文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计第八章习题解

概率论与数理统计第八章习题解

概率论与数理统计第八章习题解
概率论与数理统计第八章习题解

第八章.假设检验习题解

(习题八)

1.某种机械零件直径(m m )的方差2205.0=σ,今对一批零件抽查6件,得直径数据为:10.50,10.48,10.51,10.50,10.52,10.46.问这批零件直径的均值能否认为是10.52(α=0.05).

解:由已知,题设问题是正太总体,方差已知,均值的U -检验问题,其中原假设为:52.10:0=μH ,2205.0=σ,n =6,x =10.495,从而U 统计量值为:

22.16

/05.052.10495.10/0

?≈?=?=n x U σμ,则对96.105.0=u 有:05.0||u U <,∴接受原假设52.10:0=μH ,即可以认为这批零件直径的均值为10.52m m (α=0.05).

2.从过去资料知,某厂生产的干电池平均寿命为200h ,标准差为5h ,现改变部分生产工艺后,抽查10个样品,得数据如下:

202,209,213,198,206,210,195,208,200,207.

假定标准差不变,问新工艺下干电池平均寿命是否还是200h (α=0.01).

解:由已知,题设问题是正太总体,方差已知,均值的U -检验问题,其中原假设为:200:0=μH ,数据:5=σ,n =10,x =204.8,从而U 统计量值为:

036.310

/52008.204/0

≈?=?=n x U σμ,于是对58.201.0=u 有:01.0||u U >,∴否定原假设200:0=μH ,即新工艺下干电池平均寿命不能认为是200h (α=0.01).

3.抽查10瓶罐头食品的净重,得如下数据(单位:g ):

495,510,505,498,503,492,502,512,496,506.

问能否认为该批罐头食品的平均净重为500g (α=0.05).

解:由已知,题设问题是正太总体,方差未知,均值的T -检验问题,其中原假设为:μ:0H =500.样本数据:n =10,x =501.9,?S =6.59,从而T 统计量值为:

91.010/59.65009.501/0

≈?=?=?n S x T μ,

于是对t 分布双侧临界值262.2)9(05.0=t 有:)9(||05.0t T <,∴接受μ:0H =500,即可以认为该批罐头食品的平均净重为500g (α=0.05).

4.某厂生产的灯管,其寿命X 服从正态分布,均值为1500h ,今改用新工艺后,取25只灯管进行测试,得平均寿命为1585h ,标准差为185h ,问新工艺是否提高了产品的平均寿命(α=0.05).

解:由已知,题设问题是正太总体,方差未知,均值的T -检验问题,其中原假设为:μ:0H =1500;样本数据:n =25,x =1585,S =185,从而T 统计量值为:

25.224/1851500

15851/0

≈?=??=n S x T μ,

于是对t 分布双侧临界值064.2)24(05.0=t 有:)24(||05.0t T >,∴否定μ:0H =1500,即可认为新工艺显著提高了产品的平均寿命(显著水平为α=0.05).

5.某种电器元件的平均电阻通常为2.64?,改变生产工艺后,测得100个新元件的平均电阻为2.62?,标准差为S =0.06?,问新工艺对元件的平均电阻有无显著影响(α=0.05).

解:由已知,题设问题是总体方差未知,均值的大样本U -检验问题,其中原假设为:μ:0H =2.64,样本数据:n =100,x =2.62,S =0.06,从而U 统计

量值为:

33.3100/06.064

.262.2/0

?≈?=?=n S x U μ,

于是对正态分布临界值96.105.0=u 有:05.0||u U >,∴否定原假设64.2:0=μH ,即新工艺对元件的平均电阻有显著影响(显著水平为α=0.05).

6.设总体X ~N (μ,2σ),其中0μμ=已知,试证明当2020:σσ=H 成立时,统计量∑?2020)(1

μσi x ~)(2n χ,并由此得出检验0H 的规则.

证明:由题设条件,设1x ,2x ,…,n x 是来自总体X ~N (0μ,2σ)的简单随机样本,则样本随机变量i x ~N (0μ,2σ)(i =1,2,…,n ),∴其标准化随机变量:

σ

μ0?i x ~N (0,1)(i =1,2,…,n ).从而由2χ分布定义有:

∑∑?=?=202202)(1(μσσμχi i x x ~)(2n χ---------(★)

对2020:σσ=H 的检验:

在2020:σσ=H 成立的条件下,由(★)式,统计量:

∑?=20202)(1

μσχi x ~)(2n χ.

于是对检验水平α,及2χ分布上侧临界值)(22/1n K αχ=,)(22/12n K αχ?=有:

αχ?=<<1)(122K K P .

故当统计量值2χ2K <,或12K >χS 时,否定假设2020:σσ=H ;当统计量

值122K K <<χ时,接受假设2020:σσ=H .

7.某一指标服从正态分布,今对该指标测量8次,得数据为:

68,43,70,65,55,56,60,72.

在以下两种条件下检验0H :2σ=28(α=0.05).

(1).总体均值μ未知;(2).总体均值μ=60.

解:(1).由已知,题设问题为正太总体,均值未知,方差的2χ-检验问题,其中原假设为:0H :2σ=28,样本数据:n =8,2S =81.61,则2χ统计量值为:

2.10861.81822022

≈×==σχnS ,于是对2χ分布上侧临界值013.16)7(2025.01==χK ,69.1)7(2975.02==χK 有:

122K K <<χ,∴接受0H :2σ=28(显著水平α=0.05).

(2).总体均值μ=60时,题设问题为正太总体,均值已知,方差的2χ-检验问题,其中原假设为:0H :2σ=28,样本数据:n =8,则2χ统计量值为:

∑≈++×+++=?=36.10)1245210178(8

1)(1

222222220202μσχi x .于是对2χ分布上侧临界值535.17)8(2025.01==χK ,18.2)8(2975.02==χK 有:

122K K <<χ,∴接受0H :2σ=28(显著水平α=0.05).

8.用两种不同的热处理方法加工金属材料,测量其抗拉强度(2/cm kg )各12次,得数据如下:

31,34,29,26,32,35,38,34,30,29,32,31

26,24,28,29,30,29,32,26,31,29,32,38

假定两总体方差相等,问两总体之抗拉强度有无显著差异(α=0.05).

解:由题设,问题为二正太总体,方差未知,均值的T -检验问题,其中:原假设为:0H :21μμ=,样本数据计:12==n m ,x =31.75,y =29.5,21S =9.354,22S =12.083,从而T 统计量值为:

612.11

12083.12345.9/)5.2975.31(1/)(2221≈?+?=?+?=n S S y x T .于是对t -分布双侧临界值)22(05.0t =2.0739有:|T |<)22(05.0t ,

∴接受0H :21μμ=,即可认为两总体之抗拉强度无显著差异(显著水平α=0.05).

解法2)---用配对数据T -检验法:由已知X ,Y 样本数据得:

Y X Z ?=:5,10,1,-3,2,-6,6,8,-1,0,0,-7.

12=n ,z =1.25;?S =5.276,从而T 统计量值为:

822.012

/267.525.1/≈==?n S z T .于是对t -分布双侧临界值)11(05.0t =2.2010有:|T |<)11(05.0t ,∴接受0H :21μμ=,即可认为两总体之抗拉强度无显著差异(显著水平α=0.05).

9.比较两种安眠药的疗效,对10名患者进行跟踪,用X ,Y 分别表示服A,B 两种药后的延长睡眠时间,给定显著水平α=0.01,判断两种药的疗效有无显著差异.

解:由题设,问题是配对试验均值的T -检验问题,其中0H :21μμ=,Z =X -Y 的样本观察值为:1.2,2.4,1.3,1.3,0,1,1.8,0.8,4.6,1.4,从而n =10,z =1.58,?S =1.23,T 统计量值为:

06.410

/23.158.1/≈==?n S z T .于是对t -分布双侧临界值)9(01.0t =3.25有:|T |>)9(01.0t ,∴拒绝0H :21μμ=,

即两种药物的疗效有极显著差异(显著水平为α=0.01).

10.同一种圆筒,由两厂生产,各抽100个,检查其内径(m m ),得结果如下:甲厂:x =33.95,1S =0.1;乙厂:y =34.05,2S 0.15.判断两厂产品值有无显著差异(α=0.05).

解:由题设,问题是二正太总体,均值的大样本U -检验问题,其中原假设为:0H :21μμ=,且由已知样本数据,U 统计量值为:

U =56.5)15.01.0(100

1/)05.3495.33()(1/)(222221≈+?=+?S S n y x .于是对α=0.05的正态分布临界值05.0u =1.96,有:05.0||u U >,∴拒绝原假设0H :21μμ=,即两厂产品值有显著差异(显著水平为α=0.05).

第八章习题解答

第八章习题解答 第一节渣相的作用与形成 填空: 1. 熔渣对于焊接、合金熔炼过程的主要作用有机械保护作用、冶金处理作用和改善成形工艺性能作用。熔渣也有不利的作用,如强氧化性熔渣可以使液态金属增氧,可以侵蚀炉衬;密度大或熔点过高的熔渣易残留在金属中形成夹渣。 2. 熔渣是多种化合物构成的复杂混合物,按其成分可分为盐型、盐—氧化物型和氧化物型熔渣三类。氧化物型熔渣具有较强的氧化性,一般用于低碳钢、低合金高强钢的焊接。 3. 药皮焊条电弧焊时的熔渣来源于焊条药皮中的造渣剂。酸性焊条药皮中主要采用硅酸盐或钛酸盐作为造渣剂,药皮中含有的少量碳酸盐除了造渣的作用之外与药皮中的有机物作用相同,是用来造气。 4. 碱性焊条又称为低氢型焊条,药皮中不含具有造气功能的有机物而含大量的碳酸盐CaF2,前者在加热分解过程中形成CaO 或MgO 熔渣并放出CO2保护气体,后者除了造渣作用之外,还能减少液态金属中的氢含量。 5. 焊剂按制造方法分类可以分为熔炼焊剂与非熔炼焊剂两大类。熔炼焊剂是将一定比例的各种配料放在炉内熔炼,然后经过水冷粒化、烘干、筛选而制成的。非熔炼焊剂的组成与焊条药皮相似,按烘焙温度不同又分为粘结焊剂与烧结焊剂。 6. 钢铁熔炼熔渣的主要成分为各种金属的氧化物和少量CaF2。采用碱性炉熔炼所形成的熔渣中CaO 含量较多,而酸性炉熔炼所形成的熔渣中SiO2含量较多,两类熔炼炉对应的熔渣中FeO与MnO的含量相差不大。 7. 有色金属熔炼中熔渣主要来源于用于除气、脱氧或去夹杂而添加的熔剂,如铝合金精炼时采用多种氯化盐混合成的低熔点的熔剂。

第二节渣体结构及碱度 一、填空 1. 按照熔渣的分子理论的观点,液态熔渣是由自由状态化合物和复合状态化合物的分子所组成,而离子理论的观点认为液态熔渣是由正离子和负离子组成的电中性溶液。 2. 复合化合物就是酸性氧化物和碱性氧化物生成的盐。氧化物的复合是一个放热反应,当温度升高时渣中自由氧化物的浓度增加。 3. 熔渣的离子理论认为液态熔渣是由正离子和负离子组成的电中性溶液, 4. 离子在熔渣中的分布、聚集和相互作用取决于它的综合矩, 综合矩的计算表达式为离子电荷/离子半径。当温度升高时,离子的半径增大,综合矩减小,但它们之间的大小顺序不变。离子的综合矩越大,说明它的静电场越强,与异号离子结合的相互引力越大。 5. 熔渣的碱度定义为熔渣中的碱性氧化物与酸性氧化物浓度的比值。若比值小于1 为酸性渣,比值大于1 为碱性渣。 6. 离子理论把液态熔渣中各种氧化物所对应的自由氧离子的浓度之和定义为碱度,酸性渣与碱性渣的碱度临界值为零。 7. 一般情况下熔渣中的碱性氧化物容易生成自由氧离子,其对应的碱度系数大于零,而酸性氧化物容易捕获熔渣中的自由氧离子,生成复杂阴离子,其对应的碱度系数小于零。 二、多项选择 1. 焊接熔渣中常见的酸性氧化物包括:(a、d) a) TiO2;b) FeO ;c) MnO ;d) SiO2 2. 焊接熔渣中常见的碱性氧化物包括:(a、b、c) a) MgO ;b) ZrO ;c) CaO ;d) CaO·SiO2 3. 综合矩最大的正离子是:(c) a) Mn3+; b) Ti4+; c) Si4+; d) Fe2+

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计习题及答案

习题二 3.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 故X 的分布律为 (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 22 35 当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3) 4.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X 表示击中目标的次数.则X =0,1,2,3. 故X 的分布律为 分布函数 5.(1) 设随机变量X 的分布律为 P {X =k }=! k a k λ, 其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为 P {X =k }=a/N , k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 6.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;

(2) 甲比乙投中次数多的概率. 【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7) (1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+ 331212 33(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++ (2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ =0.243 7.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松近似 查表得N ≥9.故机场至少应配备9条跑道. 8.已知在五重伯努利试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 1 3 p = 所以 4451210(4)C ()33243 P X === . 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3) (2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3) 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间 隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32 (0)e P X -== (2) 52 (1)1(0)1e P X P X - ≥=-==- 11.设P {X =k }=k k k p p --22) 1(C , k =0,1,2 P {Y =m }=m m m p p --44) 1(C , m =0,1,2,3,4 分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=5 9 ,试求P {Y ≥1}. 【解】因为5(1)9P X ≥= ,故4(1)9 P X <=. 而 2 (1)(0)(1)P X P X p <===-

第8章 通信原理课后习题解答

8-1 已知一组码的8个码组分别为(000000)、(001110)、(010101)、(011011)、(100011)、(101101)、(110110)、(111000),求第一组和第二组、第四组和第五组的码距、各码组的码重和全部码组的最小码距。 【解】(1)第一组和第二组的码距3=d (2)第四组和第五组的码距3=d (3)各组的码重分别为:0、3、3、4、3、4、4、3; (4)全部码组的最小码距3min =d 8-2 上题的码组若用于检错、纠错、同时检错和纠错,分别能检、纠错几位码? 【解】因为最小码距3min =d 因此: 只用于检错时:211min min =-≤?+≥d e e d 能检2个错 只用于纠错时:12112min min =-≤?+≥d t t d 能纠1个错 同时用于纠错和检错时:)(1min t e t e d >++≥ 无解,说明该码不能同时用于纠错和检错。 8-3、给定两个码组(00000)、(11111)。试问检错能检几位?纠错能纠几位?既检错又纠错能检、纠几位? 【解】因为最小码距4min =d 因此: 只用于检错时:311min min =-≤?+≥d e e d 能检3个错 只用于纠错时:12112min min =∴-≤?+≥t d t t d 能纠1个错 同时用于纠错和检错时:1;2)(1min ==?>++≥t e t e t e d 说明该码用在同时纠错和检错系统中:同时检出2个错码,纠

1个错码。 8-4 已知某线性码的监督矩阵为 ????? ?????=100110101010110010111H 列出所有许用码组。 【解】[]r T I P =???? ??????=100110101010110010111H ??????????=∴110110110111T P []????????????==∴1101000101010001100101110001P I K G 信息码组为: ??????????????????????????????????????????????????=11110111 10110011110101011001 0001111001101010 00101100 010*********D

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶3 发,事件表示“击中i发”,i = 0,1,2,3。那么事件 表示( )。 ( A ) 全部击中;( B ) 至少有一发击中; ( C ) 必然击中;( D ) 击中3 发 2.设离散型随机变量x 的分布律为则常数 A 应为 ( )。 ( A ) ;( B ) ;(C) ;(D) 3.设随机变量,服从二项分布B ( n,p ),其中0 < p < 1 ,n = 1,2,…,那么,对 于任一实数x,有等于( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概 率为,则4人中至多1人需用台秤的概率为:__________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查 到次品时为止,用x表示检查次数,求的分布函数: 五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为

5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量 , 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为 7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化?( 分别 取和0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论与数理统计习题集及答案

概率论与数理统计习题 集及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《概率论与数理统计》作业集及答 案 第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是: S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是: S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则A= ;B:数点大于2,则 B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: . 2. 设}4 =x B = x ≤ ≤ x < S:则 x A x 2: 1: 3 }, { { }, = {≤< 0: 5 ≤

(1)=?B A ,(2)=AB ,(3) =B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知, 3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则 =?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随 机地抽一个签,说明两人抽“中‘的概率相同。

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

第八章 习题解答

第八章 习题解答 题 8-1 试用相位平衡条件和幅度平衡条件,判断图中各电路是否可能产生正弦波振荡,简述理由。 解:(a)不能振荡,o o A F 18090~90o ??==+-因,而,故不能满足相位平衡条件。 (b) 不能振荡,虽然电路能够满足相位平衡条件,但当o F 0?=时,13 F =&,而电压跟随器的1A =&,故不能同时满足幅度平衡条件。 (c) 不能振荡,o o o A F F 180RC 0~180180o ???==因,两节电路的,但当接近时,其输 出电压接近于零,故不能同时满足幅度平衡条件。 (d) 不能振荡,放大电路为同相接法,A 0o ?=,选频网络为三节RC 低通电路, o o F 0~270?=-,但欲达到o F 0?=,只能使频率f=0。 (e)可能振荡,差分放大电路从VT2的集电极输出时A 0o ?=,而选频网络为RC 串并联电路,当f=f0时,o F 0?=,满足相位平衡条件。

① 判断电路是否满足正弦波振荡的相位平衡条件。如不满足,修改电路接线使之满足(画在图上)。 ② 在图示参数下能否保证起振荡条件?如不能,应调节哪个参数,调到什么值? ③ 起掁以后,振荡频率f o =? ④ 如果希望提高振荡频率f o ,可以改变哪些参数,增大还是减小? ⑤ 如果要求改善输出波形,减小非线性失真,应调节哪个参数,增大还是减小? 本题意图是掌握文氏电桥RC 振荡电路的工作原理及其振荡频率和起振条件的估算方法。 解:①o o 0A F 0f f 0??===因,当时,,故满足相位平衡条件。 ②因F e 1F F e 1R 2R ,R R >2R =5.4k <Ω故不能满足起振条件,应调整,使。 ③038 11 Hz 5300Hz=5.3kHz 2231010f RC ππ-= =≈??? ④可减小R 或C 。 ⑤可减小R F 。 题 8-7 试用相位平衡条件判断图P8-7所示电路中,哪些可能产生正弦波振荡?哪些不能?简单说明理由。 解:本题的意图是掌握产生正弦振荡的相位平衡条件,并根据上述条件判断具有LC 选频网络的电路能否产生振荡。 (a) 不能振荡,o o A F 0180??==,,不满足相位平衡条件。 (b) 可能振荡,o o A F 180180??==,,满足相位平衡条件。 (c) 不能振荡,o o A F 1800??==,,不满足相位平衡条件。 (d) 可能振荡,o o A F 00??==,,满足相位平衡条件。 (e) 可能振荡,本电路实际上就是一个电容三点式振荡电路。 (f) 可能振荡,o o A F 00??==,,满足相位平衡条件。

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

哈工大概率论与数理统计课后习题答案 一

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i = , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = (4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B === 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生;

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

相关文档
相关文档 最新文档