文档库 最新最全的文档下载
当前位置:文档库 › 心量与心亮

心量与心亮

三則感人小故事

第1個故事小孩的心

有一位單身女子剛搬了

家,她發現隔壁住了一户窮

人家,一個寡婦與兩個小

孩子。

有天晚上,那一帶忽然停了電,那位女子只好自己點起了蠟燭。没一會兒,忽然聽到有人敲門。

原來是隔壁鄰居的小孩子,只見他緊張地問:「阿姨,請問你家有蠟蠋嗎?」

1:小孩的心

女子心想:「他們家竟窮到

連蠟燭都没有嗎?千萬别借他們,免得被他們依賴了!」

於是,對孩子吼了一聲說:「没有!」

1:小孩的心

正當她準備關上門時,那窮小孩展開關愛的笑容說:「我就知道你家一定没有!」說完,竟從懷裡拿出兩根蠟燭,說:「媽媽和我怕你一個人住又没有蠟蠋,所以我带兩根來送你。」

此刻女子自責、感動得熱淚盈眶,將那小孩子緊緊地抱在懷裡。

1:小孩的心

第2個故事純真的心

有一個小鎮很久没有下雨了,令當地農作物損失慘重,於是牧師把

大家集合起來,準備在教堂裡開一

個祈求降雨的禱告會。

2:纯真的心

人群中有一個小女孩,因個子太小,幾乎没有人看得到她,但她也來參加祈雨禱告會。

就在這時候,牧師注意到小女孩所帶來的東西,激動地在台上指著她:「那位小妹妹很讓我感動!」於是大家順著他手指的方向看了過去。

2:纯真的心

牧師接著說:「我們今天來禱告祈求上帝降雨,可是整個會堂中,只有她一個人今天帶著雨傘!」大家仔細一看,果然,她的座位旁掛了一把紅色的小雨傘;

這時大家沉静了一下,緊接而來的,是一陣掌聲與淚水交織的美景。

2:纯真的心

有時我們不得不說:小孩子其

實一點都不「小」,他(她)們其

實很「大」!他(她)們的愛心很大!他(她)們的信心很大!

2:纯真的心

第3個故事我們只不方便三小時那天跟老公幸運地訂到了票回婆家,上車後却發現有位女士坐在我們的位子上,老公示意我先坐在她旁邊的位子,却没有請這位女士讓位。我仔細一看,發現她右脚有一點不方便,才了解老公為何不請她讓出位子。

他就這樣從嘉義一直站到台北,從頭到尾都没向這位女士表示這個位子是他的,下了車之後,心疼老公的我跟他說:「讓位是善行,但從嘉義到台北這麼久,大可中途請她把位子還給你,換你坐一下。」

3:我們只不方便三小時

老公却說:「人家不方便一輩子,我們就不方便這三小時而已。」聽到老公這麼說,我相當感動,有這麼一位善良又為善不欲人知的好老公,讓我覺得世界都變得温柔許多。

3:我們只不方便三小時

心念一轉,世界可能從此不同,人生中,每一件事情,都有轉向的能力,就看我們怎麼想,怎麼轉。

我們不會在三分鐘内成功,但也許只要花一分鐘,生命從此不同。

3:我們只不方便三小時

你看完這篇短文後,可以馬上起

身去擦桌子,或洗碗;可以把報紙放一邊,閉起眼睛沉思一會;也可以把這篇短文,轉寄给很多朋友。

當然,我最希望你選擇最後這一項,誰知道,你可能會改變很多人的一生。

3:我們只不方便三小時

“我們不一定會因為賺很多的錢而富有,但我們可以因付出的善念而使心中富有”

~健康快樂~

基于无创心输出量测量系统的心脏重症康复专家共识(完整版)

基于无创心输出量测量系统的心脏重症康复专家共识 (完整版) 前言 《中国心血管报告》指出,我国心血管病占居民疾病死亡构成的40%以上,已成为我国居民的首位死因。其中,急性心肌梗死、起搏器植入术后、严重心律失常、严重心力衰竭、心脏移植术后及心脏外科术后(如瓣膜修补术或置换术)等均属于心血管重症[2]。面对心血管重症防治的严峻形势,心脏重症康复是突破目前我国心血管重症防治瓶颈的重要措施,有助于减少心血管重症患者再次发生心血管事件的风险,以及降低全因死亡并实现更多的心血管获益。 心脏康复、预防已有70多年的历史,西方发达国家心血管事件拐点部分得益于此,目前已经成为决定心血管疾病或者医疗质量及患者生存质量的重要环节之一,并已成为一个蓬勃发展的学科。面对众多的心血管急性症发病和PCI术后等危重心血管疾病患者,目前临床工作重点仍主要局限于相关心血管重症急性期的抢救与治疗,往往对于发病前的预防以及发病后的康复没有足够重视,导致患者反复发病、反复住院,医疗开支不堪重负,故心脏重症康复与二级预防在中国势在必行。 对于心脏重症患者病情的监测与评估是心脏重症康复的核心环节, 但是尚缺乏精准有效的连续监测和疗效评估手段。2016年心脏康复的心肺运动试验指南将动态血流动力学监测对心功能的临床评估价值单独列

出。传统有创的动态血流动力学监测技术虽然是金标准,但有高价格、高风险、耗时、需要特殊设备和技术培训等运用瓶颈,无法在临床常规开展。与传统监测技术相比,动态无创血流动力学监测则提供了一个更优的选择。目前,基于动态无创心输出量测量系统在临床实施过程中尚无统一的标准,为规范动态血流动力学在心脏重症康复中的应用,以及学术发展体系建设与质量控制的需求。中国心脏重症与康复血流动力学专家委员会特制订此专家共识,以期为中国心脏重症康复动态心输出量测量系统的标准应用及临床治疗提供借鉴和指导。 1 无创心输出量监测系统 1.1定义:无创心输出量监测系统是基于欧姆定律原理,通过新一代心室血流阻抗波形描记法,实时连续监测人体血流动力学参数,从而以血流动力学角度评估静息、活动及运动过程中心功能的变化。广泛用于临床指导用药、液体管理、鉴别高血压及休克类型、制定I、II、III期心脏康复处方、评估治疗及康复效果等。 1.2使用方法: 无创心输出量测量系统具备静息、动态、监护三种工作模式分析血流动力学变化趋势。(1)血流动力学静息评估模式,指病人保持卧位或坐位静息状态监测。(2)血流动力学动态评估模式,这包括被动抬腿负荷

影响心输出量的因素

. 影响心输出量的因素 心输出量是搏出量和心率的乘积,凡影响到搏出量或心率的因素都将影响心输出量。心肌收缩的前负荷、后负荷通过异长自身调节机制影响搏出量,而心肌收缩能力通过等长自身调节机制影响搏出量。 (1)前负荷对搏出量的影响: 前负荷即心室肌收缩前所承受的负荷,也就是心室舒张末期容积,与静脉回心血量有关。前负荷通过异长自身调节的方式调节心搏出量,即增加左心室的前负荷,可使每搏输出量增加或等容心室的室内峰压升高。这种调节方式又称starling机制,是通过改变心肌的初长度从而增强心肌的收缩力来调节搏出量,以适应静脉回流的变化。 正常心室功能曲线不出现降支的原因是心肌的伸展性较小。心室功能曲线反映搏功和心室舒张末期压力(或初长度)的关系,而心肌的初长度决定于前负荷和心肌的特性。心肌达最适初长度(2.0~2.2μm)之前,静息张力较小,初长度随前负荷变化,但心肌超过最适初长度后,静息张力较大,阻止其继续被拉长,初长度不再与前负荷是平行关系。表现为心肌的伸展性较小,心室功能曲线不出现降支。 (2)后负荷对搏出量的影响: 心室射血过程中,大动脉血压起着后负荷的作用。后负荷增高时,心室射血所遇阻力增大,使心室等容收缩期延长,射血期缩短,每搏输出量减少。但随后将通过异长和等长调节机制,维持适当的心输出量。 (3)心肌收缩能力对搏出量的影响: 心肌收缩能力又称心肌变力状态,是一种不依赖于负荷而改变心肌力学活动的内在特性。通过改变心肌变力状态从而调节每搏输出量的方式称为等长自身调节。 心肌收缩能力受多种因素影响,主要是由影响兴奋—收缩耦联的因素起作用,其中活化横桥数和肌凝蛋白ATP酶活性是控制心肌收缩力的重要因素。另外,神经、体液因素起一定调节作用,儿茶酚胺、强心药,Ca2+等加强心肌收缩力;乙酰胆碱、缺氧、酸中毒,心衰等降低心肌收缩力,所以儿茶酚胺使心肌长度—张力曲线向左上移位,使张力—速度曲线向右上方移位,乙酰胆碱则相反。 (4)心率对心输出量的影响: 心率在40~180次/min范围内变化时,每分输出量与心率成正比;心率超过180次/min时,由于快速充盈期缩短导致搏出量明显减少,所以心输出量随心率增加而降低。 心率低于40次/min时,也使心输量减少。 1 / 1'.

监测:从心输出量监测到心脏超声(2)

监测:从心输出量监测到心脏超声(2) 监测:从心输出量监测到心脏超声(2)重症行者翻译组朱然译心脏超声心脏超声并不是一项血流动力学监测 技术,因为它并不能提供连续性的血流动力学监测。然而,一项近期研究展示了一种新式单用途迷你经食道超声探头,这种探头可以在重症病人原位留置72小时,病人耐受性良好,因此,可用于接受机械通气的休克病人的血流动力学监测。目前,心脏超声仍被认为是对休克病人进行心血管评估的首选,尤其是对休克类型的初始评估,及序贯心脏功能的评估。心脏超声的两项主要优势是无创性,及远好于其它方法的心脏功能评估。左室射血分数(Left ventricle ejection fraction,LVEF)是心脏超声能够提供的最重要参数之一。由于既依赖于左室心肌收缩力,又依赖于左室后负荷,LVEF 必须结合动脉收缩血压进行解读。这在休克时尤其重要,因为此时的左室后负荷可以在短期之内出现显著改变。每搏量(stroke volume,SV)可以通过心脏超声估测出,测量主动脉下血流的速度时间积分(VTI)及左室流出道面积,计算其乘积即为SV。VTI代表了红细胞在一个收缩期内的移动距离,可以应用脉搏多普勒在主动脉下进行轮廓描记。左室流出道面积通过其直径进行计算。值得注意的是,即便主动脉下直径测量的误差极小,也可导致CO值的显著误差。不

管怎样,由于主动脉瓣环是纤维性的,左室流出道在短时间内不可能出现变化。因此,CO的相对变化可以通过VTI的相对变化进行估测,而VTI的测量更为简单,并且更不易产生误差。 心脏超声也可以评估左心舒张功能。将二尖瓣环的组织多普勒成像与脉搏多普勒测量的跨二尖瓣血流结合,可以半定量估测左室充盈压力。心脏超声还可通过对主动脉下最大血流速的呼吸变异度或下腔静脉直径的呼吸变异度来预测液体 反应性,也可采用PLR后的主动脉下VTI变化来预测液体 反应性。并且,心脏超声还可用于评估右室功能。尤其值得一提的是,心脏超声是诊断急性肺心病的金标准。 心脏超声的主要缺陷在于操作者依赖性,并且操作者在达到熟练操作之前需要一定的培训时间。尤其是在处理复杂心脏疾病或应用经食道超声时。但是,掌握重症病人经胸超声检查的基础技能所需的培训时间却是很有限的。 对于休克的病人如何选择血流动力学监测的设备低血容量、血管张力降低、心脏功能不全是休克时最主要的心血管异常。这些情况可单独存在,也可以各种方式合并存在。心脏功能和前负荷反应性的评估对明确休克机制、选择足够治疗及评估治疗反应性来说都是最主要的。对恰当血流动力学监测方式的选择依赖于休克的时相,复杂程度和对初始治疗的反应性(图1)。

超声心动图学复习题参考答案

超声心动图学考试复习题参考答案 一、名词解释 1.多普勒频移及公式声源与接收器发生相对运动时所引起的声波接收频率改变的现象称为Doppler效应,表现 为相向运动时接收频率增加,背向运动时接收频率减低,其频率差称为频移。 多普勒频移公式:fd=2f0v cosθ/c 2.左室等容舒张期指主动脉瓣关闭至二尖瓣开放所需的时间,心室舒张而其容积并不改变 3.法洛四联症是一组复杂的先天性心血管畸形,包括4个病理解剖特征:①右室流出道和(或)肺动脉、肺动 脉瓣狭窄;②室间隔缺损;③主动脉前移骑跨于室间隔之上;④右心室肥厚 4.动脉导管未闭常见先天性心脏病之一,是指位于降主动脉与肺动脉之间的未闭合的异常通道 5.室壁瘤心肌梗死的常见并发症。较大面积心肌梗死后,坏死心肌组织变薄延伸或由斑痕组织修复代替,在 心腔内压的作用下,局部室壁向外膨出形成室壁瘤。 6.艾森曼格综合征先心病当左向右分流较大时,可致肺高压及右室压力增高。当右心接近或超过左心压力时, 出现双向甚至右向左分流,病人出现紫绀,此时称为艾森曼格综合征。 7.超声波:频率高于20000赫兹的声波 8.B型超声:即二维超声,超声探头得到的信息转换为切面的二维图像 9.M型超声:是B超的一种特殊显示方式,声波单波束探测组织活动界面后,再以慢扫描方式将反射波展开的 一种“距离—时间”回声曲线。主要应用于心脏检查,包括胎儿心脏检查。 10.SAM征阳性:梗阻性肥厚型心肌病在收缩期CD段不是一个缓慢的上升平台,而出现一个向上(向室间隔方向) 突起的异常波形,这种现象称为收缩期前向运动(Systolic Anterior Motion, SAM),由二尖瓣收缩期时前向运动引起。 11.射血分数左心室射血分数是指左心室每搏量占舒张末容量的比率,反映左室心排效率,是目前评价左室收缩 功能的重要指标,正常值50~75% 二、填空题 1、心输出量是指_心率_x_每搏输出量_ 2、等容收缩期在心动周期中指的是_房室瓣关闭至半月瓣开放的间期_____ 3、彩色多普勒原理中,彩色编码以红蓝两色表示血流方向,一般规定为_红色朝向探头,_蓝色背离探头,五彩 镶嵌颜色提示为_湍流 4、超声诊断中左室壁常运用_17_节段划分 5、二维超声诊断冠心病的重要依据是__左心室壁节段性室壁运动异常____ 6、冠心病心肌梗死的并发症有_室壁瘤_、_室壁破裂_、_室间隔穿孔_、_左室血栓形成_、_乳头肌功能 不全或断裂_. 7、大约90%的心脏粘液瘤发生在_房间隔卵圆窝处_,有窄蒂,多位于_左心房_部 8、风湿性心脏瓣膜病最常受累的两个瓣膜是_二尖瓣_和_主动脉瓣_ 9、二尖瓣狭窄M型超声心动图特征性改变为EF斜率降低,呈_城墙改变_改变 10. 肥厚型心肌病的超声表现为室间隔呈显著非对称性肥厚,室间隔与左室后壁的厚径比值>_1.5:1_ 11. 继发孔房间隔缺损的分型有_中央型_、_上腔型_、_下腔型_、_混合型_. 12. 心内膜垫缺损分为部分型和完全型,其中部分型的病理改变为_原发孔_型房间隔缺损伴_二尖瓣前叶裂缺

前后负荷对心输出量的影响复习过程

前后负荷对心输出量 的影响

心输出量的影响因素 【实验目的和原理】 心输出量指一侧心室的每分输出量。它受心率、前负荷、心肌收缩能力的影响。在一定范围内前负荷和心率增加,心输出量增加;当前负荷不变时,后负荷增加,则心输出量降低。本实验的目的是通过在体蛙心灌流,观察前、后负荷改变时对心输出量的影响。 【实验对象】 蟾蜍 【实验器材和药品】 1、仪器和材料FCO-1蛙心输出量测定系统(长立柱、前负荷标尺0-250 mm、后负荷标尺0-450 mm、后负荷调节模块、动脉插管、10ml量筒、静脉插管、储液瓶300ml)、蛙类手术器械 2、药品任氏液 【实验方法和步骤】 一、系统组件的安装 二、营养液管路及前、后负荷的准备 将储液瓶中加入实验所需的任氏液,使液体充盈至静脉插管,排除气泡,关闭三通;调节储液瓶高度,观察前负荷标尺刻度,当液面到达设定 前负荷时,固定储液瓶;拧松后负荷调节模块的锁紧螺钉,滑动模块至设 定后负荷刻度时锁紧螺钉,完成后负荷的调节。

三、FCO-1型蛙心输出量测定系统介绍 计量单位时间内的收集量即为蛙心输出量。前负荷标尺上液面高低表示了前负荷的大小。后负荷标尺上液面最高点与心脏之间的距离,决定了心脏收缩所需克服的静水压,它的高度代表收缩时后负荷的大小。通过改变前后负荷的高度,可测定蛙心在改变条件下的心输出量。(装置如下图所示) 四、制备心脏标本 1、用探针破坏蟾蜍的脑和脊髓,将其仰卧并固定于蛙板上,打开胸腔,暴露心脏、剪去心包膜。 2、细心剪去左右主动脉两旁的包膜,右主动脉下穿一丝线,左主动脉下穿两丝线备用。(正面观) 3、将心脏倒翻向头部,识别静脉窦、后腔静脉(下腔静脉)的解剖位置。细心剪去下腔静脉两旁的包膜,穿一丝线备用(背面观)

心输出监测的生理学基础

心输出监测的生理学基础 第一节心脏泵血功能及其评价指标 心脏是生命活动中的重要器官之一。心脏为了推动血液在体内作循环流动必然要消耗能量作功,将化学能转化为用于心肌收缩、血管运动和血液流动的机械能;心脏的收缩与舒张过程不但影响血管运动和血液流动,同时也受血管运动和血液流动的影响,因此心肌能量的产生、心肌的收缩与舒张、血管的运动及血液的流体等发生变化时均可引起心脏泵血功能的改变。其中心脏作为一个泵血的动力装置,泵的前后负荷、泵的工作效率以及外周循环动脉血压的变化均可直接影响心脏血液输出的效率;血液循环作为一个功能性封闭体,血液动力学的改变反过来也会对心肌细胞与血管细胞产生深刻的影响,导致心肌肥厚或心力衰竭、动脉粥样硬化等的发生。 一、心脏泵血功能 心脏是一个由心肌组织构成并具有瓣膜结构的空腔器官,它是血液循环的动力装置。在血液循环系统中,心脏肌肉组织不断地作收缩和舒张的交替活动,心脏舒张时容纳静脉血液返回心脏,心脏收缩时则为心脏内的血液提供机械能使血液能从心脏射入动脉中,并在外周血管内流动。在心肌节律性的收缩与舒张和心脏瓣膜规律性开启与关闭的配合下,心脏推动着血液沿单一方向在体内不停地作循环流动,心脏这种推动血液流动的作用方式与水泵工作的原理相近,因此可以把心脏看成是一个实现泵血功能的肌肉器官。 心脏泵血功能正常与否直接关系到心脏向外周血管输送血液量的多少,这是医疗实践和实验医学研究中经常遇到和关心的问题。临床上将心脏泵血功能障碍导致心输出量减少,以至于不能满足全身组织代谢需要的病理过程称为心力衰竭,同时将心力衰竭的早期过程称为心功不全,心力衰竭往往是多种心血管疾病发展变化的共同结果。心力衰竭的临床表现受心力衰竭发生部位的影响,按发生的部位分为左心衰竭,右心衰竭和全心衰竭。左心衰竭多见于冠状动脉粥样硬化性心脏病、高血压病、主动脉瓣狭窄或关闭不全、二尖瓣狭窄或关闭不全等,导致左心输出量减少、肺部淤血或水肿;右心衰竭见于肺心病、三尖瓣或肺动脉瓣疾病,并常继发于左心衰竭,结果表现有心输出量减少,体循环淤血,静脉压增加,常伴有下肢水肿,严重时可发生全身性水肿;全心衰竭是左右心室同时发生的一种心力衰竭,如心肌炎、心肌病等引起的全心衰竭,或继发于左心衰后并发的一种右心衰竭,结果表现既有左心衰又有右心衰的临床症状。显然心输出量的减少与组织代谢对血液量的增加都会导致心功不全或心力衰竭,有时心力衰竭发生在心输出量并不减少甚至是升高但机体对血液量的需要增加使心输出量相对减少,因此心力衰竭可分为高输出和低输出两类心力衰竭。总之心力衰竭是一种心脏功能的严重失代偿表现,它可导致心源性休克的发生。因此在临床上需要有一套客观的指标来评价心输出量及其变化的程度以帮助临床上对心血管病人的诊断、治疗及其预后。 二、心输出量的评价 心输出量是衡量心脏功能的基本指标,通常按心脏搏动一次或工作时间在一分钟内射

心输出量的影响因素

心输出量的影响因素 【实验目的】 1.观察改变前、后负荷、心肌收缩能力和心率对心输出量的影响。 2.学习离体蛙心恒压灌流的实验方法。 【实验原理】 心输出量(cardiac output)是衡量心功能的直接指标。通常指一侧心室每分钟射出的血量,其值等于每搏输出量乘以心率。每搏量受前、后负荷和心肌收缩能力的影响,前负荷可影响心肌初长度,在一定范围内心肌初长度越长,心肌射血力量越大。后负荷构成心脏射血的阻力,增加可致等容收缩期延长,射血速度下降,心输出量减少。心肌收缩能力是决定泵血功能的内在因素,肾上腺素和乙酰胆碱可改变心肌收缩能力,从而影响心输出量。在一定范围内,心率增加心输出量也增加,但心率过快,心舒张期缩短,心室充盈不足,心输出量反而减少。 【预习要求】 1.预习心脏泵血的过程。 2.预习前负荷、后负荷、心率及心肌收缩能力对心输出量的影响机制 【实验标本】 蟾蜍离体心脏。 【实验器材与药品】 XL-1型心输出量影响因素实验装置、蛙类手术器械、刺激器、刺激电极、支架、50ml 量筒、心房和动脉插管、任氏液、1:10000肾上腺素、1:100000乙酰胆碱。 【实验前准备】 1.实验装置如图1所示,A为贮液瓶,容积500ml,内盛任氏液。B为灌流瓶,刻度0~25cm,灌流瓶液面高低决定灌流压大小,反映前负荷。灌流瓶通过橡皮管与贮液瓶可在支柱上上下移动以控制灌流压。C为液压管,刻度0~45cm;有10根侧管,间距5cm,均朝下倾斜。用于反映后负荷。D1.2为血管插管接头,分别通过橡皮管之灌流瓶和液压管连通。E1.2为血管插管接头支架,其关节处能上下、左右、前后移动,以调节血管插管接头与灌流器官之间的相对位置。F为刺激电极支架,也可变动位置。

心输出量测定

心输出量测定 简介 心输出量cardiac output是指每分钟左心室或右心室射入主动脉或肺动脉的血量。左、右心室的输出量基本相等。心室每次搏动输出的血量称为每搏输出量,人体静息时约为70毫升(60~80毫升),如果心率每分钟平均为75次,则每分钟输出的血量约为5000毫升(4500~6000毫升),即每分心输出量。通常所称心输出量,一般都是指每分心 输出量。 作用 心输出量是评价循环系统效率高低的重要指标。为了便于在不同个体之间进行比较,一般多采用空腹和静息时每一平方米体表面积的每分心输出量即心指数为指标:一般成年人的体表面积约为1.6~1.7平方米。静息时每分心输出量为5~6升,故其心指数约为3.0~3.5升/分/平方米。 在不同生理条件下,单位体表面积的代谢率不同,故其心指数也不同。新生婴儿的静息心指数较低,约为2.5升/分/平方米。在10岁左右时,静息心指数最高,可达4升/分/平方米以上,以后随年龄增长而逐渐下降。 调节心输出量的基本因素 调节心输出量的基本因素一是心脏本身的射血能力,外周循环因素为静脉回流量。 此外,心输出量还受体液和神经因素的调节。心交感神经兴奋时,其末梢释放去甲肾上腺素,后者和心肌细胞膜上的β肾上腺素能受体结合,可使心率加快、房室传导加快、心

脏收缩力加强,从而使心输出量增加;心迷走神经兴奋时,其末梢释放乙酰胆碱,与心肌细胞膜上的M胆碱能受体结合,可导致心率减慢、房室传导减慢、心肌收缩力减弱,以致心输出量减少。 体液因素主要是某些激素和若干血管活性物质通过血液循环影响心血管活动,从而导致心输出量变化。血管紧张素Ⅱ可使静脉收缩,静脉回流增多,从而增加心输出量。此外,甲状腺素(T4和T4)可使心率加快、心缩力增强,输出量增加。在缺血缺氧、酸中毒和心力衰竭等情况时,心肌收缩力减弱,作功能力降低,因此心输出量减少。另外,某些强心药物如洋地黄,可使衰竭心脏的收缩力增强,心输出量得以增加。 心输出量在很大程度上是和全身组织细胞的新陈代谢率相适应。机体在静息时,代谢率低,心输出量少;在劳动、运动时,代谢率高,心输出量亦相应增加,以满足全身新陈代谢增强的需要。人体静息时输出量与体表面积具有正相关关系。为了便于在不同个体之间进行比较,一般多采用空腹和静息时每一平方米体表面积的每分心输出量即“心指数”为指标。 一般成年人的体表面积约为1.6~1.7平方米。静息时每分心输出量为5~6升,故其心指数约为3.0~3.5升/分/平方米。 在不同生理条件下,单位体表面积的代谢率不同,故其心指数也不同。新生婴儿的静息心指数较低,约为2.5升/分/平方米。在10岁左右时,静息心指数最高,可达4升/分/平方米以上,以后随年龄增长而逐渐下降。到80岁时其静息心指数接近于2升/分/平方米。从性别来看,由于女性的基础代谢率一般较同年龄的男性为低,所以女性的心指数一般较男性低7~10%。运动可增加心输出量,良好训练的运动员运动时心输出量可较静息时增加6倍,即可达30升/分以上。睡眠时心输出量较清醒时约降低25%。妇女经期中心输出量稍降低,经期前后略升高,排卵时又稍降低。怀孕时心输出量约增加8%,与此时代谢率的增加相一致。热水浴时心输出量也可增加50~100%。

PICCO脉搏指数连续心输出量监测

PiCCO(pulse - indicated continuous cardiac output) ,即脉搏指示连续心输出量监测是一种较新的微创血流动力学监测技术,采用热稀释法可测得单次的心排出量,并通过动脉压力波型曲线分析技术测得连续的心排出量( PCCO) [ 7 ] 。临床上使用的PiCCO 监测仪( Pulsion ,Germany) 只需置1 根特殊的动脉导管和及1 根中心静脉导管,既可进行CO、胸腔内血容量( ITBV) 及指数( ITBI) 、血管外肺水( EVLW) 及指数( ELWI) 等指标的测定,并能进行连续心排出量( PCCO) 及指数( PCCI) 、每搏量(SV) 及指数(SVI) 、IBP 等的连续测定[ 8 ] 。与Swan - Ganz 导管相比, PiCCO 具有以下优点。第一,PiCCO 无需置管到肺动脉及肺小动脉,极大的减轻了对人体的损伤,减少和避免了Swan - Ganz 导管的一系列问题和并发症,而且留置时间可延长至10d[ 8 ] ;第二,PiCCO 采用了新的监测指标。Swan - Ganz 导管通过监测PAP、PAWP 及CVP 来评价血管容量和心脏前负荷的状况,可是易受到血管壁顺应度、心内瓣膜功能、胸腔内压力等因素的影响[ 9 ] ,而且不能反映血管外肺水的量,使其准确性倍受质疑。PiCCO 引入ITBV 及EVLW 这两个 指标的测定,大量研究表明连续监测ITBV 及EVLW 能够更准确、及时的反映体内液体的变化[ 10 ] ;第三, PiCCO 整合了IBP 监测,一举两得,使用方便,减少了患者的医疗费用,而且顺应了技术医学发展的潮流;第四,PiCCO 能连续反映一些高变异度但临床价值大的指标,能捕捉瞬息变化的信息供医生参考,并提供直观、简便、安全的界面和操作要求[ 8 ] 。 4 PiCCO 的启示 从古希腊希波克拉底时代起,西方医学几乎就没有停止前进的脚步。热稀释法的提出及Swan - Ganz 导管的诞生在当时是医学界的重大进步。但随着人们对医学价值的深入思考,认识到医学发展的最根本目的是促进人、自然、社会三者价值的统一。按照这一标准来评判,就曾经出现了否定Swan - Ganz 导管临床价值的观点,认为其会增加患者的病死率[ 11 ] 。虽然其后的一些随机大规模临床研究否决了增加病死率的观点,认为Swan- Ganz 导管仍能给患者带来益处并提高生存质量[ 12 - 13 ] ,但它的医学价值仍值得怀疑,大量应用于临床依然不现实。医学技术的创新是一个缓慢推进的变革,新旧技术的交替并不是一蹴而就的过程。Swan - Ganz 导管被取代也需要时日[ 1 ] 。与Swan- Ganz 导管监测技术相比,PiCCO 因其微创性、科学性、简便性等优点正逐渐被临床所接受,见表2 。 经肺温度稀释法和PCCO的测定需要一根特殊的动脉导管。该导管通常置于股动脉或腋动脉,小儿只能置于股动脉。通过该导管,可连续监测动脉压力,同时监测仪通过分析动脉压力波型曲线下面积来获得连续的心输出量

心输出量测定

心输出量测定 1简介 心输出量cardiac output是指每分钟左心室或右心室射入主动脉或肺动脉的血量。左、右心室的输出量基本相等。心室每次搏动输出的血量称为每搏输出量,人体静息时约为70毫升(60~80毫升),如果心率每分钟平均为75次,则每分钟输出的血量约为5000毫升(4500~6000毫升),即每分心输出量。通常所称心输出量,一般都是指每分心 输出量。 2作用 心输出量是评价循环系统效率高低的重要指标。为了便于在不同个体之间进行比较,一般多采用空腹和静息时每一平方米体表面积的每分心输出量即心指数为指标:一般成年人的体表面积约为1.6~1.7平方米。静息时每分心输出量为5~6升,故其心指数约为3.0~3.5升/分/平方米。 在不同生理条件下,单位体表面积的代谢率不同,故其心指数也不同。新生婴儿的静息心指数较低,约为2.5升/分/平方米。在10岁左右时,静息心指数最高,可达4升/分/平方米以上,以后随年龄增长而逐渐下降。 3调节心输出量的基本因素 调节心输出量的基本因素一是心脏本身的射血能力,外周循环因素为静脉回流量。 此外,心输出量还受体液和神经因素的调节。心交感神经兴奋时,其末梢释放去甲肾上腺素,后者和心肌细胞膜上的β肾上腺素能受体结合,可使心率加快、房室传导加快、心

脏收缩力加强,从而使心输出量增加;心迷走神经兴奋时,其末梢释放乙酰胆碱,与心肌细胞膜上的M胆碱能受体结合,可导致心率减慢、房室传导减慢、心肌收缩力减弱,以致心输出量减少。 体液因素主要是某些激素和若干血管活性物质通过血液循环影响心血管活动,从而导致心输出量变化。血管紧张素Ⅱ可使静脉收缩,静脉回流增多,从而增加心输出量。此外,甲状腺素(T4和T4)可使心率加快、心缩力增强,输出量增加。在缺血缺氧、酸中毒和心力衰竭等情况时,心肌收缩力减弱,作功能力降低,因此心输出量减少。另外,某些强心药物如洋地黄,可使衰竭心脏的收缩力增强,心输出量得以增加。 心输出量在很大程度上是和全身组织细胞的新陈代谢率相适应。机体在静息时,代谢率低,心输出量少;在劳动、运动时,代谢率高,心输出量亦相应增加,以满足全身新陈代谢增强的需要。人体静息时输出量与体表面积具有正相关关系。为了便于在不同个体之间进行比较,一般多采用空腹和静息时每一平方米体表面积的每分心输出量即“心指数”为指标。 一般成年人的体表面积约为1.6~1.7平方米。静息时每分心输出量为5~6升,故其心指数约为3.0~3.5升/分/平方米。 在不同生理条件下,单位体表面积的代谢率不同,故其心指数也不同。新生婴儿的静息心指数较低,约为2.5升/分/平方米。在10岁左右时,静息心指数最高,可达4升/分/平方米以上,以后随年龄增长而逐渐下降。到80岁时其静息心指数接近于2升/分/平方米。从性别来看,由于女性的基础代谢率一般较同年龄的男性为低,所以女性的心指数一般较男性低7~10%。运动可增加心输出量,良好训练的运动员运动时心输出量可较静息时增加6倍,即可达30升/分以上。睡眠时心输出量较清醒时约降低25%。妇女经期中心输出量稍降低,经期前后略升高,排卵时又稍降低。怀孕时心输出量约增加8%,与此时代谢率的增加相一致。热水浴时心输出量也可增加50~100%。

PICCO监测技术经验及评分标准

P I C C O监测技术经验及 评分标准 Last revision date: 13 December 2020.

心输出量监测技术 【学习目标】 1、掌握心输出量监测技术的操作方法及步骤。 2、熟悉心输出量监测技术的注意事项。 3、了解心输出量监测技术的原理。 【知识准备】 1、心输出量:每分钟一侧心室射出的血液总量,又称每分输出量,为心率与每搏输出量 的乘积,。左、右心室的输出量基本相等。心室每次搏动输出的血量称为,人体静息时约为70毫升(60~80毫升),如果每分钟平均为75次,则每分钟输出的血量约为5L(4.5~6L/min),即每分心输出量。通常所称心输出量,一般都是指每分心输出量。心输出量是评价效率高低的重要指标。 2、PiCCO(pulseindicatedcontinuouscardiacoutput)脉波轮廓温度稀释连续心排量测量,该监测技术只需配置中心静脉及动脉导管,采用热稀释方法测量单次的心输出量(pulsecontourcardiacoutput,PCC0),并通过分析动脉压力波形曲线下面积来获得连续的 PCC0,可同时监测PCC0和容量指标,并可监测血管阻力变化。 2、PICCO工作原理:置入1根中心静脉导管和1根股动脉导管,随时监测病人血温且保持 在>30℃,0.9%氯化钠注射液或5%葡萄糖注射液10-15ml,温度一般<8℃[1]注入中心静脉后,容积和温度很快弥散至心脏及肺内,当动脉热敏探头探测到热量信号时,即可识别温度差并汇成曲线,计算机自行对该曲线进行分析得出单次心输出量,并结合PICCO导管测得的股动脉压力波形,得出一系列具有特殊意义的重要临床参数:心脏指数、动脉压、血管外肺水、肺水指数等。 【情境】 王某,男,60岁,住院号A209233,因呼吸窘迫,咳粉红色泡沫样痰,立即转入重症监护室 78%,R35次/分,立即行经口气管插管,机械通气,协助医生置入抢救治疗,HR138次/分,SPO 2 颈内静脉导管及PICCO股动脉专用导管,欲连接PICCO监测导线,行心输出量监测。 【用物】 PICCO监测装置的监护仪1套,PICCO监测导线2根(1根压力监测导线,1根温度监测导线),PICCO压力传感器1套,消毒用物,25U/ml肝素稀释盐水500ml1瓶,加压带一只,无菌纱布,胶布,三通管1支,冰生理盐水10-15ml,10ml注射器一支,护理记录单 【方法及步骤】 1.评估与准备 (1)核对治疗单及医嘱。

第3章 脉搏指数连续心输出量监测

第3章脉搏指数连续心输出量监测 自20世纪70年代以来,应用Swan-Ganz漂浮导管监测血流动力学一直是血流动力学监测的金标准,但有创技术要求高,并发症相对较多,需经专门训练的技术人员来实施。因此人们一直在寻找操作更加简单、科学可靠的监测方法。1983年,Wessellng首次提出了连续心排量监测(Pulse Index Continuous Cardiac Output,PiCCO)这一技术概念。PiCCO是目前用于监测血流动力学变化的热门技术,在危重症医学领域的应用广泛,PiCCO 技术测量参数较多,可相对全面地反映血流动力学参数与心脏舒缩功能的变化。包括:持续心输出量(Continuous Cardiac Output,CCO)、全心舒张末期容积(Global End-diastolic V olume,GEDV)、血管外肺水(Extravascular Lung Water EVLW)、胸内血容量(Intrathoracic Blood V olume,ITBV)、每搏量变异(Stroke V olume Variation,SVV),脉压变异(Pulse Pressure Variation,PPV)、全心射血分数(Global Ejection Fraction,GEF)、外周血管阻力(Peripheral Vascular Resistance,PVR)、心功能指数(Cardiac Function Index,CFI)、肺血管通透性指数(Pulmonary Vascular Permeability Index,PVPI)。尤其是ITBV及EVLW这两个指标,能够更准确及时地反映体内液体量的变化。无创血流动力学监测技术手段也取得一定进展,常规无创监测包括心率(Heart Rate,HR)、呼吸频率( Respiratory Rate,RR)、无创血压(Noninvasive Blood Pressure,NIBP)、脉搏血氧饱和度(Pulse Oxygen Saturation,SpO2)等监测指标。它们能较准确地反映人体血流动力学变化,对人体不构成新的创伤,所需费用也较便宜,易于为患者接受,进一步降低了医疗的盲目性和患者的病死率。但由于技术上的限制,无创监测与真实值之间存在较大的误差。反映即时变化的灵敏度较差,监测指标有限,且无法实现对特殊血流动力学监测。 利用经肺热稀释技术和脉搏波型轮廓分析技术,进一步的测量血液动力监测和容量管理,并使大多数病人不再需要放置肺动脉导管。该监测仪采用热稀释方法测量单次的心输出量(Cardiac Output,CO),并通过分析动脉压力波型曲线下面积来获得连续的心输出量(PCCO)。同时可计算ITBV和EVLW,ITBV已被许多学者证明是一项可重复、敏感、且比肺动脉阻塞压(Pulmonary Artery Obstruction Pressure,PAOP)、右心室舒张末期压(RVEDV)、中心静压(Central Venous Pressure,CVP)更能准确反映心脏前负荷的指标。 临床上使用的PiCCO监测仪只需置入1根特殊的动脉导管和1根中心静脉导管,即可进行动脉压力、连续CO的测定。PiCCO利用热稀释法,通过静脉导管注入冰盐水,动脉导管温度探头测定温度变化曲线,来测定单次的心输出量。通常需要测定3次心输出量求平均值来校正PCCO。由于便于操作创伤小,仅通过一条中心静脉和动脉导管就能简便,精确、连续、床边化监测血流动力学变化,同时可测出心排血量、胸内血容量和血管外肺水,为判断肺水肿程度和心脏前负荷状态提供宝贵资料,使危重症血流动力学监测与处理得到进一步提高,在临床

论述影响心输出量的因素:

论述影响心输出量的因素: 心输出量 = 搏出量 X HR (一)搏出量的调节: 1.前负荷:初长度(异长自身调节,Starling机制) 初长度由心室舒末期容积决定。一定范围内(达到最适前负荷前),心舒末期容积增大,初长度增加,收缩加强,使博出量增加;超过最适前负荷后,搏出量不变或仅轻度减少。 2.后负荷:心室肌后负荷是指大动脉血压 一定范围内血压升高,心输出量不下降,通过前负荷的异长调节机制实现;血压过高则心输出量减少。 3.心肌收缩能力:心肌收缩能力增强,搏出量增加心肌收缩能力减弱,搏出量减少。是通过改变兴奋-收缩耦联等内在因素(活化横桥数量、肌球蛋白ATP酶的活性)实现的。 (二)心率的调节 一定范围内(40-180次/分),心率↑→心输出量 心率过快>180次/分→舒张期明显变短→搏出量↓→心输出量↓ 心率过慢<40次/分→舒张期过长→因充盈量已达极限,不能在增加充盈量→心输出量↓ 论述动脉血压的影响因素 1、每搏输出量:搏出量↑→心缩期射入主动脉血量↑→心缩期中主动脉、大动脉内增加的血量↑→管壁所受压力↑→ SBP升高明显↑→脉压↑ 2、HR:HR ↑→心舒期缩短↑→心舒期流向外周的血液→心舒末存留的血液↑→ DBP ↑→脉压 3、外周阻力:外周阻力↑→心舒期血液向外周流动的速度→心舒末存留↑→ DBP ↑→脉压 4、主动脉和大动脉的弹性贮器作用: 动脉管壁硬化→贮器作用→脉压↑ 老年人大动脉管壁弹性降低→SBP↑ 伴小动脉微动脉硬化→DBP↑ 5、循环血量和血管系统容量的比例: 血量下降或血管容量增加→循环系统平均充盈压下降→动脉血压降低。 (反之亦然)

心输出量

心输出量(CO)是反映心脏功能的重要参数之一.对于存在大出血可能的手术、血管手术及伴有心室功能降低和瓣膜病变的患者,准确测定心输出量及相关的血流动力学指标有利于及时反映心血管系统状态并指导治疗.肺动脉插管监测技术在1970年引入临床后,外科医生和麻醉医生可为那些高死亡风险的患者实施外科手术和临床麻醉.肺动脉漂浮导管以热稀释法测定心输出量是临床判断心功能最准确的方法,但由于费用昂贵,操作复杂并可引起一些严重并发症,限制了它的广泛应用.多年来人们一直在探索研究无创心输出量监测方法,近年来随着计算机软件的进一步发展,生物阻抗、多普勒超声、部分二氧化碳重复吸入等无(微)创心输出量测定法再次引起人们的关注. 临床床边患者心输出量检测技术原理分析及进展(摘) 2009年07月27日星期一 09:32 P.M. https://www.wendangku.net/doc/849941128.html,/view_article.php?id=420 随着危重医学学科的发展,作为血流动力学重要指标的心输出量(CO),目前临床监测越来越多,特别是对危重患者的抢救起到重要作用。各种方式的检测技术也逐步成熟,就相关技术原理,检测方法和进展本文进行了综合分析和阐述。 1 检测方法分类和进展 1.1 分类 心输出量(CO)也称心排量,目前有多种检测方法和操作形式,从临床操作上可分为有创,无创和微创三种。从检测技术上分为热稀释法,多普勒超声学检测,核素心血池显像,胸腔阻抗法,Fick法,染色剂稀释法,部分重复呼吸法。检测方法上还可以分为直接、间接、连续和非连续测量,各种方法以下进行介绍和分析。 有创检测同样有连续和非连续监测二种,通过Swan-Ganz导管的热稀释法,Fick 法和染色剂稀释法属于有创方法;微创检测形式有经食道多普勒超声学检测和不通过Swan-Ganz导管的热稀释法;无创检测核素心血池显像,胸腔阻抗法和部分重复呼吸法。 1.2 进展 测量心输出量的动脉脉搏轮廓法最初是由Otto Frank在1899年提出。此后,建立了各种推算每次心脏搏动时射出血量的血压轮廓公式。其中测量心排量的"金标准"是根据Adolph Fick在19世纪70年代提出的理论发展起来的,Fick认为,某个器官对一种物质的摄取或释放是流经这个器官的血流量和动静脉血中这种物质的差值的乘积。尽管Fick法是“金标准”,但这种方法有很多缺陷。在测量过程中病人必须处于生理学稳定状态,而多数需要心排量测量的患者是危重病人,也就是"不稳定状态"。同时要控制吸入氧浓度,监测呼出氧浓度和动脉血采样。对严重低心排病人,Fick法较准确,但因为其技术要求高,所以临床上很少使用。 染色剂或指示剂稀释法,其理论是19世纪90年代Stewart提出,并由Hamilton 完善。该方法在高心排状态更为准确,但需要较复杂的装备,故在临床也不常用。

(整理)心输出量调研

生物医学测量与仪器 调研报告 心输出量测量新技术 调研组成员:李莉、杨富兰、万林 专业:生物医学工程 班级:电医0901 时间:2011年12月4日

心输出量测量新技术 心输出量(cardiac output, CO)是心脏每分钟射出的血量(L/min)。心输出量是衡量心功能的重要指标。 公式:CO=SV′HR SV:心脏每搏输出量 HR:心率 测量的方法有: 1、指示剂稀释法:它的测定是通过某一方式将一定量的指示剂注射到血液中,经过在血液中的扩散,测定指示剂的变化来计算心输出量的。 Fick法;染料稀释法;热稀释法 2、阻抗法 3、成像法:超声、磁共振 下面介绍三种心输出量测量新技术 一、经食道超声心输出量检测(Oesophageal Doppler) 心输出量的测量是动力学测量的一个重要参数,它可以指导药物和液体治疗。一般用肺动脉导管的热稀释法来测定。但是这种方法近来受到质疑,人们希望寻找另外一种创伤性更小的方法来测量心输出量。 心输出量(cardiac output, CO) :心脏每分钟射出的血量(L/min) CO=SV HR SV:心脏每搏输出量 HR:心率 注意事项: 常规检查前禁食6~12h,急诊检查前至少禁食4h。检查前可用镇静剂。 操作方法: (1)咽部局麻。 (2)常规检查时,患者平躺。 (3)将2%盐酸利多卡因凝胶涂于探头表面。

(4)嘱患者咬住开口器,将探头送入咽部,使探头前段呈弧形,以适应咽部与食管的弯曲。此时嘱患者做吞咽动作,顺势沿咽后壁将探头推进食管。一般探头顶端距门齿40~45cm时,说明探头顶端已达胃底。 (5)探头达胃底部即应开始记录,一般采用探头逐渐后撤、自深至浅进行检查,操作管柄旋钮微动探头,并转动相控阵装置进行0°~180°的系列连续切面探查。检查过程一般为20min 左右。 (6)检查结束,清水冲洗探头,消毒。 脉搏轮廓分析模型 医学超声在临床上应用的一个重 要方面是检测人体的血流速度和血流 流量 它们使超声诊断从形态学转向形 态血流动力学的特征分析超声血流速 度测量 的基本原理有两大类: (1) 利用超声多普勒原理; (2) 非多普勒原理的直接测量方 法

前后负荷对心输出量的影响

心输出量得影响因素 【实验目得与原理】 心输出量指一侧心室得每分输出量.它受心率、前负荷、心肌收缩能力得影响。在一定范围内前负荷与心率增加,心输出量增加;当前负荷不变时,后负荷增加,则心输出量降低。本实验得目得就是通过在体蛙心灌流,观察前、后负荷改变时对心输出量得影响. 【实验对象】 蟾蜍 【实验器材与药品】 1、仪器与材料?FCO—1蛙心输出量测定系统(长立柱、前负荷标尺0-250 mm、后负荷标尺0—450 mm、后负荷调节模块、动脉插管、10ml量筒、静脉插管、储液瓶300ml)、蛙类手术器械 2、药品任氏液 【实验方法与步骤】 一、系统组件得安装 二、营养液管路及前、后负荷得准备 将储液瓶中加入实验所需得任氏液,使液体充盈至静脉插管,排除气泡, 关闭三通;调节储液瓶高度,观察前负荷标尺刻度,当液面到达设定前负荷 时,固定储液瓶;拧松后负荷调节模块得锁紧螺钉,滑动模块至设定后负荷 刻度时锁紧螺钉,完成后负荷得调节。 三、FCO-1型蛙心输出量测定系统介绍

计量单位时间内得收集量即为蛙心输出量.前负荷标尺上液面高低表示了前负荷得大小。后负荷标尺上液面最高点与心脏之间得距离,决定了心脏收缩所需克服得静水压,它得高度代表收缩时后负荷得大小。通过改变前后负荷得高度,可测定蛙心在改变条件下得心输出量.(装置如下图所示) 四、制备心脏标本 1、用探针破坏蟾蜍得脑与脊髓,将其仰卧并固定于蛙板上,打开胸腔,暴露心脏、剪去心包膜。 2、细心剪去左右主动脉两旁得包膜,右主动脉下穿一丝线,左主动脉下穿两丝线备用。(正面观) 3、将心脏倒翻向头部,识别静脉窦、后腔静脉(下腔静脉)得解剖位置。细心剪去下腔静脉两旁得包膜,穿一丝线备用(背面观) 五、后腔静脉插管 储液瓶中加任氏液,将心脏倒翻向头部,识别静脉窦、后腔静脉(下腔静脉)得解剖位置.细心剪去后腔静脉两旁得包膜,穿一丝线(背面观),提起丝线或用眼科镊子夹住后腔静脉上壁,用眼科剪刀在后腔静脉做一小切口,随即把与储液瓶相连得静脉插管向心插入静脉(注:进行插管时为方便手术操作,可将插管从插管组件上取下进行操作,插入后再装入组件中),并结扎固定。再将插管组件得三通打开,储液瓶中任氏液即通过静脉插管灌流进入心脏(注意:储液瓶要预先装上任氏液,同时排尽整个管道得气体)。 六、主动脉插管 翻转心脏向下,分离结扎右侧主动脉。左侧主动脉远端结扎,近心端上方剪一小口,将动脉插管向心插入动脉,并结扎固定。此时可见液体从动脉插管中流出,心输出液通过主动脉插管进入后负荷管路,收集至小量筒中. 【观察项目】 1.前负荷(心室舒张末期容积)对心输出量得影响 ①调节储液瓶高度,将后负荷固定在5cm处(后负荷标尺显示),用量 筒收集1min流出得液体量。 ②缓慢抬高储液瓶,将后负荷固定在10cm处(后负荷标尺显示),用 量筒收集1min流出得液体量。

PICCO监测参数及其原理

经肺热稀释技术在循环功能监测中的应用 经肺热稀释技术(The Transpulmonary thermodilution Technique)为新近应用于临床的一项循环功能监测技术,通过一个中心静脉导管和一个带有热敏探头的动脉导管,可持续监测CO,并同时可测得心脏前负荷(容量状况)和液体治疗反应等。这项技术现由德国Pulsion公司推出的PiCCO监护系统上得以实现。应用此项技术,可计算胸内血容量(ITBV)和血管外肺水(EVLW),ITBV已被许多学者证明是一项可重复、敏感、且比肺动脉阻塞压(PAOP)、右心室舒张末期压(RVEDV)、中心静脉压(CVP)更能准确反映心脏前负荷的指标。另外,经肺热稀释技术与肺动脉漂浮导管比较,还有一个优势是前者可有效地应用于小儿CO 值测定。利用CO测定时的脉搏波形作为参考,PiCCO监护系统还可通过对每一个动脉波形下面积(pulse contour)的计算分析,测得即时的CO值,从而得以实现CO的持续测量。本文将简要综述其使用原理和临床应用情况。 一、监测项目和原理 1、经肺心输出量(CO) 经肺热稀释心输出量(CO)是计算各种血液容积的基础参数。CO一般根据Stewart-Hamilton方法测量。进行热稀释测量时,尽可能快的速度在静脉内注射已知容积的冷溶液(温度至少应比血液温度低10oC),被记录到的温度降低变化由冷指示剂流经的容积和流量决定。热稀释曲线作为结果被绘制出。PiCCO系统在动脉内(通常在股动脉内)检测冷指示剂,从而测得CO。 2、容积的测量原理 如果快速将一种指示剂注入一个流体系统,指示剂稀释曲线下面积代表单位时间内流经系统的液体,即心输出量(volume/time)。温度指示剂可透过血管壁,会受肺间质液体量(即血管外肺水)的影响。当指示剂为温度指示剂时,该容量即为胸内温度容量(ITTV),它包括胸腔内血容量(ITBV)和血管外肺水(EVLW)。ITBV包括四个腔室舒张末期容量的总和,即全心舒张末期容量(GEDV),和肺血容量(PBV)。 PiCCO测得的胸腔内血容量(ITBV)是利用GEDV估算而来。实验和临床研究都已证明GEDV 与ITBV相关良好。通过利用回归分析,已得到利用GEDV估算ITBV的回归方程。 利用估算的ITBV,一个估算的EVLW可计算出来。EVLW=ITTV-ITBV。

相关文档