文档库 最新最全的文档下载
当前位置:文档库 › 材料研究方法

材料研究方法

材料研究方法
材料研究方法

1.材料的结构层次有哪些?采用何种研究方法来表征?

宏观结构,显微结构,亚显微结构,微观结构。用显微术来表征。

2.材料的研究方法如何分类?

图像分析法:以显微术为主体

非图像分析法:包括成分谱分析和衍射法两种

1.电子与固体物质相互作用可以产生哪些物理信号,各有什么特点?

背散射电子:能量较高,但背散射像的分辨率较低。

二次电子:能量较低

吸收电子:入射电子进入样品后,经过多次非弹性散射能量耗光,最后被样品吸收。

透射电子:含有能量与入射电子相当的弹性散射电子,还有各种不同能量损失的非弹性散射电子。

特征X射线:用X射线探测器测到样品微区中存在一种特征波长,就可以判断这个微区存在相应的元素。

俄歇电子:俄歇电子能量各有特征值,能量较低。

2.如何提高显微镜的分辨本领?电磁透镜的分辨本领受哪些条件限制?

比可见光波长更短的照明源、增大加速电压、电子透镜。

球差、像散、色差

3.透射电子显微镜的成像原理是什么?

电子作为照明束,电磁透镜聚焦成像。一束电子束受到薄膜样品的散射作用,将形成各级衍射谱,样品的信息通过衍射谱呈现出来。各级衍射波通过干涉作用重新在像平面上形成反应样品特征的像。

4.透射电镜样品的制样方法有哪些?

直接样品:超细粉末颗粒:支持膜法

材料薄膜:晶体薄膜法、超薄切片法

间接样品:复型膜:将材料表面或断口形貌复制下来。

5.透射图像衬度的概念?TEM主要图像衬度?

指试样不同部位由于对入射电子作用不同,经成像放大系统后,在显示装置上显示的强度差异,即图像上的明暗差异。

质厚衬度、衍射衬度、相位差衬度

6.透射电镜的结构?

电子光学系统(镜筒)、电源系统、真空系统、操作系统

1.扫描电镜的基本原理

由三级电子枪发射出来的电子束,在加速电压的作用下,经过2~3个电子透镜聚焦后,在样品表面按顺序逐行进行扫描,激发样品表面产生各种物理信号,如二次电子、背散射电子、吸收电子、X射线、俄歇电子等。这些物理信号随样品表面特征而改变,它们分别被相应的收集器接受,经放大器按顺序、成比例地放大后,送到显像管的栅极上,用来同步地调制显像管的电子束强度,即显像管荧光屏上的亮度。样品上电子束的位置和显像管荧光屏上的位置是一一对应的。这样,在荧光屏上就形成一副与样品表面特征相对应的某种信息图。画面上亮度的疏密程度表示该信息的强弱分布。

2.扫描电镜的结构与特点?(与TEM比较)

结构:电子光学系统(镜筒)、扫描系统、信号收集系统、图像显示记录系统、真空系统、电源系统。

特点:分辨本领高,放大倍数变化范围大,景深大,试样制备简单,配有X射线能谱仪、光学显微镜、单色仪。

3.扫描电镜图像衬度的产生原因、类型及主要特点。

原因:样品微区如表面形貌、原子序数、晶体结构、表面电场和磁场等方面存在着差异。入射电子与之相互作用,产生各种特征信号,其强度就存在着差异,最后反映到显像管荧光屏上的图像就有一定的衬度。

类型:二次电子像:分辨率高、立体感强、主要反映形貌特征。

形貌衬度、成分衬度、电位衬度。

背散射电子像:分辨率低、立体感差,但既能反映形貌特征,又能定性探

测元素分布。

形貌衬度、原子序数衬度

4.扫描电镜成像的物理信号与特点

二次电子:能量较低

背散射电子:能量较高,但成像分辨率较低

5.扫描电镜在材料研究中的主要用途

形貌相研究、成分相研究

1.电子探针分析的基本原理

利用被聚焦成小于1μm的高速电子束轰击样品表面,由X射线波谱仪或能谱仪检测从试样表面有限深度和侧向扩展的微区体积内产生的特征X射线的波长(可知元素种类)和强度(可知元素含量),得到1μm3微区的定性或定量的化学成分。

2.电子探针主要分析方法

点分析、线分析、面分析

3.能谱分析和波谱分析的异同点

相同点:都是分析特征X射线来分析元素种类和含量;一般作为电镜等大型仪器的附件,用来检测样品微区的化学成分;为无损或微损的测试方法。

不同点:元素分析时,能谱是同时测量所有元素,而波谱要一个个测量,所以能谱分析更快。

能谱探针紧靠试样,使X射线收集效率提高

能谱分析所需探针电流小,对试样损伤小

能谱分析缺点是分辨率差、谱峰重叠严重

4.电子探针对材料成分分析与EDXRF成分分析有何异同点

相同点:两者均通过分析受到粒子轰击的样品所发出的次级X射线来进行物相成分分析

不同点:电子探针分析的激发源是高速电子束,而EDXRF的激发源大都为初级X 射线其次功能上电子探针还能观察和研究微观形貌、晶体结构等,而EDXRF则可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。

1.质谱分析的基本原理

z为电荷数,e为电子电荷,U为加速电压,m为碎片质量,V为电子运动速度

2.质谱仪的种类

根据质量分析器:双聚焦质谱仪、四极杆质谱仪、飞行时间质谱仪、离子阱质谱仪、傅里叶变换质谱仪

根据应用:有机质谱仪-测定有机化合物的分子结构;无机质谱仪-测定无机物;同位素质谱仪-测同位素丰度;气体分析质谱仪

3.质谱图上出现主要离子类型

分子离子、同位素离子、碎片离子、亚稳离子、多电荷离子

4.分子离子峰如何识别?

1)在质谱图中,分子离子峰应是最高质荷比的离子峰。(同位素离子及准分子离子峰除外)

2)分子离子峰质量数的规律

由C、H、O组成的有机化合物,M一定是偶数。由C、H、O、N组成的有机化合物,N奇数则M奇数,N偶数则M偶数。

3)分子离子峰与相邻峰的质量必须合理。

4)M+1峰:醚、酯、胺、酰胺等化合物的分子离子不稳定,会捕获一个H,M+1峰大。

5)M-1峰:醛等化合物的分子离子不稳定,会裂解一个H,M-1峰大。

6)降低电子轰击源能量,观察质荷比最大的峰是否消失

5.质谱仪中离子源的作用及常用的离子源种类

作用:将试样分子转化为正离子,并使正离子加速、聚焦成离子束,此离子束通过狭缝而进入质量分析器

种类:电子电离源、化学电离源、快原子电离源、电喷雾源、大气压化学电离源、激光解吸源

6.质谱仪中质量分析器的主要类型

单聚焦分析器、磁式双聚焦分析器、四极杆分析器、离子阱分析器、飞行时间分析器、回旋共振分析器

7.无机质谱的常见类型及主要用途

辉光放电质谱、火花源质谱、二次离子质谱、电感耦合等离子体质谱

主要用途:无机元素的微量分析、同位素分析等

1、分子振动的实质是什么?有哪些振动类型?

分子基团的振动实质是化学键的振动

2、试举例说明影响基团位移的因素有哪些?

内部因素:诱导效应、共轭效应、空间效应、氢键效应、互变异构、振动偶合效应

外部因素:物态效应、溶剂效应

3、影响红外吸收峰数目的因素有哪些?

1)在中红外吸收光谱上除基频峰外,还有倍频峰。

2)分子振动能否出有红外吸收峰与偶极距有关,对称强偶极距小出峰小。

3) 振动频率的简并。

4)仪器的分辨率不高,对一些频率接近的峰分不开;仪器的灵敏度不高,检测不出一些较弱的峰

4、红外活性与拉曼活性

红外活性振动:

永久偶极矩;极性基团;瞬间偶极矩;非对称分子;伴有偶极矩变化的振动可以产生红外吸收谱带

拉曼活性振动:

诱导偶极矩;非极性基团;对称分子;伴随有极化率变化的振动。

5、红外光谱产生的条件?

1)分子中某个基团的振动频率与外界的红外光频率相一致。

2)分子中的偶极矩不为零。

6、红外、紫外、核磁吸收峰是何种跃迁?

振动能级跃迁

电子能级跃迁

自旋原子核发生能级跃迁

7、红外光谱定性分析的步骤有哪些?

1.试样的分离和精制

2.了解与试样性质有关的其他方面的资料

3.谱图的解析

4.和标准谱图进行对照

8、红外光谱仪主要分那两大类?

色散型红外光谱仪、傅立叶变换红外光谱仪

9、红外光谱吸收峰的强度有哪些因素有关?

分子振动的对称性(反比)、基团极性(正比)、

分子振动能级跃迁几率(正比)、样品浓度(正比)

10、高聚物在进行红外分析时常用的制样方法有哪些?

固体样品的制备:流延薄膜法、热压薄膜法、溴化钾压片法、糊状法

液体样品的制备:液膜法、液体吸收池法、样品滴入压好的溴化钾薄片上测试气态样品的制备: 气态样品一般都灌注于气体池内进行测试。

11、傅里叶变换红外光谱仪的组成部分有哪些?核心部分是什么?

光源、Michelson干涉仪、检测器、计算机和记录仪

核心部分是迈克尔孙干涉仪

12、拉曼散射效应中有哪些散射?各有什么特点?

瑞利散射:弹性碰撞;无能量交换,仅改变方向;

拉曼散射:非弹性碰撞;方向改变且有能量交换;两种跃迁能量差分别产生斯托克斯线、反斯托克斯线

13、拉曼光谱与红外光谱分析方法有哪些不同?

功率补偿DSC :是通过功率补偿使试样与参比物温度始终处于动态零位平衡状态,即使△T→0,测量输入到物质和参比物之间的功率差与温度的关系的一种技术。

热流型DSC:主要通过测量加热过程中试样吸收或放出的热量的流量达到热分析的目的,有热反应时试样与参比物仍存在温差,即在相同功率功率下测△T。DTA:是在程序温度控制(升温或降温)下,测量试样与参比物(热惰性物质)之间的温度差与温度关系的一种技术。

1.功率补偿型DSC和DTA的区别?

以上术语解释,加上以下

工作原理不同:DTA只能检测实验与参比物之间的温差(△T),无法建立△H与T之间的联系而DSC能够建立△H与T之间的联系。

DSC的灵敏度和精确度高于DTA,而DTA的使用温度高(1500~1700 oC),而DSC的使用温度低(最高为800 oC ,一般在600 oC以上)。

2.热流型DSC和DTA的异同点?

同上

3.功率补偿型DSC和热流型DSC的异同点?

术语解释,加上以下

功率补偿型DSC:采用零点平衡原理

热流型DSC:采用差热分析原理

4.简述热分析的原理

热分析是在程序控制温度下,测量物质的物理性质与温度关系的一类技术。

程序控制温度指固定的速率加热或冷却

物理性质包括物质的质量、温度、热焓等性质

5.影响热分析的仪器、试样、操作因数有哪些?

仪器方面:炉子的结构和尺寸、坩埚材料和形状、热电偶性能与位置

试样:热容量和热导率变化、试样的颗粒度、用量及装填密度、试样结晶,纯度、参比物

操作因数:升温速度、炉内压力和气氛

6.热分析仪器由哪四部分组成?

程序温度控制、气氛控制、物性测量单元、显示记录

7.热天平的主要组成?

热天平由精密天平和线性程序控温加热炉组成

8.热重分析的影响因数是什么?

升温速率、气氛、基线飘移、加热炉内气体的浮力效应、热电偶的位置、坩埚类型、试样因素(试样量、粒度、装填方式)

9.积分型热重曲线和微分型热重曲线的联系与区别是什么?

在热重试验中,试样质量W作为温度T或时间t的函数被连续地记录下来,TG 曲线表示加热过程中样品失重累积量,为积分型曲线;DTG曲线是TG曲线对温度或时间的一阶导数,即质量变化率,dW/dT 或dW/dt。

TG:纵坐标:质量失重累积量

DTG:纵坐标:质量随时间的变化率dw/dt

DTG曲线上出现的峰指示质量发生变化,峰的面积与试样的质量变化成正比,峰顶与失重变化速率最大处相对应。在TG曲线中形成的每一拐点,在DTG曲线上都有对应的峰。TG曲线台阶数与DTG曲线的峰数相等。

10.静态热分析与动态热分析

静态热机械分析:温施加一定荷重于高分子材料(或树脂上),并在一定范围内改变温度,以观察试样形变随温度的变化,以形变或相对形变对温度作图所得曲线(TMA曲线)。

动态热机械分析:是在程序控制温度下,测量物质在振荡负荷下的动态模量或阻尼随温度变化的一种技术。

11.什么是基线偏移?影响因素有哪些?如何解决?

基线飘移:试样重量没有变化而记录曲线却指示出有质量变化的现象。

影响因素:加热炉内气体的浮力效应和对流影响、Knudsen力、温度与静电对天平机构等的作用

解决方法:采用对称加热方式

1.X射线的波长范围、X射线产生的基本原理和X射线管的结构

波长范围0.01-10nm

产生的原理(条件):高速运动的自由电子被突然减速时便产生X射线

X射线管的结构:包括一个热阴极(绕成螺线形的钨丝)和一个阳极(靶),窗口,管内高真空(10-7Torr)

X射线管的结构(课本):主要由产生电子并将电子束聚焦的电子枪(阴极)和发射X射线的金属靶(阳极)两大部分组成。

阳极:铜质底座上镶以阳极靶材料——W、Ag、Mo、Cu、Ni、Co、Fe、 Cr等,产生不同的特征X射线

窗口:用对X射线吸收极少的材料,如 Be、Al、轻质玻璃等制成。

2.X射线谱的基本类型和特点

连续X射线:白色X射线,由连续的各种波长组成,其波长与工作条件(v、i)无关。

强度随波长连续变化。

特征X射线:标识X射线,作为阳极材料的特征或标识,当管电压超过VK(激发电压)后才产生。

波长一定,强度很大。

3.描述X射线与物质的相互作用(俄歇效应、光电效应)

x射线散射、吸收、透过

产生的现象:相干散射、非相干散射、电子散射、热

频率不改变的X射线、频率改变的X射线(不相干散射、荧光辐射)、反冲电子、二次电子、光电子、俄歇电子

俄歇效应:当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收,而逐出较外层的另一个次级光电子。

光电效应:在电磁波的照射下,某些物质内部的电子会被光子激发出来而形成电流。

4.X射线衍射的几何条件(布拉格方程或定律)

由一个面上的反射,光程差R=0;相邻面的反射,光程差R=2dSinθ,d为相邻间的距离。当R=nλ时,光波加强,形成衍射线 R=2dSinθ=nλ,为衍射条件,2θ为衍射角,n为衍射(反射)级数。

作用:1.已知λ,

测θ,计算d

2.已知d,测θ,

得到λ

5.X射线衍射分析的方法主要有哪些?各自的特点是什么?(注意λ与θ的变化情况)

劳厄法(λ变,θ不变)可分为透射和背射两种方法单晶

转动晶体法(转晶法)(λ不变,θ部分变化)单晶

粉末照相法(粉末法或粉晶法) (λ不变,θ变)粉晶

X射线衍射仪法(λ不变,θ变)粉晶

6. X射线衍射物相分析基本原理(I/Io、2θ)

X射线衍射线的位置决定于晶胞的形状和大小,即决定于各晶面的晶面间距,而衍射线的强度决定于晶胞内原子种类、数目及排列方式,每种结晶物质具有独特的衍射花样,且试样中不同物质的衍射花样同时出现互不干涉,某物相的衍射强度取决于它在试样中的相对含量,当试样的衍射图谱中d值和I/Io与已知物质的数值一致时,即可判定试样中含有该已知物质。

7.说明X射线衍射仪法定性分析物相组成的基本过程、注意事项、PDF卡片的索引方法

注意事项:

d值的数据比相对强度的数据重要,d值一般要到小数点后第二位才允许有误差。低角度区域的数据比高角度区域的数据重要。

了解试样的来源、化学成分和物理特性对作出正确结论十分有帮助。

进行多样混合试样分析时要多次核对,若某些物质含量少,只出现一两条衍射线,以致无法鉴定。

尽量与其它方法结合起来使用,如偏光显微镜、电子显微镜等。

从目前所应用的粉末衍射仪看,绝大部分仪器均是由计算机进行自动物相检索过程,但其结果必须结合专业人员的丰富专业知识,判断物相,给出正确的结论。索引方法:

字母索引(Alphabetical Index ):对已知物质,按物质英文名称的字母顺序排列。

哈那瓦特法(Hanawalt method):未知矿物,三强线或数值索引。

芬克索引(Fink method):以八根最强线的d值为分析依据,将强度作为次要依据进行排列。

8.何为X射线和荧光X射线

X射线:波长在0.01-10nm的电磁波,高速运动的自由电子被忽然减速便产生X 射线

荧光X射线:当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生荧光X射线,其能量等于两能级之间的能量差。

9.X射线荧光光谱分析的基本原理和主要用途

荧光X射线的能量或波长是特征性的,与元素有一一对应的关系。测出荧光X 射线的波长或能量,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定关系。用X射线照射试样时,试样可以被激发各种波长的荧光X射线,需要把混合的X射线按波长(能量)分开,测得不同波长或能量的x射线强度以进行定性和定量分析

主要用途:

定性分析:根据荧光X射线的波长或能量可以确定元素的组成

定量分析:元素的荧光X射线强度Ii与试样中该元素的含量Wi成正比

10.X射线分析的主要用途

X射线物相分析;晶体结构分析;晶体生长、形变、相变、取向、结构缺陷、结晶度研究;聚合物的晶体结构、晶粒尺寸测量、膜厚的测定

11.核磁共振的类型

按测定技术分:高分辨溶液NMR谱、固体高分辨NMR谱、宽谱线NMR谱

按测定对象1H-NMR、13C-NMR、氟谱、磷谱、氮谱

12.产生核磁共振的条件

核有自旋(磁性核)、外磁场导致能级裂分、辐射频率与外磁场的比值

13.什么是化学位移?核磁共振中度量化学位移的标准物质有哪些?

化学位移:表征在NMR谱中各不同化学环境的1H共振相对位置的数量

化学位移(课本):某一质子吸收峰出现的位置与标准物质质子吸收峰出现的位置之间的差异成为该质子的化学位移

标准物质:四甲基硅烷(TMS)、六甲基二硅醚(HMDS)、水溶性二氨基二苯砜(水溶性DDS)、TSP

14.为什么常用TMS作为基准?

12个氢原子处于完全相同的化学环境,只产生一个尖峰;

屏蔽强烈,位移最大,与有机化合物中的质子峰不重叠;

化学惰性,易溶于有机溶剂;沸点低,易回收

15.核磁共振谱图分析时常分析哪些项目(参数)?

偶合常数

化学位移

共振峰强度积分比值

16.影响化学位移的屏蔽效应有哪些?

局部屏蔽效应、远程屏蔽效应

(课本):取代基的诱导效应和共轭效应、各向异性效应、氢键和溶剂效应

17.名词解释

波谱分析:波谱分析主要是以光学理论为基础,以物质与光相互作用为条件,建立物质分子结构与电磁辐射之间的相互关系,从而进行物质分子几何异构、立体异构、构象异构和分子结构分析和鉴定的方法。

能谱分析:

X射线:高速运动的自由电子被忽然减速便产生X射线,波长在0.01-10nm的电磁波

荧光X射线:当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生荧光X射线,其能量等于两能级之间的能量差。

连续X射线:白色X射线,由连续的各种波长组成,其波长与工作条件(v、i)无关。由于热阴极灯丝产生的热电子高速撞击阳极时间和条件各不相同,部分还多次碰撞,逐步转移能量,从而产生波长不同的X射线

特征X射线:标识X射线,作为阳极材料的特征或识别,当管电压超过激发电压时才产生

光电效应:在电磁波的照射下,某些物质内部的电子会被光子激发出来形成电流俄歇效应:当较外层电子跃迁到空穴时所释放的能量随即被原子内部吸收而逐出较外层的另一个次级光电子

18.写出全称

XRD:X射线衍射 NMR:核磁共振

19.X射线波长范围:0.01-10nm

可见光波长范围:360-800nm(2010版的数据)400-800nm(2009版数据)

20.X射线衍射分析的主要方法有哪些?

劳厄法、转晶法、粉末照相法、衍射仪法

21.核磁共振的类型?

按测定技术分:高分辨溶液NMR谱、固体高分辨NMR谱、宽谱线NMR谱

按测定对象1H-NMR、13C-NMR、氟谱、磷谱、氮谱

22.物相分析的原理是什么?说明物相分析的过程和注意事项

X射线衍射线的位置决定于晶胞的形状和大小,即决定于各晶面的晶面间距,而衍射线的强度决定于晶胞内原子种类、数目及排列方式,每种结晶物质具有独特的衍射花样,且试样中不同物质的衍射花样同时出现互不干涉,某物相的衍射强度取决于它在试样中的相对含量,当试样的衍射图谱中d值和I/I0 与已知物质的数值一致时,即可判定试样中含有该已知物质。

注意事项:

d值的数据比相对强度的数据重要,d值一般要到小数点后第二位才允许有误差。低角度区域的数据比高角度区域的数据重要。

了解试样的来源、化学成分和物理特性对作出正确结论十分有帮助。

进行多样混合试样分析时要多次核对,若某些物质含量少,只出现一两条衍射线,以致无法鉴定。

尽量与其它方法结合起来使用,如偏光显微镜、电子显微镜等。

从目前所应用的粉末衍射仪看,绝大部分仪器均是由计算机进行自动物相检索过程,但其结果必须结合专业人员的丰富专业知识,判断物相,给出正确的结论。

无机材料研究进展综述

无机材料最新研究进展 摘要 无机材料指由无机物单独或混合其他物质制成的材料,一般可以分为传统的和新型的无机材料两大类。本文介绍了无机材料分类、方法及最新研究进展。 关键词:无机材料、分类、方法、展望 前言 无机材料一般可以分为传统的和新型的无机材料两大类。传统的无机材料是指以二氧化硅及其硅酸盐化合物为主要成分制备的材料,因此又称硅酸盐材料。新型无机材料是用氧化物、氮化物、碳化物、硼化物、硫化物、硅化物以及各种非金属化合物经特殊的先进工艺制成的材料。无机材料根据不同用途其特性也不同。总体来说无机材料有耐高温、耐腐蚀、耐磨性好、强度高。有些材料导电性能好,有些材料光导性好,有些材料有自洁功能。由于无机材料的多样性并有着各色各样的性质,其应用也相当广泛并得到了人们足够的重视,尤其是近些年新型的新材料,引起了我们广大的兴趣。 新材料是发展高新技术的物质基础, 新材料及与其直接相关的研究领域, 如信息存储材料、微电子材料、生物材料、纳米材料、超导材料及高温电子学等, 在当今高新技术领域及未来技术中均占有重要地位。因此世界各国都给予高度重视, 很多国家把新材料的研究与开发列为关键技术。而在新材料中, 新型无机非金属材料又是特别活跃的领域, 在整个新材料中占据主要地位[1]。 1.无机材料分类 无机材料分为新型无机材料和传统无机材料。传统无机材料分为玻璃、水泥、陶瓷;新型无机材料分为高性能结构陶瓷、电子功能陶瓷材料、敏感功能(陶瓷)材料、光功能陶瓷材料、人工晶体、功能玻璃、催化及环保用陶瓷等。

1.1水泥 水泥,粉状水硬性无机胶凝材料。加水搅拌后成浆体,能在空气中硬化或者在水中更好的硬化,并能把砂、石等材料牢固地胶结在一起。水泥的历史最早可追溯到5000年前的中国秦安大地湾人,他们铺设了类似现代水泥的地面。后来古罗马人在建筑中使用的石灰与火山灰的混合物,这种混合物与现代的石灰火山灰水泥很相似。用它胶结碎石制成的混凝土,硬化后不但强度较高,而且还能抵抗淡水或含盐水的侵蚀。长期以来,它作为一种重要的胶凝材料,是建筑工业三大基本材料之一[2]。水泥行业中球磨工艺应用于两个生产环节,一个环节与火电行业相同,应用于磨制煤粉,为生产提供燃煤;另一个环节应用于将烧结成块的水泥熟料磨制成粉状,这一环节对于水泥企业的生产效率与产品品质起着至关重要的作用。近几年,由于固定资产投资增加,基础设施建设、房地产业的快速发展对水泥产量的拉动作用十分明显。在巨大的需求拉动下,水泥产量仍将保持较为稳定的增长。据相关数据统计,2012年水泥行业产量已达到21亿吨。 1.2陶瓷 陶瓷是以粘土为主要原料以及各种天然矿物经过粉碎混炼、成型和煅烧制得的材料以及各种制品。人们把一种陶土制作成的在专门的窑炉中高温烧制的物品叫陶瓷,陶瓷是陶器和瓷器的总称。陶瓷的传统概念是指所有以粘土等无机非金属矿物为原料的人工工业产品。陶瓷的主要产区为景德镇、高安、丰城、萍乡、佛山、潮州、德化、醴陵、淄博等地。新型功能陶瓷材料是以电、磁、光、声、热、力学、化学和生物等信息的检测、转换、耦合、传输、处理和存储等功能为其特征的新型材料,已成为微电子技术、激光技术、光纤技术、传感技术以及奎间技术等现代高级技术发展不可替代的重要支撑性材料,在通信电子、自动控制、集成毫路、计算槐、信息处理等方嚣的应用墨益及。功熊陶瓷材料是电予材料中最重要的一个分支,其产值约占整个新型陶瓷产业产饭的70%。随着现代新技术的发展,功能陶瓷及其应用正向着高可靠、微型化、薄膜化、精细化、多功能、智能化、集成化、高性能、高功能和复合结构方向发展[3]。 1.3 玻璃 玻璃是无机非金属材料的又一重要产品, 它和我们的生活密切相关, 几乎每一个人都要接触和使用玻璃产品. 玻璃具有良好的光学和电学性能, 有较好的化

材料研究方法期末复习资料(不错)

材料研究方法复习 X射线,SEM(扫描电子显微镜),TA,DTA,DSC,TG,红外,拉曼 1.X射线的本质是什么?是谁首先发现了X射线,谁揭示了X射线的本质? 本质是一种波长很短的电磁波,其波长介于0.01-1000A。1895年由德国物理学家伦琴首先发现了X射线,1912年由德国物理学家laue揭示了X射线本质。 2.试计算波长0.071nm(Mo-Kα)和0.154A(Cu-Kα)的X射线束,其频率和每个量子的能量? E=hν=hc/λ 3.试述连续X射线谱与特征X射线谱产生的机理 连续X射线谱:从阴极发出的电子经高压加速到达阳极靶材时,由于单位时间内到达的电子数目极大,而且达到靶材的时间和条件各不相同,并且大多数电子要经过多次碰撞,能量逐步损失掉,因而出现连续变化的波长谱。 特征X射线谱: 从阴极发出的电子在高压加速后,如果电子的能量足够大而将阳极靶原子中内层电子击出留下空位,原子中其他层电子就会跃迁以填补该空位,同时将多余的能量以X射线光子的形式释放出来,结果得到具有固定能量,频率或固定波长的特征X射线。 4. 连续X射线谱强度随管电压、管电流和阳极材料原子序数的变化规律? 发生管中的总光子数(即连续X射线的强度)与: 1 阳极原子数Z成正比; 2 与灯丝电流i成正比; 3 与电压V二次方成正比: I 正比于i Z V2 可见,连续X射线的总能量随管电流、阳极靶原子序数和管电压的增加而增大 5. Kα线和Kβ线相比,谁的波长短?谁的强度高?

Kβ线比Kα线的波长短,强度弱 6.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片? 实验中选择X射线管要避免样品强烈吸收入射X射线产生荧光幅射,对分析结果产生干扰。必须根据所测样品的化学成分选用不同靶材的X射线管。 其选择原则是: Z靶≤Z样品+1 应当避免使用比样品中的主元素的原子序数大2-6(尤其是2)的材料作靶材。 滤波片材料选择规律是: Z靶<40时: Z滤=Z靶-1 Z靶>40时: Z滤=Z靶-2 例如: 铁为主的样品,选用Co或Fe靶,不选用Ni或Cu靶;对应滤波片选择Mn 7. X射线与物质的如何相互作用的,产生那些物理现象? X射线与物质的作用是通过X射线光子与物质的电子相互碰撞而实现的。 与物质作用后会产生X射线的散射(弹性散射和非弹性散射),X射线的吸收,光电效应与荧光辐射等现象 8. X射线强度衰减规律是什么?质量吸收系数的计算? X射线通过整个物质厚度的衰减规律: I/I0 = exp(-μx) 式中I/I0称为X射线穿透系数,I/I0 <1。I/I0愈小,表示x射线被衰减的程度愈大。μ为线性吸收系数 μm表示,μm=μ/ρ 如果材料中含多种元素,则μm=Σμmi w i其中w i为质量分数 9.下列哪些晶面属于[111]晶带? (111)、(3 21)、(231)、(211)、(101)、(101)、(133),(-1-10),(1-12), (1- 32),(0-11),(212),为什么?

功能陶瓷材料研究进展综述

功能陶瓷材料的应用 研究 姓名:刘军堂___________ 学号: 23122837________ 班级: 机械1201_________ 任课老师:张志坚__________

功能陶瓷材料的应用研究 1.选择一个课题进行相关检索,要求对课题作简要分析,并在分析的基础上确定检索词,准确描述检索过程。(10分)(可选择其他课程中以论文方式考核的科目,如无此类题目,可自选或用备选题目) 功能陶瓷 功能陶瓷材料是具有特殊优越性能的新型材料,各国在基础与应用研究以及工程化方面,均给予了特殊重视,特别是在信息、国防、现代交通与能源产业中均将其置于重要地位。根据功能陶瓷材料的应用前景,本文介绍了功能陶瓷新材料的性能、应用范围,市场的开发应用现状和开发应用新领域,以及正在研发的高性能陶瓷材料;同时介绍了功能陶瓷材料今后的发展趋势。 关键词:功能陶瓷材料;应用现状;趋势 检索过程 第一步:进入“中国知网”主页,网址是“https://www.wendangku.net/doc/884311370.html, 第三步:登录成功后会进入操作界面, 第四步:选择要检索的文献数据库。在操作界面上,中国知网将其文献分成了不同的库,我们根据自己的文献范围属性进行选择。 第五步:检索参数设置。在操作界面的上部,有搜索参数设置对话框。最好逐一填写。(1)检索项,系统对文献进行了检索编码,每一个文献都有一一对应的编码,一个编码就是一种检索项。点击检索项框右边的向下箭头,就能弹出所有检索项,选中一个就好。(2)检索词,填入要求系统搜索的内容。没有明确严格要求,不一定是词语。但是需要考虑到它应当与你选中的检索项相一致。如检索项用了“关键词”,就不能用一个长句等作检索词了。(3)文献时间选择,根据文献可能出现的年代,点击对话框右边的小三角就可以选了。需要说明的是,中国知网建立时间是1994年,所以1994年及其后的数据才是最全的。现在他们在逐渐补充1994年以前的文献数据,但是,全面性可能要差些。(4)排序,提示系统将找到的文献按什么顺序呈现。(5)匹配,即要求系统按自己的检索要求进行哪种精确程度的检索。如果你确定你的文献参数,那么选择“精确”,如果不确定,就选择“模糊”。 第六步:点击“搜索”就完成了第一阶段的操作了。然后就进入检索结果呈现的界面:中国知网2.rar(点击打开查看),中国知网的结果呈现表中,对文献的基本信息:文献题目、文献的载体、发表时间及在中国知网中的收藏库名进行了说明。

材料研究方法简单总结

XRD: ●所有的衍射峰都有一定的宽度是因为:1.晶体不是严格的晶体;2.X射线不是严格的单 色光;3.仪器设计造成。 ●XRD用途:1.精确测定晶胞参数——可反映晶体内部成分、受力状态等的变化,可用 于鉴别固溶体类型、测量固溶度、测定物质的真实密度等等。 2.物相定性分析——各衍射峰的角度位置所确定的晶面间距d以及它们的相对强度I/Io 是物质的固有特性。因而呢过用于五物相分析。 3.物相的(半)定量分析——外标法(物相数=2);内标法(物相数>2);基体冲洗法(修 正了内标法由于引入参比物导致的误差) 4.纳米物质平均粒度分析——当粒度小于200nm的时候,衍射线会发生宽化(相干散射 的不完全所致),测定待测样品的衍射峰的半高宽和标准物质的衍射峰的半高宽,用公式即可以得出纳米颗粒的平均粒度。 电镜: 电镜的缺陷:其实际分辨率达不到理论值 原因:电磁透镜存在像差(几何像差和色差) 几何像差:由透镜磁场几何形状上的缺陷而造成的,包括球差和像散。 球差:由于电磁透镜中心区域和边缘区域磁场强度的差异,从而造成对电子会聚能力不 同而造成的。 像散:由于透镜的磁场轴向不对称所引起的一种像差。 色差:由于成像电子的能量或波长不同而引起的一种像差。 像差的存在使同一物点散射的具有不同能量的电子经透镜后不再会聚于一点,而是在像 面上形成一漫射圆斑。 ●透射电镜(TEM):1.观察水泥及其原料颗粒表面及聚集体的状态,揭示水泥熟料的微 细结构,研究水泥浆体的断面结构,观察其水化产物、未水化产物及孔的大小、形状和分布 2.黏土矿物的形态和结晶习性对陶瓷至关重要,可用TEM观察陶瓷的显微结构、点阵 缺陷和畸变。 3.TEM广泛应用于金相分析和金属断口分析。 4.TEM可以观察高分子粒子的形状、大小及分布。 ●扫描电镜(SEM):用于形貌分析(观察粉体表面形貌、材料断面、材料表面形貌)●电子探针(EPMA 配合波谱仪或能谱仪使用):主要用于材料表面层成分的定性和定 量分析 能谱仪(EDS) 优点:1.分析速度快;2.灵敏度高;3.谱线重复性好 缺点:1.能量分辨率低,峰背比低;2.使用条件苛刻 波谱仪(WDS) 优点:波长分辨率高 缺点:1.为了有足够的色散率,聚焦圆半径需足够大。导致X射线光子收集率低,使其对X射线利用率低 2.X光经衍射后,强度损失大,难以在低束流和低激发强度下使用 热分析 具体的研究内容有:熔化、凝固、升华、蒸发、吸附、解吸、裂解、氧化还原、相图制

研究综述怎么写

研究综述怎么写 (2011-05-22 16:48:10) 转载 标签: 杂谈 1综述的定义和特点 综述是查阅了某一专题在一段时期内的相当数量的文献资料,经过分析研究,选取有关情报信息,进行归纳整理,作出综合性描述的文章。 综述的特点:①综合性:综述要"纵横交错",既要以某一专题的发展为纵线,反映当前课题的进展;又要从本单位、省内、国内到国外,进行横的比较。只有如此,文章才会占有大量素材,经过综合分析、归纳整理、消化鉴别,使材料更精练、更明确、更有层次和更有逻辑,进而把握本专题发展规律和预测发展趋势。 ②评述性:是指比较专门地、全面地、深入地、系统地论述某一方面的问题,对所综述的内容进行综合、分析、评价,反映作者的观点和见解,并与综述的内容构成整体。一般来说,综述应有作者的观点,否则就不成为综述,而是手册或讲座了。③先进性:综述不是写学科发展的历史,而是要搜集最新资料,获取最新内容,将最新的医学信息和科研动向及时传递给读者。 综述不应是材料的罗列,而是对亲自阅读和收集的材料,加以归纳、总结,做出评论和估价。并由提供的文献资料引出重要结论。一篇好的综述,应当是既有观点,又有事实,有骨又有肉的好文章。由于综述是三次文献,不同于原始论文(一次文献),所以在引用材料方面,也可包括作者自己的实验结果、未发表或待发表的新成果。 综述的内容和形式灵活多样,无严格的规定,篇幅大小不一,大的可以是几十万字甚至上百万字的专著,参考文献可数百篇乃至数千篇;小的可仅有千余字,参考文献数篇。一般医学期刊登载的多为3000~4000字,引文15~20篇,一般不超过20篇,外文参考文献不应少于1/3。 2 综述的内容要求 选题要新

《近代材料研究方法1》实验教学大纲

《近代材料研究方法1》实验教学大纲 课程名称:《近代材料研究方法》课程编码:050231037 课程类别:专业基础课课程性质:必修 适用专业:无机非金属材料工程、粉体工程 课程总学时:48 实验(上机)计划学时:8 开课单位:材料科学与工程学院 一、大纲编写依据 1、无机非金属材料工程2017版教学计划; 2、无机非金属材料工程专业《近代材料研究方法》理论教学大纲对实验环节的要求; 3、近年来《近代材料研究方法》实验教学经验。 二、实验课程地位及相关课程的联系 1、《近代材料研究方法》是无机非金属材料工程重要的专业基础课程; 2、本实验项目是《近代材料研究方法Ⅲ》课程综合知识的运用; 3、本实验是一门实践性很强的课程,在现代材料研究中,掌握先进的分析仪器和分析手段是非常重要的,可以提高学生分析解决问题能力,动手实验能力,增加学生就业竞争力。 4、本实验以《无机材料科学基础》、《物理化学》、《大学物理》为先修课。 5、本实验对毕业论文等工作具有指导意义。 三、本课程实验目的和任务 1、主要掌握X射线衍射仪、扫描电镜、电子探针、热分析法的基本理论, 2、掌握X射线衍射仪、扫描电镜、电子探针、热分析仪几种仪器的结构和实验方法,了解几种仪器的功能和使用范围,使学生正确选用仪器,获得必要信息。 3、培养学生观察问题、分析问题和独立解决问题的能力。 4、熟悉X射线衍射仪;进行立方晶系物质的指标化和晶格常数的计算。 5、能够对X射线衍射图谱进行标定,能够利用粉末衍射卡片对单相物质进行物相鉴定。 6、了解扫描电镜、电子探针的结构,学会观察二次电子及背反射电子像,掌握电子探针的点、线、面三种分析方法,通过设计性实验训练,使学生初步掌握根据需要选择合适的分析方法。 7、了解热分析仪的基本结构,能够对热分析曲线进行分析与标定。 8、培养正确记录实验数据和现象,正确处理实验数据和分析实验结果的能力以及正确书写实验报告的能力。 四、实验基本要求 1、实验项目的选定依据教学计划对学生工程实践能力培养的要求; 2、巩固和加深学生对X射线衍射、扫描电镜等基础知识的理解,提高学生综合运用所学知识的能力; 3、实验项目要求学生综合掌握本课程基本知识,并运用相关知识自行设计实验方案; 4、通过实验,要求学生做到: 学会根据需要选择分析检测手段; 能够预习实验,自行设计实验方案并撰写实验报告;

材料研究方法作业答案

材料研究方法作业答案

材料研究方法

第二章思考题与习题 一、判断题 √1.紫外—可见吸收光谱是由于分子中价电子跃迁产生的。 ×2.紫外—可见吸收光谱适合于所有有机化合物的分析。 ×3.摩尔吸收系数的值随着入射波光长的增加而减少。×4.分光光度法中所用的参比溶液总是采用不含待测物质和显色剂的空白溶液。 ×5.人眼能感觉到的光称为可见光,其波长范围是200~400nm。 ×6.分光光度法的测量误差随透射率变化而存在极大值。 √7.引起偏离朗伯—比尔定律的因素主要有化学因素和物理因素,当测量样品的浓度极大时,偏离朗伯—比尔定律的现象较明显。 √8.分光光度法既可用于单组分,也可用于多组分同时测定。 ×9.符合朗伯—比尔定律的有色溶液稀释时,其最大吸

收波长的波长位置向长波方向移动。 ×10.有色物质的最大吸收波长仅与溶液本身的性质有关。 ×11.在分光光度法中,根据在测定条件下吸光度与浓度成正比的比耳定律的结论,被测定溶液浓度越大,吸光度也越大,测定的结果也越准确。() √12.有机化合物在紫外—可见区的吸收特性,取决于分子可能发生的电子跃迁类型,以及分子结构对这种跃迁的影响。() ×13.不同波长的电磁波,具有不同的能量,其大小顺序为:微波>红外光>可见光>紫外光>X射线。()×14.在紫外光谱中,生色团指的是有颜色并在近紫外和可见区域有特征吸收的基团。() ×15.区分一化合物究竟是醛还是酮的最好方法是紫外光谱分析。() ×16.有色化合物溶液的摩尔吸光系数随其浓度的变化而改变。() ×17.由共轭体系π→π*跃迁产生的吸收带称为K吸收带。() √18.红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。() √19.由于振动能级受分子中其他振动的影响,因此红

MOFs研究报告综述

金属-有机骨架材料的研究综述 摘要:与传统无机多孔材料相比,金属-有机骨架材料具有更大的比表面积、更高的孔隙率、结构及功能更加多样,已经被广泛应用于气体吸附、分子分离、催化反应、药物缓释等领域中。本文主要对金属-有机骨架材料的研究历史、分类,、合成和应用等方面进行了介绍。 关键词:金属有机骨架材料;合成;多孔材料;催化剂 The Review of Materials of Metal-organic Frameworks Abstract:pared with traditional porous materials,materials of metal-organic frameworks have bigger specific surface areas, higher porosity, lots of framework structures and functions. It has been applied to the gas adsorption,molecular separation catalysis,drug delievery or other domains. In this paper, we mainly introduce the research history,,the classification,the synthesis and the applacationsof materials of metal-organic frameworks. Key words:Metal-organic Frameworks;Synthesis; porous materials;catalysts 近年来,关于金属-有机骨架材料(Metal-organic Frameworks, MOFs)的研究发展迅速,MOFs材料是一种以无机金属离子与有机配体通过自组装过程形成的具有周期性网络结构的晶体材料[1],因此兼备了有机高分子和无机化合物的优点。它具有低密度、高比表面积、结构和功能可设计、孔道尺寸可调等特点,在磁性、荧光、非线性光学、吸附、分离、催化和储氢等方面显示出巨大的应用潜能。由于其优异的性能,至今为止,研究人员已合成许多种MOFs材料,MOFs 受到越来越多研究团队的关注。 1.MOFs发展简介

《近代材料研究方法2 》课程教学大纲

《近代材料研究方法2 》课程教学大纲课程代码:050332025 课程英文名称:Modern Materials Analysis Methods 适用专业:高分子材料与工程 课程总学时:48 讲课:40 实验:8 上机:0 适用专业:高分子材料与工程 大纲编写(修订)时间:2017.06 一、大纲使用说明 (一)课程的地位及教学目标 近代材料研究方法是高等学校材料类各专业开设的一门培养学生掌握材料现代分析测试方法的专业基础选修课,主要讲授X射线衍射、电子显微分析、热分析、光谱分析和核磁共振的基本知识、基本理论和基本方法,在材料类专业培养计划中,它起到由基础理论课向专业课过渡的承上启下的作用。本课程在教学内容方面除基本知识、基本理论和基本方法的教学外,着重培养学生运用所学知识解决实际问题的能力。 通过本课程的学习,学生将达到以下要求: 1. 掌握X射线衍射分析、透射电子显微分析、扫描电子显微分析、热分析、光谱分析和 核磁共振的基本理论; 2. 掌握材料组成、晶体结构、显微结构等的分析测试方法与技术; 3. 具备根据材料的性质等信息确定分析手段的能力; 4. 具备对检测结果进行标定、分析解释的初步能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握晶体几何学、X射线衍射以及电子显微分析方面的一般知识,了解X射线衍射仪、透射电子显微镜、扫描电子显微镜的工作、热分析、光谱分析和核磁共振原理以及适用范围。 2.基本理论和方法:掌握晶体几何学理论知识(晶体点阵、晶面、晶向、晶面夹角、晶带);掌握特征X射线的产生机理以及X射线与物质的相互作用;掌握X射线衍射理论基础—布拉格定律;了解影响X射线衍射强度各个因子,掌握结构因子计算以及系统消光规律;掌握物相定性、定量分析原理及方法;掌握利用倒易点阵与厄瓦尔德图解法分析衍射现象;掌握电子衍射的基本理论以及单晶体电子衍射花样的标定方法;掌握表面形貌衬度和原子序数衬度的原理及应用;掌握能谱、波谱分析原理及方法;掌握原子光谱法、分子光谱法、电子能谱分析法、核磁共振、热分析法的基本原理和适用范围;了解相关仪器的主要部件和测试方法;了解质谱分析法和色谱分析法的基本原理和适用范围。。 3.基本技能:具备根据材料的性质等信息正确选用分析手段的能力;具备对检测结果进行标定和分析解释的初步能力;具有利用本课程基本知识进行科学研究的初步能力。能够独立进行X 射线衍射、扫描电镜、透射电镜、紫外-可见光光谱和热分析的样品制备与结果分析。 (三)实施说明 1.教学方法:以基本理论——工作原理——应用及结果分析为主线,对课程中的重点、难点问题着重讲解。由于本课程既具有理论性又具有实践性,因此在教学过程中要注意理论联系实际,通过实例锻炼学生分析解决问题的能力。采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;注意教授学生学会分析、解决问题的方法。处理好重点与难点,将各种分析方法的实际应用纳入教学过程,使学生能够利用所学知识解决实际问题。通过实例和作业,通过作业调动学生学习的主观能动性,强化学生运用知识的能力,培养自学能力。

MOFs研究综述资料

M O F s研究综述

金属-有机骨架材料的研究综述 摘要:与传统无机多孔材料相比,金属-有机骨架材料具有更大的比表面积、更高的孔隙率、结构及功能更加多样,已经被广泛应用于气体吸附、分子分离、催化反应、药物缓释等领域中。本文主要对金属-有机骨架材料的研究历史、分类,、合成和应用等方面进行了介绍。 关键词:金属有机骨架材料;合成;多孔材料;催化剂 The Review of Materials of Metal-organic Frameworks Abstract: Compared with traditional porous materials,materials of metal-organic frameworks have bigger specific surface areas, higher porosity, lots of framework structures and functions. It has been applied to the gas adsorption,molecular separation catalysis,drug delievery or other domains. In this paper, we mainly introduce the research history,,the classification, the synthesis and the applacations of materials of metal-organic frameworks. Key words: Metal-organic Frameworks;Synthesis; porous materials;catalysts 近年来,关于金属-有机骨架材料(Metal-organic Frameworks, MOFs)的研究发展迅速,MOFs材料是一种以无机金属离子与有机配体通过自组装过程形成的具有周期性网络结构的晶体材料[1],因此兼备了有机高分子和无机化合物的优点。它具有低密度、高比表面积、结构和功能可设计、孔道尺寸可调等特点,在磁性、荧光、非线性光学、吸附、分离、催化和储氢等方面显示出巨大的应用潜能。由于其优异的性能,至今为止,研究人员已合成许多种MOFs材料,MOFs 受到越来越多研究团队的关注。 1.MOFs发展简介 在20世纪末之前,多孔材料一般分为两种类型:无机材料和碳质材料。无机材料中以沸石分子筛为代表,而活性炭是在1900和1901年之后才发现的,

材料研究方法

核磁共振在分子筛催化剂表征中的研究应用 摘要 核磁共振己经发展成为一种不可取代的工具,它常被用来作为化学分析、结构确定和研究有机、无机以及生物体系的动力学的一种手段。核磁共振通常被用来表征合成产物的结构,是研究催化剂的强有力手段之一。介绍了固体核磁共振的基本原理及魔角旋转、高功率质子去耦、交叉极化、多脉冲同核去耦以及四级核的信号增强等一系列相关操作技术,综述了核磁共振在催化剂表征中的一些研究进展。 关键词:核磁共振;原理;催化剂;谱图表征

Application of NMR in Characterization of Molecular Sieve Catalysts Abstract NMR has evolved into an irreplaceable tool for chemical analysis, structural determination, and study of the dynamics of organic, inorganic, and biological systems. Nuclear magnetic resonance is often used to characterize the structure of synthetic products and is one of the powerful means of studying catalysts. The basic principles of solid-state NMR and the related operating techniques such as magic angle rotation, high power proton decoupling, cross polarization, multi-pulse homonuclear decoupling and four-stage nuclear signal enhancement are introduced. The characterization of NMR in catalysts is reviewed. Some of the research progress. Key words:Nuclear magnetic resonance;Principle;Catalyst;Spectral representation

材料研究方法2

材料现代分析方法试题7(参考答案) 一、基本概念题(共10题,每题5分) 1.欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:欲使Cu 样品产生荧光X 射线辐射,V =1240/λCu=1240/0.15418=8042,V =1240/λCu=1240/0.1392218=8907 激发出荧光辐射的波长是0.15418nm 激发出荧光辐射的波长是0.15418nm 2.判别下列哪些晶面属于[-111]晶带:(-1-10),(-2-31),(231),(211),(-101),(1-33),(1-12),(1-32),(0-11),(212)。 答:(-1-10)(321)、(211)、(1- 12)、(-101)、(0- 11)晶面属于[111]晶带,因为它们符合晶带定律:hu+kv+lw=0。答:(-1-10)(321)、(211)、(1-12)、(-101)、(0-11)晶 面属于[111]晶带,因为它们符合晶带定律:hu+kv+lw=0。 3.用单色X 射线照射圆柱多晶体试样,其衍射线在空间将形成什么图案?为摄取德拜图相,应当采用什么样的底片去记录? 答:用单色X 射线照射圆柱多晶体试样,其衍射线在空间将形成一组锥心角不等的圆锥组成的图案;为摄取德拜图相,应当采用带状的照相底片去记录。 4.洛伦兹因数是表示什么对衍射强度的影响?其表达式是综合了哪几方面考虑而得出的? 答:洛伦兹因数是表示掠射角对衍射强度的影响。洛伦兹因数表达式是综合了样品中参与衍射的晶粒大小,晶粒的数目和衍射线位置对衍射强度的影响。 5.给出简单立方、面心立方、体心立方以及密排六方晶体结构电子衍射发生消光的晶面指数规律。 答:常见晶体的结构消光规律 简单立方 对指数没有限制(不会产生结构消光) f. c. c h. k. L. 奇偶混合 b. c. c h+k+L=奇数 h. c. p h+2k=3n, 同时L=奇数 体心四方 h+k+L=奇数 6.透射电镜的成像系统的主要构成及特点是什么? k k k V eV hc 24.1==λk eV hc ≤λ

聚氨酯相变材料研究综述

《材料结构与性能》 课程论文 题目:聚氨酯弹性相变材料研究进展 学号:xxx 姓名:xx 学院:材料科学与工程学院 专业:化学

聚氨酯弹性相变材料研究进展 摘要:综述了相变储热材料的研究进展及应用,简要介绍了相变材料的分类以及各类相变材料的特性。综述了聚氨酯弹性相变材料的结晶原理及研究现状,包括材料的合成,软、硬段种类及含量对结晶性能的影响;介绍了影响相变材料结晶、储热、形状稳定性和导热等性能的因素,论述了对其各性能的改性方法。 关键词:聚氨酯;相变材料;储热;弹性 Progress of Polyurethane Elastic Phase Change Materials Ze Ding ( Southwest University of Science and Technology, Mianyang 621010, China) Abstract: This paper introduces research progress and application of phase change materials. The classification of phase change materials and the characteristics of phase change materials are introduced. The crystallization principle and research status of polyurethane elastic phase change materials are reviewed, including the synthesis of materials, the types and contents of soft and hard segments, and the influence on crystallization properties.The factors that influence the properties of phase change materials such as crystallization, heat storage, shape stability and thermal conductivity are introduced. Key words: polyurethane; phase change material; heat storage; elasticity 0 引言 随着人类社会经济的不断发展及能源的大量消耗,节能环保已成为全球关注的话题,新能源的开发利用以及提高能源利用效率已经成为各国研究开发的重点。利用储热材料实现能量供应与需求的平衡,能有效提高能源利用效率,达到节能环保的目的,在能源、航天、建筑、农业、化工等诸多领域具有广阔的应用前景,已成为世界范围内研究的热点。 材料储热的本质是将一定形式的能量在特定的条件下储存起来,并在特定的条件下加以释放和利用。热能存储有3种形式:显热储热、潜热储热和化学反应储热。显热储热是利用材料自身的温度变化来存储和释放热能,而不发生任何其它的变化[1],这种储热方式简单,成本低,在工作过程中温度会随储存或释放的能量大小发生持续性变化。潜热储存是利用储热材料在发生相变时吸收或放出热量来储热与放热[2],也称为相变储热。化学反应储热是利用储热材料相接触时发

材料研究方法课后习题答案

目录 第一章绪论 (2) 第二章光学显微分析 (2) 第3章X射线衍射分析 (5) 第4章电子显微分析 (8) 第5章热分析 (12) 第6章光谱分析 (16) 第7章核磁共振分析 (19) 第8章质谱分析 (21) 第9章材料测试方法的综合应用 (22)

第一章绪论 1. 材料时如何分类的?材料的结构层次有哪些? 答:材料按化学组成和结构分:金属材料、无机非金属材料、高分子材料、复合材料 材料的结构层次有:微观结构、亚微观结构、显微结构、宏观结构。 2.材料研究的主要任务和对象是什么?有哪些相应的研究方法? 答:任务:研究、制造和合理使用各类材料。 研究对象:材料的组成、结构和性能。 研究方法:图像分析法、非图形分析法:衍射法、成分谱分析。 成分谱分析法:光谱、色谱、热谱等; 光谱包括:紫外、红外、拉曼、荧光; 色谱包括:气相、液相、凝胶色谱等; 热谱包括:DSC、DTA等。 3.材料研究方法是如何分类的?如何理解现代研究方法的重要性? 答:按研究仪器测试的信息形式分为图像分析法和非图形分析法; 按工作原理,前者为显微术,后者为衍射法和成分谱分析。 重要性: 1)理论:新材料的结构鉴定分析; 2)实际应用需要:配方剖析、质量控制、事故分析等。 第二章光学显微分析 1.区分晶体的颜色、多色性及吸收性,为何非均质体矿物晶体具有多色性? 答:颜色:晶体对白光中七色光波选择吸收的结果。 多色性:由于光波和晶体中的振动方向不同,使晶体颜色发生改变的现象。 吸收性:颜色深浅发生改变的现象称为吸收性。 光波射入非均质矿物晶体时,振动方向是不同的,折射率也是不同的,因此

材料研究方法作业答案

材料研究方法

第二章思考题与习题 一、判断题 √1.紫外—可见吸收光谱是由于分子中价电子跃迁产生的。 ×2.紫外—可见吸收光谱适合于所有有机化合物的分析。 ×3.摩尔吸收系数的值随着入射波光长的增加而减少。 ×4.分光光度法中所用的参比溶液总是采用不含待测物质和显色剂的空白溶液。 ×5.人眼能感觉到的光称为可见光,其波长范围是200~400nm。 ×6.分光光度法的测量误差随透射率变化而存在极大值。 √7.引起偏离朗伯—比尔定律的因素主要有化学因素和物理因素,当测量样品的浓度极大时,偏离朗伯—比尔定律的现象较明显。 √8.分光光度法既可用于单组分,也可用于多组分同时测定。 ×9.符合朗伯—比尔定律的有色溶液稀释时,其最大吸收波长的波长位置向长波方向移动。 ×10.有色物质的最大吸收波长仅与溶液本身的性质有关。 ×11.在分光光度法中,根据在测定条件下吸光度与浓度成正比的比耳定律的结论,被测定溶液浓度越大,吸光度也越大,测定的结果也越准确。() √12.有机化合物在紫外—可见区的吸收特性,取决于分子可能发生的电子跃迁类型,以及分子结构对这种跃迁的影响。() ×13.不同波长的电磁波,具有不同的能量,其大小顺序为:微波>红外光>可见光>紫外光>X射线。() ×14.在紫外光谱中,生色团指的是有颜色并在近紫外和可见区域有特征吸收的基团。() ×15.区分一化合物究竟是醛还是酮的最好方法是紫外光谱分析。() ×16.有色化合物溶液的摩尔吸光系数随其浓度的变化而改变。() ×17.由共轭体系π→π*跃迁产生的吸收带称为K吸收带。() √18.红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。() √19.由于振动能级受分子中其他振动的影响,因此红外光谱中出现振动偶合谱带。() ×20.确定某一化合物骨架结构的合理方法是红外光谱分析法。() ×21.对称分子结构,如H2O分子,没有红外活性。() √22.分子中必须具有红外活性振动是分子产生红外吸收的必备条件之一。() √23.红外光谱中,不同化合物中相同基团的特征频率总是在特定波长范围内出现,故可以根据红外光谱中的特征频率峰来确定化合物中该基团的存在。() ×24.不考虑其他因素的影响,下列羰基化合物的大小顺序为:酰卤>酰胺>酸>醛>酯。() √25.傅里叶变换型红外光谱仪与色散型红外光谱仪的主要差别在于它有干涉仪和计算机部件。()√26.当分子受到红外光激发,其振动能级发生跃迁时,化学键越强吸收的光子数目越多。() ×27.游离有机酸C=O伸缩振动v C=O频率一般出现在1760cm-1,但形成多聚体时,吸收频率会向高波数移动。() 二、选择题 1.在一定波长处,用2.0 cm吸收池测得某试液的百分透光度为71%,若改用3.0 cm吸 收池时,该试液的吸光度A为(B) (A)0.10 (B)0.22 (C)0.45 2.某化合物浓度为c1,在波长λ1处,用厚度为1 cm的吸收池测量,求得摩尔吸收系数为ε1,在浓度为3 c1时,在波长λ1处,用厚度为3 cm的吸收池测量,求得摩尔吸收系数为ε2。则它们的关系是(A)(A)ε1=ε2(B)ε2=3ε1(C)ε2>ε1

纸基摩擦材料研究综述

北京科技大学 材料科学与工程选论 姓名:张欣悦 学号:B20130195 专业:材料科学与工程 班级:2013级博3班 二零一四年九月

纸基摩擦材料研究综述 1 纸基摩擦材料的发展概况 随着机电液一体化技术的飞速发展,各类新型液力驱动的湿式离合器和制动器得到广泛应用,在这种湿式离合器和制动器中是靠多对摩擦片传递扭矩,其中摩擦片大部分是采用纸基摩擦片,摩擦片既是关键零件又是易损件。图1所示是捷达宝来轿车M01自动变速低速档离合器K1的分解图,其摩擦片全部是纸基摩擦片。纸基摩擦片的外观如图2所示。 图1 捷达宝来轿车M01自动变速器离合器K1部件分解示意图 1. 弹性挡圈 2. 压盘 3. 内片 4. 外片 5. 压板 6. 波形弹簧垫圈 7. 弹性挡圈 8. 活塞盖 9. 弹簧 10. 活塞11. 带涡轮轴的离合器壳12. 圆形密封圈13. 活塞环

纸基摩擦材料是20世纪50年代出现的一种多孔的、高弹性的湿式摩擦材料,主要由纤维、粘结剂、摩擦性能调节剂、填料等组成,通常采用类似造纸的工艺生产,因而被称为“纸基”。纸基摩擦材料是一种在油介质中工作的新型摩擦材料,与其他摩擦材料相比,具有摩擦系数高、动/静摩擦系数接近、传送扭矩能力强、结合柔和、噪音小、不伤对偶等一系列优点,因而被广泛采用。纸基摩擦材料主要用于各类车辆和工程机械、机床、船舶、矿山机械等行业湿式离合器和制动器中,特别是作为汽车自动变速器中湿式离合器的摩擦材料,更具有广阔的应用前景。 图2 纸基摩擦材料摩擦片 国外纸基摩擦材料出现于五十年代末,其经历了从石棉纸基片到无石棉纸基材料,从轻载工况到重载工况,从低能量、低功率吸收到高能量、高功率吸收的发展过程,该种材料已广泛应用于汽车、船舶、工程机械、矿山机械等领域的离合器、制动器中。目前,世界上较大的机械传动制造商,在其湿式制动器和离合

材料研究方法

紫外光谱、荧光光谱在材料研究中的应用 1、分子内的电子跃迁有哪几种,分别属于什么吸收带,吸收最强的跃迁是什么跃 迁? 答:电子类型:形成单键的σ电子;形成双键的π电子;未成对的孤对电子n电子。 轨道类型:成键轨道σ、π;反键轨道σ*、π* ;非键轨道n。 σ-σ* 跃迁k max3104强吸收带 n-σ*跃迁实现这类跃迁所需要的能量较高 n →π*跃迁k max<100 平均寿命10-5~10-7sec R吸收带 π→π*跃迁k max≥104 平均寿命10-7~10-9sec k S → T小K吸收带 PS:R、K、B、E四带 1)R 吸收带:n→π*跃迁,弱吸收,k <102 2)K 吸收带:π→π*跃迁,强吸收,共轭分子的特征吸收带,k > 104 3)B吸收带:π→π*跃迁,中吸收,苯环及杂环的特征谱带; 4)E 吸收带:π→π*跃迁,强吸收,芳香族化合物的特征谱带 π-π*迁移跃迁产生的谱带强度最大,n-σ*跃迁产生的谱带强度次之,配位跃迁的谱带强度最小。 2、紫外可见吸收光谱在胶体的研究中有重要作用,请举出三个例子来说明,结合 散射现象来讨论二氧化钛胶体和粉末漫反射光谱的差异。 答:

1)、胶体具有稳定性,尤其是稀释后稳定性; 2)、胶粒对可见光的散射; 3)、测定消光(包括吸收、散射、漫反射等对光强度造成的损失) 4)、稀释条件下,胶粒尺寸小于光波长的1/20,瑞利散射可忽略。 4)、估算晶粒的大小。 例1:二氧化硅在紫外区也是透明的,为何其胶体在紫外区有吸收? SiO2直径387nm,在300nm下被吸收因而发生了消光呈现透明的,而起溶胶颗粒会发生散射,因而使得在紫外区有吸收。 例2:TiO2溶胶从a-d进行稀释,我们可以看到起吸光度逐渐减少,这是由于稀释后散射减小所致,而由于溶胶的胶粒的散射使得其吸光度增大。 例3:CdSe, CdS等量子点不做TEM和HRTEM,依靠吸收光谱中尺寸效应的规律来判断晶粒尺寸大小。反应时间越长,颗粒尺寸越大。 差异:当测定二氧化钛的溶胶时,按晶粒尺寸的不同,分为两种情况: 1)当胶体很小,d<λ/20时,瑞利散射可以忽略,吸收光谱与粉末的漫反射光谱接近。 2)当胶体较大,d>λ/20时,散射就会十分明显,在可见光区有吸收,这样获得是一个消光光谱,而不是吸收光谱,无法测得λonset。 用积分球测试粉末漫反射光谱可以克服上述缺点,得到一个较好的吸收光谱。

相关文档