定结论:“该系统研究思想新颖、研究成果先进,将为数字摄影测量的新一轮跨越式发展、为建立大规模的摄影测量数据处理中心和三线阵卫星影像的快速处理奠定基础。该系统整体上达到国际先进水平,其中数字摄影测量网格DPGrid并行处理技术、影像匹配技术和网络全无缝测图技术达到国际领先水平”。新一代航空航天数字摄影测量处理平台DPGrid,填补了我国数字摄影测量数据处理技术的空白,标志着我国数字摄影测量技术整体上达到国际先进水平。 具有自主版权的高性能新一代航空航天数字摄影测量处理平台DPGrid,可以推广应用于国家基础测绘、城市基础地理信息动态更新、国土资源调查、生态环境监测、灾害监测、海洋资源、农业监测、快速响应等各个领域,大幅度地提高航空航天遥感影像数据处理的效率,缩短地图更新周期,提高空间信息获取的实时性,特别是对大型的自然灾害的快速评估、应急反映的方面,对于我国的社会经济发展以及军事安全等都具有重要的意义。

无人机数据后处理软件

无人机航测软件配置方案 一、无人机航测数据特点: 影像像幅小,影像数量多;受限于无人机姿态稳定性,影像旋偏角大;非量测性相机焦距短,影像投影差变形大,并且影像畸变差较大;POS精度低;以上均对后期处理软件具有很高的要求。 二、针对无人机航测数据特点在数据处理中需要解决的几个关键问题: 1).影像同名点匹配问题,尤其是弱纹理地区,如沙漠、林地、山地、水田等区域 2).空三成果精度保证问题 3).空三成果与采集软件的匹配问题 4).软件操作简单易用,自动化程度高

二、国内外无人机数据处理软件对比进口

国产: 四、推荐软件介绍 4.1结论依据:通过分析市面上的无人机后处理软件的特点,结合市场用户的试用情况及经验积累如南宁勘察测绘地理信息院,遵义水利水电勘测设计研究院(湄潭县高台水库1:1000地形图测量项目,中桥水库1:1000地形图测量项目),中国电建成都勘察设计研究院有限公司,中国电建西北勘测设计研究院有限公司,软件选型上采用多种软件组合的方式,数据预处理采用美国Trimble公司UASMaster软件,采用UASMaster软件做完同名点匹配后采用德国Inpho公司Inpho软件MATCH-AT功能进行空三加密,空三加密后的成果导入航天远景公司Mtrix系列或四维公司JX4系列测图系统进行测图,这是实现高效高精度成果的最佳方式也是经过大量生产验证过经验方案。 4.2 UASMaster软件介绍

该软件在非摄影测量人员接近黑匣子的简单工作流与摄影测量专家的工作流之间架起了桥梁,填补了他们之间的空缺。UASMaster包含先进的技术,这种技术经过定制,能从UAS的数据特性中给出高质量的结果。它很容易集成到Inpho软件的摄影测量工作流和第三方工作流中。 UASMaster具有开放市场的理念,几乎能处理来自任何UAS硬件供应商的数据。它可以处理固定翼无人机和直升无人机系统所获得的数据。甚至对于处理飞艇和其它类型无人机系统所采集的数据,也证明该软件是成功的。 主要特点 集成到单一产品中的完整的摄影测量工作流程 快速黑盒子处理或者通过预设的质量优化与性能优化的多步骤处理 处理任何类型无人机系统数据 多种相机支持(支持高达5100万像素的相机) 无需专门的摄影测量知识或经验,即可获得完美的成果 性能概述 工作流 全自动的地理参考、相机标定、点云匹配和正摄影像镶嵌 通过子区域选择,对地理参考、点云和正摄镶嵌进行编辑与再处理 最佳精度的摄影测量级成果

无人机遥感

4.方茴说:"可能人总有点什么事,是想忘也忘不了的。" 5.方茴说:"那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷 偷摸摸的。" 6.方茴说:"我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念 却可以把已经注定的谎言变成童话。" 无人机遥感发展现状与应用 摘要:随着测绘科学技术的发展,各行各业对遥感数据的需求日益增加,但遥感数据获取手段相对不足。无人机遥感系统以更低的运营成本、高效灵活的任务安排,自动化和智能化的操作应用成为主要的遥感技术之一。本文对目前国内外无人机遥感的研究现状进行了介绍,在此基础上对无人机遥感关键技术进行了分析。 关键词:无人机遥感发展现在应用领域 无人机技术经过几十年的发展,性能不断提高,功能日益完善,尤其是近年来航空、计算机、微电子、导航、通讯及数字传感器等相关技术的飞速发展,使得无人机技术已经从研究阶段向实用化阶段发展。无人机技术已经被广泛应用于各个领域中,成为未来航空器的发展方向之一。随着人们对地理环境的不断理解和对测绘需求的增长使得无人机与测绘的关系越来越紧密。无人机遥感技术体现了无人机与测绘的紧密结合同时也提供了更高效的测绘方式。 一、无人机遥感介绍 1、无人机遥感系统简介 2、国外研究现状 无人机最早出现在1917年,早期的无人驾驶飞行器的研制和应用主要使用作飞机靶机,应用范围主要是在军事上,后来应用范围逐渐扩展到作战、侦察及民用遥感飞行平台。20世纪80年代的科技革命让无人机得到进一步发展。随着计算机技术、通讯技术的迅速发展以及各种数字化、重量轻、体积小、探测精度高的新型传感器的不断出现,无人机的性能不断提高,应用范围和应用领域迅速拓展。世界范围内的各种用途、各种性能指标的无人机的类型已达数百种之多。续航时间从一小时延长到几十个小时,任务载荷从几公斤到几百公斤。这为长时间、大范围的遥感监测提供了保障,也为搭载多种传感器和执行多种任务创造了有利条件[1]。传感器经历了早期的胶片相机和大面阵数字化几个发展阶段,目前国内制造的数字航空测量相机拥有8000多万像素,能够同时拍摄彩色、红外、全色的高精度航片[2];中国测绘科学研究院使用多台哈苏相机组合照相,利用开发的软件再进行拼接,有效地提高了遥感飞行效率;德国禄来公司推出的2200万像素专业相机,配备了自动保持水平和改正旋偏的相机云台,开发了相应的成图软件。另外激光三维扫描仪、红外扫描仪等小型高精度遥感器为无人机遥感的应用提供了发展的余地。 3、国内研究现在 2005年8月8日上午11时24分,由北京大学与一航贵州集团共同研制的我国第一个 1."噢,居然有土龙肉,给我一块!" 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

无人机图像处理软件测试报告

无人机数据快拼软件 测试报告 zjj

一、无人机软件概述 随着用户对大比例尺、高分辨率数据的需求,越来越多的无人机制造公司和无人机数据处理软件被应用于各行业中。 无人机体形便捷、可实现多种场地起飞和快速转换,成本低、云下拍摄大比例尺、高分辨率影像数据。但无人机电池电量过小,飞行时间过短,着落不稳,不适合获取大面积影像数据。 无人机数据处理系统主要分为测绘模块和快拼模块,测绘模块可人工干预,实现对控制点的筛选、修改和删除等编辑功能,获取的数据精度更准确一些。软件包括INFO、航天远景、适普、苍穹、泰坦;快拼模块无需人工干预,自动化流程程度较高,一键式作业完成数据准备、参数设定、空中三角测量、数据生成等多个步骤。软件包括PIX4D、PHOTOSCAN、EASYUAV、航天远景OKMATRIX。 无人机数据主要包括相机数据、POS数据和相机参数(可选),POS数据的参数包括经度、纬度、高程、翻滚角(ROLLING \OMEGA)、俯仰角(PITCHING\PHI)、航向角(COURSE \KAPPA)。不同的软件对数据的要求不一样。在各个软件测试前,需要对POS数据进行检查、修改等操作,以建立正确的工程文件。 应水土保持行业对数据质量的需求(误差在1米以内)。采用测绘模块的数据处理流程可以满足精度需求,但需要规范的流程化作业和精细的人工干预操作。快拼模块的精度往往取决于POS系统(定位仪(经纬度和高程)和IMU陀螺仪(飞行姿态))精度,处理后精度通过空三连接点平均精度进行查看。绝对精度根据需要,后续可添加控制点匹配步骤。 报告以水保行业的需求为出发点,从快拼软件的数据处理流程、系统需求、数据性能精度、数据图面质量、距离面积量测、以及软件价格等几个方面进行比对分析与测试,为水保行业的广泛应用做前期调研。 1、无人机图像处理软件数据处理流程 目前无人机图像处理软件的数据处理流程如下图所示: 测绘模块数据处理流程如下图所示

无人机数据传输系统-手册

1.概论: 无人机,即无人驾驶的飞机。是指在飞机上没有驾驶员,只是由程序控制自动飞行或者由人在地面或母机上进行遥控的飞机。它装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统可以实现远距离飞行并得以控制。无人机与有人驾驶的飞机相比而言,重量轻、体积小、造价低、隐蔽性好,特别宜于执行危险性大的任务,因此被广泛应用。 二、无人机的特点及技术要求 无人机没有飞行员,其飞行任务的完成是由无人飞行器、地面控制站和发射器组成的无人机系统在地面指挥小组的控制一下实现的。据此,无人机具有以下特点: (1)结构简单。没有常规驾驶舱,无人机结构尺寸比有人驾驶飞机小得多。有一种无尾无人机在结构上比常规飞机缩小40%以上。重量减轻,体积变小,有利于提高飞行性能和降低研制难度。 (2)安全性强。无人机在操纵人员培训和执行任务时对人员具有高度的安全性,保护有生力量和稀缺的人力资源。可以用来执行危险性大的任务。 (3)性能提高。无人机在设计时不用考虑飞行员的因素。许多受到人生理和心理所限的技术都可在无人机上使用,从而突破了有人在机的危险,保证了飞行的安全性。 (4)一机多用,稍作改进后发展为轻型近距离对地攻击机。

(5)采用成熟的发动机和主要机载设备,以减少研制风险与经费投入,加快研制进度。联合研制以减小投资风险、解决经费不足有利于扩大出口及扬长技术与设备优势。 (6)研制综合训练系统。技术要求有: (1)信息技术包括信息的收集和融合,信息的评估和表达,防御性的信息战、自动目标确定和识别等; (2)设备组成包括低成本结构、小型化及模块化电子设备、低可见性天线、小型精确武器、可储存的高性能发动机及电动作动器等; (3)性能实现包括先进的低可见性和维护性技术、任务管理和规划、组合模拟和训练环境等。 三、无人机系统按照功能划分,主要包括四部分: (1)飞行器系统 包括空中和地面两大部分。空中部分包括:无人机、机载电子设备和辅助设备等,主要完成飞行任务。地面部分包括:飞行器定位系统、飞行器控制系统、导航系统以及发射回收系统,主要完成对飞行器的遥控、遥测和导航任务,空中与地面系统通过数据链路建立起紧密联系。 (2)数据链系统 包括:遥控、遥测、跟踪测量设备、信息传输设备、数据中继设备等用以指挥操纵飞机飞行,并将飞机的状态参数及侦察信息数据传到控制站。 (3)任务设备系统 包括:为完成各种任务而需要在飞机上装载的任务设备。

无人机航测操作具体步骤

无人机航测外业操作步骤 1、测量场地确定 ①作业区域卫星图分析; ②准确抵达现场,识别作业区域范围; 2、判断天气条件 天气的好坏直接影响到航拍测量的效果,所以我们在出发航拍之前一定要掌握 当日天气状况,并并观察以下几点: ①云层厚度,多云天气或者高亮度的阴天最好; ②光照,光照不好应增加曝光时间,iso数值低代表成像质量好; ③测定现场风速,地面四级风(6m/s)及以下适宜,逆风出,顺风回; ④温度0℃~40℃,温度过高或过低影响电池稳定性及相机精度; 3、记录当天作业日志 记录当天风速、天气、起降坐标等信息,留备日后数据参考和分析总结。 4、地面像控点布设与数据采集 ①像控点必须在测区范围内合理分布,通常在测区四周以及中间都要有控制点。 要完成模型的重建至少要有3个控制点。0.3平方公里需要最少5个像控点,均匀分布。控制点不要做在太靠近测区边缘的位置。 ②地面像控点数据采集应与无人机用同一cors端口; 5、起飞前准备,设备检查 ①遥控器插入4G网卡; ②SIM卡安装检查,cors连接信号检查; 网络诊断:左上角(三)符号→设置→网络诊断→正确连接

RTK连接:点击左下角飞行→右上角…符号→打开RTK模块→选择RTK服务类型(网络RTK)→回到执行页面右上角图标变为白色为连接成功,红色不成功 ③检查飞机及遥控器电池电量; 6、无人机起飞 点击规划→点击摄影测量→点击地图建立第一个航点(双击删除)→航点设置→选定区域→设置飞行高度→调整航线重复率→调整边距 相机设置→照片比例→白平衡→设置云台角度→为提高精度建议关闭畸变修整 返回主界面→点击保存→输入任务名称→确定→切换至相机→调整相机参数→点击执行→阅读注意事项点击确定→右滑开始执行飞行作业 7、飞机工作状态监测, 将遥控器天线切面面向飞行器,以获得最佳信号。电池电量不足可以手动结束任务,(APP将记录断点)更换电池后可继续执行。随时准备处理应急状况; 8、无人机降落 无人机按设定路线飞行航拍完毕后,根据规划设置,默认自动返航。遥控操作手到指定地点待命。 9、数据导出检查 降落后,将SD卡中的图片导入电脑进行建图。 10、设备整理 ①检查飞机及遥控器剩余电量,更换收纳电池; ②将飞机与遥控器收纳整理装入箱内指定位置;

无人机影像空三后处理流程

1、数据的准备 A、原始影像以及曝光点数据 无人机低空航摄采用的是普通数码相机,需要进行相机畸变纠正才能用于后期空三处理。但是我们采用的是双拼相机,原始影像是分为前后相机,而且相片好是一一对应的,这个是必须注意的。 曝光点数据是指的每张相片曝光时的坐标数据,它也是与相片一一对应的。B、像控点数据像控点数据包括像控点坐标和点之记以及像控点刺点图,点之记主要是记录像控点所在位置的信息,刺点图记录的是像控点在图像上的准确位置,方便空三加密是刺控制点。 2、数据预处理 数据预处理与空三软件有关,也与相机有关。普通相机的相片需进行畸变纠正,双拼相机的影像需进行前后相片的拼接,拼接过程已经进行了畸变纠正。一般相片预处理时需将相片按照航带分开并按照飞行方向适当旋转(相邻航线的相片旋转角度相差180 度),有的空三软件需将相片格式转换为tif 格式才能做后期处理,在转格式和旋转相片时,为了保持相片信息不丢失,最好是PhotoShop软件来处理,为了提高效率,可以采用PS的批处理命令。如果是用MAP-AT软件的话,相片可放在一个目录,格式也不需转换,直接用JPEG格式,但 是仍需按照航带旋转相片,这是为了方便批处理建立空三的工程文件。像控点数据按照编号和航带分好目录。 3、空三加密处理 空三加密处理是航摄中最重要的步骤,也是最繁琐的步骤。不同的软件空三步骤有些许不同,但是大同小异。一般都是先做内定向,然后是相对定向,最后做绝对定向,绝对定向是需要控制点数据的。所谓加密其实就是平差过程,为了提高加密精度一般在最后都会在绝对定向的基础上做一次在整体的光束法平差,光束法整体平差不引入中间步骤的参数,是以精度最高。当然这只是理论上的流程,真正的处理过程比较繁琐也不是全按照流程,只要知道每一步流程的作业就行。 这里以MAP-AT软件为例讲解下空三流程: (略,可参考MAP-AT处理流程文档) 4、生成DEM和DOM 做完空三之后就可以生成DEM和DOMT,在相对定向之后可以将部分加密点假设为已知点,所以相对定向之后就可以做这一步了,如果只是需要没用坐标的正射影像的话,可以在相对定向之后做这一步。生成DEM其实就是软件自动匹配加密点的过程,增加加密点的密度 就可以得到不能分辨率的DEM但是电脑自动匹配的加密点总会有错误的,所以如果要出DEM 成果是必须要人工编辑的。生成DEM需要所在影像的高程数据,也就是DEM可以用电脑自 动生成的DE(未编辑的),也可以用已有的DEM数据,如等高线数据等。但是已有格式DEM 可能和软件所用格式不同,须进行格式。DEM的格式,有点空三软件是自带,有的需用ARCGIS 或者ERDA勞软件来处理。 5、镶嵌匀色 在上一步中生成的DOME射影像都是单张相片纠正过来的,为了得到整幅影像需进行镶嵌处理,镶嵌的意思就是不同的相片按照坐标和纹理进行拼接处理。不同的相片对比度和色 调不一致,所以在拼接前还需进行匀光匀色处理,匀光是统一对比度,匀色是统一色调。匀光匀色软件很多,有的是空三软件自带的(如DPGrid),有的是单独的,有的和镶嵌软件是 一体的。但是所有的镶嵌匀色软件处理步骤都大同小异。匀光匀色有不同的算法,主要是两 种,一种是整体的自适应算法,这个算法是根据所有形象的对比度和色调信息计算出一个整体统一的

无人机航测流程

无人机航测流程 无人机航拍测绘具有精度高、作业效率高、数据分析能力强的特点,很大程度上解决了人工测绘的痛点。因此,无人机在测绘工程中的应用越来越广泛。那么,先掌握无人机航拍注意要点,才能充分发挥无人机优势,减轻测绘负担。 一、航拍总技术流程 二、航拍测绘各步骤说明 测绘无人机小组航拍小组配备2-3人即可,航拍任务结束后对数据进行快速检查,检查合格后即可带回进行后续的数据处理工作。 1.飞行准备 飞行前的准备内容包括:选择航拍测绘设备、航线规划涉及、飞行方案涉及(确定航高及飞行速度、重叠度)

2.保持每天的工作日志 记录当天风速、天气、起降坐标等信息,并保存数据供日后参考和分析。 3.建立无线电台和地面站 无线电链路用于地面站和无人机之间的通信。目前,大多数测绘无人机使用无线电链路在无人机与地面站之间进行数据交换。 4.飞行执行 根据制定的分区航摄计划,寻找合适的起飞点,对每块区域进行拍摄采集照片。在设备检查完毕,并确认起飞区域安全后,将无人机解锁起飞。起飞时飞手通过遥控器实时控制飞机,地面站飞控人员通过飞机传输回来的参数观察飞机状态。飞机到达安全高度后由飞手通过遥控器收起起落架,将飞行模式切换为自动任务飞行模式。同时,飞手需通过目视无人机时刻关注飞机的动态,地面站飞控人员留意飞控软件中电池状况、飞行速度、飞行高度、飞行姿态、航线完成情况等,以此保证飞行安全。 5.飞行结束 无人机完成飞行任务后,降落时应确保降落地点安全,避免路人靠近。完成降落后检查相机中的影像数据、飞控系统中的数据是否完整。数据获取完成后,需对获取的影像进行质量检查,对不合格的区域进行补飞,直到获取的影像质量满足要求。 三、无人机航拍影像质量检查方法 1 避免无人机航拍影像曝光

无人机数据处理软件MAP-AT

无人机数据处理软件MAP-AT优势(map-at:现代航测全自动空三软件) 1、空中三角测量功能在目前的处理软件中功能最强 (a)MAP-AT突破传统航测在摄影比例尺、姿态角、重叠度等方面的严格限制,能够处理普通飞机航摄、低空 轻型机航摄、无人机航摄所获取的影像,尤其是能够 处理姿态和比例尺差别比较大的无人机、无人飞艇航 摄所获取的影像,而国内和国外其他同行业软件在角 度、比例尺差别比较大无法完成。 (b)MAT-AT能够处理现有市场上所有的面阵相机的数据。如:DMC,UCD,UCX,SWDC-2,SWDC-4, LCK-2,LCK-4等高端及组合数码相机所获取的数据, 也能处理Canon系列,Nikon系列等低端数码相机, 以及传统的胶片RC系列相机所获取的数据。 (c)能够批量处理海量数据且精度高。能进行多达10000片影像的大区域网光束平差。其空三处理精度传统航 空摄影成果进行计算可达到1:500地形图精度要求, 无人飞艇航测系统、无人机低空航测系统成果可达到 1:1000地形图精度要求。 (d)处理效率高: 可以自动构建自由空三网,自动寻找控制点,自动构建DEM, 自动生成DOM。 2、MAP-AT是国内无人机数据处理软件中完全具有自主

知识产权的产品 (a)MAP-AT软件的所有功能模块都由原中国测绘科学研究院无人飞行器课题组开发,具有完全的知识产 权,而国内某些无人机数据处理软件,其核心的处理 模块是采用Pat-B计算模式,并非自主开发,因而受 制于Pat-B的功能限制。 (b)在2009年8月,国家测绘局进行的无人机航测系统鉴定中,测评MAP-AT软件后,下如下评语: “MAP-AT软件整体自动化水平高,处理数据能力 强,尤其适合处理无人飞行器低空摄影影像”。 (c)在2009年-2010年度,国家测绘局在各个省局推广该系统的过程中,本课题支持的省级测绘局之一,重庆 测绘院成为各省局测绘单位的标兵单位,顺利完成了 各项生产任务。 3、针对无人机数据的多样性MAP-AT售后服务有保证 (a)针对无人机系统可能受到天气影响,获取的数据多种多样,会造成数据处理上有各种各样的问题, MAP-AT课题组有以研究生和博士生为团队的开发 和测试队伍,保证了软件在客户端的正常运行。 (b)MAT-AT各模块完全自主拥有,能在短时间内完成客户在生产过程提出的合理的功能模块,满足客户特殊 需求。

浅析无人机遥感影像的特点与影像处理技术

龙源期刊网 https://www.wendangku.net/doc/d35457276.html, 浅析无人机遥感影像的特点与影像处理技术作者:梁双凤 来源:《中国住宅设施》2017年第01期 摘要:借助遥感摄影,快速辨识了细微情形下的建筑裂痕,查明受损状态。历经地震以后,就要明晰这一区段的建筑损害,提供调研根据。无人机特有的遥感影像有着自动的优势,提取精准信息。在减灾调研之中,影像处理有着不可替换的价值。为此,有必要探析无人机可获取的遥感影像特性,解析更适宜的处理技术。 关键词:无人机;遥感影像;特点;影像处理技术 无人机拍摄可得低空影像,拍摄遥感影像。针对遥感影像,探析了快速处理。这样做,化解了应急态势下的处理疑难,供应新的思路。面向对象状态下,无人机拍摄得出的遥感影像辨识了多样的信息,经由快速提取,可得区域以内的被损毁状态。妥善处理影像,便于后续时段的建筑修复,提升处理水准[1]。借助数字摄影特有的测量流程,测得受灾区段内的精准数 值。它提快了常规流程的处理速率,符合精度指标。 一、解析影像特性 无人机拍摄可得的影像有着更优的分辨率,借助人为调控,航拍显出了针对特性。通常状态下,它侧重去拍摄选出来的某区段信息,用作指引救援、精准反映灾情。在灾后调研及评估之中,拍摄可得的这类影像还可予以运用,指引日后重建。突发地震以后,遥感传感器、飞行必备的遥感平台凸显了独有的优势,二者彼此互补;选取多样角度予以拍摄影像。 在航空摄影中,设定多重方位予以拍摄,获取明晰的影像。借助飞艇及新式无人机,增设了遥感特性的新颖平台,安设数码相机。这种设备自带的体积很小,有着灵活优势。经由地表遥控,它提快了原有的获取速率。此外,省去起降跑道,也摆脱了偏大的气候阻碍。作为航拍补充,无人机特有的遥感途径最适宜局部范畴的常规拍摄,反映区域情况[2]。 二、无人机独有的遥感优势 首先,依托超轻特性的直升机当成无人机,布设遥感平台。可以定点起降,接近地表来拍摄。选取数码相机,拍摄影像除掉了框标,信息更为明晰。 其次,航向影像增添了固有的重叠度,超出80%。增添了分辨率,识别了某区段的震后状态,辨识地表损伤。 第三,拍摄原始影像,摄影装置配有的铅垂线、主光轴显出了偏大的转角。为此,要依循拟定好的规程来飞行,这样可拍得竖向方位的航片,缩减局部形变。

2017年无人机数据处理完整解决方案

2017年无人机数据处理完整 解决方案

目录 1 产品特点 (3) 1.1 无人驾驶小飞机项目情况简介 (6) 1.2 数据处理软件技术指标 (6) 1.3 硬件设备要求 (7) 1.4 处理软件要求 (7) 1.5 数据要求 (7) 2 数据处理操作流程 (8) 2.1 数据处理流程图 (8) 2.2 空三加密 (9) 2.2.1 启用软件FlightMatrix (9) 2.2.1.1创建Flightmatrix工程 9 2.2.1.2设置工程选项参数 10 2.2.1.3自动化处理 19 2.2.1.4DATMatrix交互编辑 22 2.2.1.5调用PATB进行平差解算 30

2.3 生成DEM、DOM (32) 2.4 镶嵌成图 (35) 2.4.1 启用软件EPT (35) 2.4.1.1导入MapMatrix工程生成DOM镶嵌工程 40 2.4.1.2编辑镶嵌线 50 2.5 图幅修补 (52) 2.6 创建DLG,进行数字测图 (54)

1产品特点 1)空三加密 1.可根据已有航飞POS信息自动建立航线、划分航带,也可手动划 分航带。 2.完全摒弃传统航测提点和转点流程,可不依赖POS信息实现全自 动快速提点和转点,匹配同影像旋偏角无关,克服了小数码影像排列不规则、俯仰角、旋偏角等特别大的缺点。即使是超过80%区域为水面覆盖,程序依旧能匹配出高重叠度的同名像点,整个测区连接强度高。 3.直接支持数码相机输出的JPG格式或TIF格式,无需格式转换。 4.无需影像预旋转,横排、纵排都可实现自动转点,节约数据准备 时间。 5.实现畸变改正参数化,方便用户修正畸变改正参数,不需要事先 对影像做去畸变即可完成后续4D产品生产。 6.除无人机小数码影像外,还适用于其它航空影像。 7.空三加密支持无外业像控点模式,方便快速制作挂图,满足相关 需求。 8.专门针对中国测绘科学研究院二维检校场和武汉大学遥感学院近 景实验室三维检校场检校报告格式研发了傻瓜式批处理影像畸变差改正工具,格式对应,检校参数直接填入,无需转换,方便空三成果导入到其他航测软件进行后续处理。

无人机影像完整解决方案讲课讲稿

无人机影像完整解决 方案

无人机小数码影像完整解决方案 一、无人机小数码影像优点 (2) 二、无人机小数码影像缺点 (3) 三、传统解决方案的精度与效率 (5) 四、VISIONTEK无人机小数码影像解决方案 (5) 1、产品组成 (6) 2、产品特点 (6) 五、传统解决方案和远景无人机小数码影像完整解决方案对比 (11) 六、低空无人机小数码完整解决方案应用行业 (12) 七、案例 (13) 一、无人机小数码影像优点 1.影像获取快捷方便 无需专业航测设备,普通民用单反相机即可作为影像获取的传感器,操控手经过短期培训学习即可操控整个系统。 2.成本低廉 无人机(带飞控系统)市场价格10万到100万,各种档次都有,而相机整套(机身加镜头)不到2万,整套系统成本低廉。 3.整个系统机动性强 整套设备不需要专门机场调运、调配,可用小型汽车装载托运,随时下车组装,3个工作人员2小时内可组装完毕。 4.受气候条件影响小 只要不下雨、下雪并且空中风速小于6级,即使是光照不足的阴天,飞机也可上天航拍。 5.飞行条件需求较低 不需要专门机场和跑道,可在普通公路上滑跑起降或采用弹射方式起飞和伞降方式降落。 6.满足大比例尺成图要求 满足《低空数字航空摄影测量内业规范》CH/Z 3003-2010 1:500、1:1000、1:2000大比例尺成图精度要求,满足传统航测规范 GB 7930-1987和GB/T 7930-2008 中1:1000和1:2000大比例尺成图精度要求。 7.影像获取周期短、时效性强 无人机遥感几乎不受场地和天气影响,飞行前准备工作可少于2个小时,因此可快速上天获取满足要求的遥感影像,从准备航飞到获取影像周期短,影像获取后可立即处理得到航测成果,时效性强。

无人机遥感影像获取及后续处理探讨

收稿日期:2008-02-23;修订日期:2008-07-07 作者简介:洪宇(1981-),女,硕士研究生,主要从事地理信息系统、航空摄影测量等方面研究。E -m ail:hongyuw h@https://www.wendangku.net/doc/d35457276.html, 。 无人机遥感影像获取及后续处理探讨 洪 宇1,2,龚建华2,胡社荣1,黄明祥2 (1.中国矿业大学(北京),北京 100083; 2.中国科学院遥感应用研究所,北京 100083) 摘要:作为卫星遥感和航空遥感的有益补充,无人机航空遥感系统获取遥感影像具有多种特性。通过4次无人机航拍试验,根据所获取的遥感影像和飞行辅助数据,对航拍数据进行拼接。从航拍的多个方面对飞行试验以及实验成果进行了质量评价。并提出了无人机应用于航拍时存在的问题及一些改进方法。 关 键 词:无人机;遥感;试验;影像;质量评价 中图分类号:P231 文献标志码:A 文章编号:1004-0323(2008)04-0462-05 1 引 言 无人机遥感是遥感的发展趋势之一,无人机遥 感系统具有运行成本低、执行任务灵活性高等优点, 是遥感数据获取的重要工具。随着技术的成熟和民 用领域的需求,无人机已经逐渐渗透到民用领域的 各个行业。近年来出现的性能各异的无人机,广泛 应用于军用战场侦察和监视任务以及民用研究。按 用途可分为民用通信中继无人机、气象探测无人机、 灾害监测无人机、农药喷洒无人机、地质勘测无人 机、地图测绘无人机、交通管制无人机和边境控制无 人机等[4]。 尽管已经应用于我国民用领域的各个行业,无 人机在民用特别是遥感领域的应用仍然处于起步阶 段,目前并没有形成一个成熟的产业。 作为遥感平台,无人机遥感系统更可显示其独 特的优势:它成本低廉,能够低速、低空飞行,有利于 遥感作业;并且机动灵活,能快速响应拍摄任务;可 以承担高风险或高科技的飞行任务。其缺点是对载 荷的体积重量有严格限制,对载荷的抗震性能也有 较高要求。费用低廉使得许多中小型用户也有能力 支付,扩大了遥感的应用范围和用户群,具有广阔的 应用前景。 由于无人机携带的为非量测型相机,其本身与 量测型相机在拍摄方式和后期处理上都与传统的航空摄影测量有所不同[7]。针对这些特殊性,本文就无人机采集影像的方式、拼接方法及其精度做了探讨,阐述了无人机遥感系统采集高分辨率图像和高精度定位数据以及后续影像处理的可行性与可靠性,分析无人机携带非量测型相机遥感作业以及后期数据处理的可行性,意在探讨适宜于民用的无人机遥感及后续影像处理的方法及可行性。2 无人机遥感系统的硬件平台构成研究和试验所采用的是按照气象无人机的标准自行研发的无人机。该无人机遥感平台由3个子模块构成:无人机平台、相机子系统、空中遥感控制子系统[8]。该无人机的性能如下:可在高度150~2500m 进行飞行,巡航速度为90km /h,续航3h,有效载荷为2kg,导航精度50m 。无人机遥感系统由空中部分、地面部分和数据后处理部分组成,如图1所示。其中空中部分包括遥感传感器子系统、遥感空中控制子系统、无人机平台。地面部分包括航迹规划子系统、无人机地面控制子系统以及数据接收显示子系统。遥感空中子系统的主要功能:规划航线并上传到飞机上的控制器;飞行中监控飞机状态,在能可靠传递数据的时候可以改变部分控制参数。地面部分主要功能为设计和规划航道轨迹,无人机的实时控制与飞行姿态数据的实时接收和遥感影像的显示。 第23卷 第4期2008年8月遥 感 技 术 与 应 用REM OT E SENSING TECH NOLOGY AND APPL ICAT ION Vol.23 N o.4 A ug.2008

无人机数据后处理软件

无人机数据后处理软件

无人机航测软件配置方案 一、无人机航测数据特点: 影像像幅小,影像数量多;受限于无人机姿态稳定性,影像旋偏角大;非量测性相机焦距短,影像投影差变形大,并且影像畸变差较大;POS精度低;以上均对后期处理软件具有很高的要求。 二、针对无人机航测数据特点在数据处理中需要解决的几个关键问题:

1).影像同名点匹配问题,尤其是弱纹理地区,如沙漠、林地、山地、水田等区域 2).空三成果精度保证问题 3).空三成果与采集软件的匹配问题 4).软件操作简单易用,自动化程度高 二、国内外无人机数据处理软件对比 进口 公司软件名称简介备注 美国鹰图公 司Photogramm etry (LPS) 专业的数字摄影测量系 统,卫星、航天飞机、 大飞机和无人机数据都 可以处理,是徕卡航空 摄影测量解决方案的一 部分,尤其ORIMA空三 功能。 优势在 于处理 卫星影 像及大 飞机航 片。 美国 Trimble公 司UASMaster 专门针对无人机数据的 摄影测量系统,可以处 理任意无人飞行系统获 专门针 对无人 机数据

取的数据,对具有重叠的航空影像进行自动匹配连接点,从而获取每张影像的相对姿态位置。自动匹配的连接点在整个测区具有非常密集的分布,在弱纹理地区具有非常好的匹配质量;包含一键式操作获取结果模式和逐个过程人机交互进行质量控制的模式既可以可保证操作人员在不具备摄影测量知识和经验的情况下也能采用该系统获取高精度和高度可靠的航测成果也可以供专业人员逐个过程人机交互进行质量控制;系统包括空三加密,DTM/DSM提取和编辑、正射校正和镶嵌匀色的所有功能。的后处理软件,优势在于自动高效高精度的同名点匹配。

无人机影像完整解决方案

无人机小数码影像完整解决方案 一、无人机小数码影像优点 (1) 二、无人机小数码影像缺点 (2) 三、传统解决方案的精度与效率 (4) 四、VISIONTEK无人机小数码影像解决方案 (4) 1、产品组成 (5) 2、产品特点 (5) 五、传统解决方案和远景无人机小数码影像完整解决方案对比 (10) 六、低空无人机小数码完整解决方案应用行业 (11) 七、案例 (12) 一、无人机小数码影像优点 1.影像获取快捷方便 无需专业航测设备,普通民用单反相机即可作为影像获取的传感器,操控手经过短期培训学习即可操控整个系统。 2.成本低廉 无人机(带飞控系统)市场价格10万到100万,各种档次都有,而相机整套(机身加镜头)不到2万,整套系统成本低廉。 3.整个系统机动性强 整套设备不需要专门机场调运、调配,可用小型汽车装载托运,随时下车组装,3个工作人员2小时内可组装完毕。 4.受气候条件影响小 只要不下雨、下雪并且空中风速小于6级,即使是光照不足的阴天,飞机也可上天航拍。 5.飞行条件需求较低 不需要专门机场和跑道,可在普通公路上滑跑起降或采用弹射方式起飞和伞降方式降落。 6.满足大比例尺成图要求 满足《低空数字航空摄影测量内业规范》CH/Z 3003-2010 1:500、1:1000、1:2000大比例尺成图精度要求,满足传统航测规范GB 7930-1987和GB/T 7930-2008 中1:1000和1:2000大比例尺成图精度要求。 7.影像获取周期短、时效性强 无人机遥感几乎不受场地和天气影响,飞行前准备工作可少于2个小时,因此可快速上天获取满足要求的遥感影像,从准备航飞到获取影像周期短,影像获取后可立即处理得到航测成果,时效性强。

PhotoMetric无人机数据处理软件

PhotoMetric软件是一款由上海珞琪软件公司开发的专门用于近景及无人机影像的摄影测量软件,它具有操作简单方便,使用快捷全自动化的特点,可以非常快速的得到海量的高精度数据,提供满足客户各种需求的产品。 导入数据 使用PhotoMetric软件完成工程处理所需要的数据包括三部分,分别是影像、POS数据和相机参数,其中影像数据是必须数据,POS 数据和相机参数可以根据用户的需求选择导入。 处理流程 使用PhotoMetric软件处理工程的流程如下所示,分别为空三定向、坐标转化、密集匹配、三角网构建和产品生成。

1、空三定向 空三定向流程主要对相片进行各种分析、提取、计算,完成从影像到空间、从图像到数据的过程,得到初步的点云数据。空三定向流程主要分为三个步骤:特征提取、特征匹配和空三。

1)纹理提取 纹理提取是指对相片原始图像建立影像金字塔,对所述影像金字塔中的每一层影像计算响应值,并确定特征点方向以生成特征点描述。 2)影像匹配 影像匹配是指根据针对所述特征提取步骤中的特征点进行抽稀形成强特征点,按照设置好的像对关系,对所述强特征点

进行匹配,匹配生成的一致点,采用在平面三角网上内插视差的方法求初始左右视差及左右影像初始匹配坐标。 3)空三定向 空三定向是指,通过将之前匹配的结果,通过一系列方法计算,将每个像对形成的模型与坐标系,统一在一个整体的模型与坐标系下,确定相机与特征点在该坐标系下的位置、姿态与坐标。

2、坐标转化 1)控制点管理 控制点管理,是在影像及点云中选择设置好在拍摄相片前预设的标靶或标识点,通过一系列的操作及计算,完成对点云数据的坐标转换及误差评定。

相关文档
相关文档 最新文档