文档库 最新最全的文档下载
当前位置:文档库 › 济南大学高等数学C(一)5定积分及其应用-疑难解答

济南大学高等数学C(一)5定积分及其应用-疑难解答

济南大学高等数学C(一)5定积分及其应用-疑难解答
济南大学高等数学C(一)5定积分及其应用-疑难解答

第六章 定积分及其应用

习题6-1 定积分的概念

下列定积分:利用定积分的定义计算.1

?2

1;

)1(-dx x

[]等分个分点,把区间中插入在闭区间解:n n 12,1.10-- ,211210=<<<<<=--n n x x x x x

.3)1(2Δn n x i =--= ).,,2,1(31n i i n

x i =+-=

[],所以因为中取右端点为在每个区间

x x f i n

x ξx x i i i i =+-==-)(.31,.210.3

)31(ΔΔ)(111∑∑∑===?+-==n

i i n i i i n i i n

i n x ξx ξf .2

)1(939393Δ)(212121+?+-=+-=+-=∑∑∑===n n n i n i n x ξf n i n

i i n

i i 即{})Δ(232)1(93lim Δ)(lim .312102

10

n i i n i n

i i λx max λn n n x ξf xdx ≤≤∞→=→-==?????

?+?+-==∑?其中?1

0.)2(dx e x

[]等分个分点,把区间中插入在闭区间解:n n 11,0.10-

,101210=<<<<<=-n n x x x x x

.1Δn x i = ).,,2,1(0n i n

i n i x i ==+=

[],所以因为中取右端点为在每个区间

x i i i i e x f n

i x ξx x ===-)(.,.210.1ΔΔ)(111∑∑∑===?==n

i n

i i n i ξi n i i n

e x e x ξ

f i

.1

)1(1)(1

Δ)(111211

--?=

++++=

-=∑n n

n

n n

n n

n

i n

i i e e e n

e e e e n

x ξf 即{})Δ(11

)

1(1lim Δ)(lim .3111101

00

n i i n n

n i n

i i λx

x max λe e e e n x ξf dx e ≤≤∞

→=→=-=--?==∑?其中,说明下列等式:

利用定积分的几何意义.2

;12110?=x xd )( ;412102

?=-πx d x )(

?-=π

πx sinxd ;)(03 ??-=20

22

.24ππ

πx cosxd x cosxd )(

角形的面积,故表示如图所示的直角三

)解:(?1

021x xd

.x xd 1212

1

21

0=??=

? ?-102

4112圆的面积,故表示如图所示)(x d x

.41411102

2?=??=-ππx d x ?-π

πx x sinxd 轴上方为正面积,的面积,其中表示如图所示阴影部分

)(3轴下方为负面积,故x ?-=π

πx sinxd .0

?-2224π

πx cosxd 倍,面积的的面积,它是第一象限表示如图所示阴影部分

)(??-=20

22

.2πππx cosxd x cosxd 故

习题6-2 定积分的性质

积分的大小:比较下列各题中的两个.2

;,11

0421021dx x I dx x I ??==)( ;,22

1422

121dx x I dx x I ??==)(

;)(ln ,ln 34

332431dx x I dx x I ??==)( ;)1ln(,41

02101dx x I dx x I ??+==)(

.)1(,51

021

01dx x I dx e I x ??+==)( ,

只有有限个成立的解:)"(",10)1(42x x x x =≥∴≤≤ ,,42是连续函数又x x .,211

04102I I dx x dx x >>??即故

是连续函数,

,又只有有限个成立的4242,)"(",21)2(x x x x x x =≤∴≤≤ .,212

142

12I I dx x dx x <

是连续函数,

,又33)(ln ,ln )(ln ln ,1ln ,43)3(x x x x x x <∴>∴≤≤ .

,)(ln ln 214

334

3I I dx x dx x <

.

,)1ln(),

10()1ln(,0)0()()(10),10(111

)(,)1ln()()4(211

01

0I I dx x dx x x x x f x f x f x x x

x f x x x f ><+∴≤<<+=<≤≤<<-+=

'-+=??即即单调递减,故时,故当则设.,1,)1(,0)5(21I I e x x x n l x x >∴<+∴<+>时

[],证明:上连续在及设)(,)()(3b a b a x g x f .< [].0)(,0)(,0)(,)1(>≡/≥?b

a dx x f x f x f

b a 则且上,若在

[][].0)(,,0)(,0)(,)2(≡=≥?x f b a dx x f x f b a b

a 上,则在且上,若在

[][]).

()(,,)()(),()(,)3(x g x f b a dx x g dx x f x g x f b a b

a b

a ≡=≤??上,在则

且上,若在

[]?≥∴≥b

a dx x f x f

b a ,

0)(,0)(,)1(上,在证明:

,假设?=b

a dx x f 0)(上,

知在由],[)2(b a ,0)(≡x f 矛盾,

这与0)(≡/x f .0)(?>∴b

a dx x f ,假设反证法0)())(2(≡/x f ,则至少存在一点

],[b a ξ∈,使得0)(≠ξf ,0)(≥x f ,0)(>∴ξf []上连续,在b a x f ,)( 的区间

包含ξ∴

,],[],[21b a c c ? ,可设0)(>x f ],[21c c x ∈

易知:

?>21

0)(c c dx x f , ,,而??≥≥1

2

0)(0)(c a

b

c dx x f dx x f ????>++=∴b

a c a c c b

c dx x f dx x f dx x f dx x f 1

2

1

2

.

0)()()()(

矛盾,这与?=b

a dx x f 0)(

[].0)(,≡∴x f b a 上,假设不成立,即在

,令)()()()3(x f x g x F -=,],[)()(b a x x g x f ∈≤ .0)(≥∴x F

,且???=-=b a b a b

a dx x f dx x g dx x F 0)()()( ,0)()2(≡x F 知由

).()(x f x g ≡即

习题6-3 微积分的基本公式

计算下列各导数:.1

;113

02dt t dx d x ?+)( ;11242

2

dt t dx d x x ?+)( ?x x dt t πdx d cos sin 2

)cos()3( ;133116222

3x x x x +=?+=)()原式解:(

??

?

???+-+=??4

2

0022112x x t dt t dt dx d )原式( ??+-+=2

4020211x x t dt dx d t dt dx d x x x x 2)(114)(112

2324?+-?+= ;12144

83x

x x x +-+= []

??-=x x dt t πdt t πdx

d cos 0sin 0

2

2)cos()cos()3(原式 ??-=x x dt t πdx

d dt t πdx d sin 0

2cos 02)cos()cos( [][]x x πx x πcos )(sin cos )sin ()(cos cos 22--= [][].cos )(sin cos sin )(cos cos 22x x πx x π--= 计算下列各积分:.2

a a

x x dx x x 023

02

|)21()3(1-=-?)(2321a a -=

8

21

|)3131()1(2213342

1

2=-=+-?x x dx x x )( 6

7|)2132()()1(30122

30

12

1

1

-=+=+=+??x x dx x x dx x x )(

???-+=π

ππ

π

dx x nxdx si dx x 2020)sin (sin 11)(4|cos |cos 20=+-=π

ππx x 6

17|31|)21()(12213102201021

2=+=+=???x x dx x xdx dx x f )( :3求下列极限.

;lim )1(0

2

x dt e x t x ?→ .sin )sin (lim )2(0320220??→x x x dt

t t dt t

;11lim )1(00

2

===→e e

x x 原式解: 3

2

02

20

3

2

02

20

sin 2lim sin sin sin 2lim )2(x

x x dt t x

x x dt t x

x x

x ??=?=??→→原式3

020

sin 2lim x

dt

t x

x ?→=

.3

2

3sin 2lim 22

==→x x x .)(0cos 500dx

dy

x y y dt t dt e .x

y

t

的导数所确定的隐函数求由方程==+??

求导,得对解:原方程左、右两边x

0cos =+x dx dy e y .1

sin cos cos -=-=∴x x e x dx dy y

.)(602

的极值求函数?-=x

t dt te x f .

2

)(x xe

x f -='解: ,

令02

=-x xe

0=x 得极值点 01)0(>=''f .f x f x 0)0()(0==∴有极小值时函数

[](),证明函数内可导且上连续,在

在设0)(,,)(.7<'x f b a b a x f ().0)(,)(1)(<'-=?x F b a dt t f a

x x F x

a

内的一阶导数在 2

)()())(()(a x dt

t f a x x f x F x

a ---=

'?证明:

)()

())(())((2

x ξa a x a x ξf a x x f ≤≤----= )

())(()()(x ηξa

x ξx ηf a x ξf x f <<--'=--=

0,0,0)(>->-<'a x ξx ηf .0)(<'∴x F

习题6-4 定积分的换元积分法

计算下列定积分:.1

;

02

121)3cos()3sin()1(33

=-=+-=+?πππ

ππx dx πx 解:

;169

21)49(81)49()49(41)49()2(1

2212

31

2

3=+-=++=+-----??x x d x x dx ;3

1cos 31cos cos cos sin )3(2032

02202=-=-=??ππ

πφφd φφd φφ

;2

)2sin 4121(22cos 1sin )cos 1()4(000202πθθθd θθd θθd θπ

πππ=-=-==-???

;23

2)2(31)2(2212)5(2

023

22202202=--=---=-??x x d x dx x x

;1)6(21

02dx x x -?

,cos ),2

0(sin tdt dx π

t t x =≤≤=令

.16

4sin 41812

141241cos cos cos 20

2022

02

20

2

20

2

πt t dt

t os4c dt t sin tdt t sin tdt t t sin π

π

πππ

=-=-===??=????)()(原式;45)7(1

1

?--x

xdx

;2

,45,452dt t

dx t x t x -=-==-则令

;6

1)53(8185)2(45133

131322=-=-=--=??t t dt t dt t t

t 原式

;1)8(4

1?+x

dx

,2,,2tdt dx t x t x ===则令

;23ln 22)1ln (2)111(2122

1

2

12

1-=+-=+-=+=??t t dt t t tdt 原式

;

2

121)]21([)(21)9(1102101

02

2

2

---=-=--=??--e e t d e dt te t

t t

;

212ln 2)ln 1(2)ln 1()ln 1(ln 1ln ln 1)10(2

1

2

12121212

1-+=+=++=+=+???-x x d x x

x

d x x dx .4

1arctan )2arctan(1)2(54)11(1

2122

1

22πx x dx x x dx ==+=++=++------?? ;3

2)31(31)sin 3sin 31

(21)cos 3(cos 212cos cos )12(22

22

22=--=

+=+=---??π

π

ππππx x dx x x xdx x .3

4)(cos 3

2

)(cos 3

2

cos cos cos cos sin cos )sin (cos sin cos )cos 1(cos cos cos )13(20

2

3

02

2

3

20

02

200

2

22

22

222

3

=-=-=?+-==-?=-------?

??

?

?

?

?πππππππππππ

πx x x

d x x d x xdx x dx x x dx

x x dx x x dx x x .22sin 2sin 2cos 2cos 2cos 2cos 22cos 1)14(2

20

2

20

00

20=-=-===+?????πππππππ

π

π

x x dx x dx x dx

x dx x dx x 列定积分:利用函数奇偶性计算下.2

;1arcsin 121

2

12

2

dx x

x ?--)()(.12sin )2(5

52432dx x x x x ?-++ 为偶函数,故)

(解:2

2

1arcsin )()1(x

x x f -=

;324arcsin 32arcsin 21arcsin 2321032

1

022102

2πx x arcsin d x dx x

x ===-=??)()()(原式.01

2sin )()2(2

43

2=++=为奇函数,故原式x x x x x f 证明下列各题:

.3

;)0(11)1(1

1

21

2??>+=+x

x x x

dx x dx ;)1()1()2(1

01

0dx x x dx x x m

n

n

m

??-=-

.cos 2cos )3(20

10010

dx x dx x π

π

??=

右边;左边令证明:=+=+=+-=-==???x

x x x dx t dt t dt t dt t dx t x 1

12

112112

2211111,

1

,1)1( 右边;

左边,则令=-=-=--=-=-==-???dx x x dt t t dt t t dt dx t x t x n

m

n

m

n

m

1

01

00

1)1()1()()1(,

,11)2(

,cos cos cos )3(2

1020

10

010

xdx xdx xdx ππππ

???+=

则令,,dt dx t πx -=-=

,cos cos )(cos cos 20

10

20

10

02

10

2

10

xdx tdt dt t xdx πππππ?

???==-= .cos 2cos cos cos 20

102010

2010

010

xdx xdx xdx xdx ππππ

????=+=故

习题6-5 定积分的分部积分法

计算下列定积分:.1

);1(4

14

121121ln 21)21(ln ln )2(2

1

2212

12121+=-=?-==???e x

e dx x x x x x xd xdx x e e e e

e

;

2sin 2)cos (cos )cos (sin )3(2020202020πx πdx x x x x xd xdx x π

π

π

π

π

-=+-=---=-=???

高数不定积分例题

不定积分例题 例1、设)(x f 的一个原函数是x e 2-,则=)(x f ( ) A 、x e 2- B 、2-x e 2- C 、4-x e 2- D 、4x e 2- 分析:因为)(x f 的一个原函数是x e 2- 所以)(x f ='=-)(2x e 2-x e 2- 答案:B 例2、已知?+=c x dx x xf sin )(,则=)(x f ( ) A 、x x sin B 、x x sin C 、x x cos D 、x x cos 分析:对?+=c x dx x xf sin )(两边求导。 得x x xf cos )(=,所以= )(x f x x cos 答案:C 例3、计算下列不定积分 1、dx x x 23)1(+ ? 2、dx x e e x x x )sin 3(2-+? 分析:利用基本积分公式积分运算性质进行积分,注意在计算时,对被积函数要进行适当的变形 解:1、dx x x 23)1 (+?dx x x x )12(3++ =? c x x x dx x dx x xdx +-+=++=? ??22321ln 22112 2、dx x e e x x x )sin 3(2-+?dx x dx e x ??+=2sin 1)3(c x e x +-+=cot 3ln 1)3( 例4、计算下列积分

1、dx x x ?-21 2、dx e e x x ?+2) 1( 分析:注意到这几个被积函数都是复合函数,对于复合函数的积分问题一般是利用凑微分法,在计算中要明确被积函数中的中间变量)(x u ?=,设法将对x 求积分转化为对)(x u ?=求积分。 解:1、dx x x ?-21c x x d x +--=---=?2221)1(1121 2、dx e e x x ?+2) 1(c e e d e x x x ++-=++=?11)1()1(12 例5、计算?+xdx x sin )1( 分析:注意到这些积分都不能用换元积分法,所以要考虑分部积分,对于分部积分法适用的函数及u ,v '的选择可以参照下列步骤①凑微分,从被积函数中选择恰当的部分作为dx v ',即dv dx v =',使积分变为?udv ;②代公式,?udv ?-=vdu uv ,计算出dx u du '=;③计算积分?vdu 解:?+xdx x sin )1(???--=+=x x xd xdx xdx x cos cos sin sin ?+-+-=---=c x x x x x xdx x x cos sin cos cos )cos cos (

高等数学定积分应用

第六章 定积分的应用 本章将应用第五章学过的定积分理论来分析和解决一些几何、物理中的问题,其目的不仅在于建立这些几何、物理的公式,而且更重要的还在于介绍运用元素法将一个量表达为定积分的分析方法。 一、教学目标与基本要求: 使学生掌握定积分计算基本技巧;使学生用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题; 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等) 二、本章各节教学内容及学时分配: 第一节 定积分的元素法 1课时 第二节 定积分在几何学上的应用 3课时 第三节 定积分在物理学上的应用 2课时 三、本章教学内容的重点难点: 找出未知量的元素(微元)的方法。用元素法建立这些几何、物理的公式解决实际问题。运用元素法将一个量表达为定积分的分析方法 6.1定积分的微小元素法 一、内容要点 1、复习曲边梯形的面积计算方法,定积分的定义 面积A ?∑=?==→b a n i i i dx x f x f )()(lim 1 ξλ 面积元素dA =dx x f )( 2、计算面积的元素法步骤: (1)画出图形; (2)将这个图形分割成n 个部分,这n 个部分的近似于矩形或者扇形; (3)计算出面积元素; (4)在面积元素前面添加积分号,确定上、下限。 二、教学要求与注意点 掌握用元素法解决一个实际问题所需要的条件。用元素法解决一个实际问题的步骤。 三、作业35 6.2定积分在几何中的应用

一、内容要点 1、在直角坐标系下计算平面图形的面积 方法一 面积元素dA =dx x x )]()([12??-,面积 A = x x x b a d )]()([12??-? 第一步:在D 边界方程中解出y 的两个表达式)(1x y ?=,)(2x y ?=. 第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ?)(2x ?=解出, b x a ≤≤,)()(21x y x ??≤≤,面积S =x x x b a d )]()([12??-? 方法二 面积元素dA =dy y y )]()([12??-,面积 A = y y y d c d )]()([12??-? 第一步:在D 边界方程中解出x 的两个表达式)(1y x ?=,)(2y x ?=. 第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ?)(2y ?=解出, d y c ≤≤,)()(21y x y ??≤≤,面积S =y y y d c d )]()([12??-? 例1 求22-=x y ,12+=x y 围成的面积 解?????+=-=1 222x y x y ,1222+=-x x ,1-=x ,3=x 。当31<<-x 时1222+<-x x ,于是 面积?--=+-=--+=3 1 313223 210)331 ()]2()12[(x x x dx x x 例2 计算4,22-==x y x y 围成的面积 解 由25.0y x =,4+=y x 得,4,2=-=y y ,当42<<-y 时 45.02+

济南大学2013——2014高等数学(二)A试卷

济南大学2013~2014学年第二学期课程考试试卷(A 卷) 课 程 高等数学A (二) 考试时间 2014 年 6 月 24 日 ………………注:请将答案全部答在答题纸上,直接答在试卷上无效。……………… 一、填空题(每小题2分,共10分) (1) 微分方程044=+'-''y y y 的通解为 . (2) 极限=+-→22)1,0(),(1lim y x xy y x . (3) 设二元函数)sin(y x z +=,则=z d . (4) 幂级数∑∞ =+131n n n x n 的收敛半径为 . (5) 设函数)(x f 是以π2为周期的周期函数,在区间),[ππ-上的表达式为x x f =)(,则)(x f 的傅里叶级数在π=x 处收敛于 . 二、选择题(每小题2分,共10分) (1) 极限=→x xy y x )sin(lim )2,0(),( (A) 0. (B) 1. (C) 2. (D) 不存在. (2) 二元函数),(y x f 在点),(00y x 处的全微分存在是它在该点两个一阶偏导数都存在的 (A) 充分条件. (B) 必要条件. (C) 充分必要条件. (D) 既非充分也非必要条件. (3) 若),(y x f z =在),(00y x 处取得极大值,令),()(0y x f y g =. 则 (A) )(y g 在0y 取得最大值. (B) )(y g 在0y 取得极大值. (C) 0y 是)(y g 的驻点. (D) 以上都不对. (4) 下列级数中,绝对收敛的是 (A) ∑∞=+--111)1(n n n n . (B) ∑∞=-1)1(n n n . (C) ∑∞=-12)1(n n n . (D) ∑∞ =-1)1(n n n . (5) 微分方程x e y y y -=-'-''42的特解形式应设为 (A) x e Ax -2. (B) x e Ax -+)4(2. (C) x Axe -. (D) x Ae -. 三、计算题(每小题8分,共40分) (1) 设2 23cos xy y x z -=,求x z ??,y z ??,22x z ??和y x z ???2.

济南大学大一上学期高等数学试题

高等数学(上)模拟试卷一 一、 填空题(每空3分,共42分) 1 、函数lg(1)y x = -的定义域是 ; 2、设函数20() 0x x f x a x x ?<=?+≥?在点0x =连续,则a = ; 3、曲线45y x =-在(-1,-4)处的切线方程是 ; 4、已知3()f x dx x C =+? ,则()f x = ;5、21lim(1)x x x →∞-= ; 6、函数32()1f x x x =-+的极大点是 ; 7、设()(1)(2)2006)f x x x x x =---……(,则(1)f '= ; 8、曲线x y xe =的拐点是 ;9、201x dx -?= ; 10、设32,a i j k b i j k λ=+-=-+r r r r r r r r ,且a b ⊥r r ,则λ= ; 11、2 lim()01x x ax b x →∞--=+,则a = ,b = ; 12、311lim x x x -→= ;13、设 ()f x 可微,则()()f x d e = 。 二、 计算下列各题(每题5分,共20分) 1、011lim()ln(1)x x x →-+2 、y =y '; 3、设函数()y y x =由方程xy e x y =+所确定,求0x dy =; 4、已知cos sin cos x t y t t t =??=-?,求dy dx 。 三、 求解下列各题(每题5分,共20分) 1、421x dx x +? 2、2sec x xdx ?3 、40?4 、2201dx a x + 四、 求解下列各题(共18分): 1、求证:当0x >时,2 ln(1)2x x x +>- (本题8分) 2、求由,,0x y e y e x ===所围成的图形的面积,并求该图形绕x 轴旋

完整word版,高等数学考研辅导练习题不定积分定积分及常微分方程

《高等数学》考研辅导练习4 不定积分 1. 求()x f x e -=在R 上的一个原函数。 2. 已知2 2 2 (sin )cos tan f x x x '=+,求()01f x x <<。 3. 设 2 ()f x dx x C =+?,则2(1)xf x dx -=? 。 4. 计算 3。 5。 计算。 6. 计算 71 (2) dx x x +?。 7。 计算。 8. 计算 21 13sin dx x +?。 9。 计算172 2 1sin cos dx x x ? 。 10. 计算 () 2 2 sin cos x dx x x x +?。 11. 计算 ()()2 ln ()ln ()()()()f x f x f x f x f x dx ''''++?。 12. 设()arcsin xf x dx x C =+? ,则 1 () dx f x =? 。 13. 设2 2 2(1)ln 2 x f x x -=-,且(())ln f x x ?=,求()x dx ??。 14. 计算arctan 23/2(1)x xe dx x +?。 15. 计算x 。 16. 计算 1sin 22sin dx x x +?。 17. 计算ln t tdt α ? 。 18. 计算()ln n x dx ?。 《高等数学》考研辅导练习5 定积分 1.设02 ()2 l kx x f x l c x l ? ≤≤??=??<≤??,求0 ()()x x f t dt Φ=?。 2. 设1 ()2()f x x f x dx =+? ,则()f x = 。 3. 计算 {}2 23 min 2,x dx -? 。 4. 已知()f x 连续,且满足()()1f x f x -=,则 2 2cos 1()x dx f x π π-+?= 。

(完整版)定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数 dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ))(2 122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、3 23xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 23xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π ? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==?若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、1 2 二、填空 (2小题,共5分) 得分 阅卷人

高等数学不定积分例题思路和答案超全

高等数学不定积分例题思路和答案超全 内容概要 课后习题全解 习题4-1 :求下列不定积分1.知识点:。直接积分法的练习——求不定积分的基本方法思路分析:!利用不定积分的运算性质和基本积分公式,直接求出不定积分(1)★思路: 被积函数,由积分表中的公式(2)可解。 解: (2)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (3)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。:解. (4)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (5)思路:观察到后,根据不定积分的线性性质,将被积函数分项,分别积分。

解: (6)★★思路:注意到,根据不定积分的线性性质,将被积函数分项,分别积分。 解: 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。(7)★思路:分项积分。 解: (8)★思路:分项积分。 解: (9)★★思路:?看到,直接积分。 解: (10)★★思路: 裂项分项积分。解: (11)★解: (12)★★思路:初中数学中有同底数幂的乘法:指数不变,底数相乘。显然。 解: (13)★★思路:应用三角恒等式“”。 解: (14)★★思路:被积函数,积分没困难。 解: (15)★★思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。 解: (16)★★思路:应用弦函数的升降幂公式,先升幂再积分。 解: () 17★思路:不难,关键知道“”。 :解. ()18★思路:同上题方法,应用“”,分项积分。 解: ()19★★思路:注意到被积函数,应用公式(5)即可。 解: ()20★★思路:注意到被积函数,则积分易得。 解: 、设,求。2★知识点:。考查不定积分(原函数)与被积函数的关系思路分析::。即可1直接利用不定积分的性质解::等式两边对求导数得 、,。求的原函数全体设的导函数为3★知识点:。仍为考查不定积分(原函数)与被积函数的关系思路分析:。连续两次求不定积分即可解:,由题意可知:。所以的原函数全体为、证明函数和都是的原函数4★知识点:。考查原函数(不定积分)与被积函数的关系思路分析:。只需验证即可解:,而、,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。一曲线通过点5★知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。 思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。 解:设曲线方程为,由题意可知:,; 又点在曲线上,适合方程,有, 所以曲线的方程为 、,:问6一物体由静止开始运动,经秒后的速度是★★(1)在秒后物体离开出发点的距离是多少?

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

高等数学微积分复习题

第五章 一元函数积分学 1.基本要求 (1)理解原函数与不定积分的概念,熟记基本积分公式,掌握不定积分的基本性质。 (2)掌握两种积分换元法,特别是第一类换元积分法(凑微分法)。 (3)掌握分部积分法,理解常微分方程的概念,会解可分离变量的微分方程,牢记非齐次 线性微分方程的通解公式。 (4)理解定积分的概念和几何意义,掌握定积分的基本性质。 (5)会用微积分基本公式求解定积分。 (6)掌握定积分的凑微分法和分部积分法。 (7)知道广义积分的概念,并会求简单的广义积分。 (8)掌握定积分在几何及物理上的应用。特别是几何应用。 2.本章重点难点分析 (1) 本章重点:不定积分和定积分的概念及其计算;变上限积分求导公式和牛顿—莱布 尼茨公式;定积分的应用。 (2) 本章难点:求不定积分,定积分的应用。 重点难点分析:一元函数积分学是微积分学的一个重要组成部分,不定积分可看成是微分运算的逆运算,熟记基本积分公式,和不定积分的性质是求不定积分的关键,而定积分则源于曲边图形的面积计算等实际问题,理解定积分的概念并了解其几何意义是应用定积分的基础。 3.本章典型例题分析 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写

高等数学 第七章 定积分的应用

第七章定积分的应用 一、本章提要 1.基本概念 微元法,面积微元,体积微元,弧微元,功微元,转动惯量微元,总量函数. 2.基本公式 平面曲线弧微元分式. 3.基本方法 (1)用定积分的微元法求平面图形的面积, (2)求平行截面面积已知的立体的体积, (3)求曲线的弧长, (4)求变力所作的功, (5)求液体的侧压力, (6)求转动惯量, (7)求连续函数f(x)在[]b a,区间上的平均值, (8)求平面薄片的质心,也称重心. 二、要点解析 问题1什么样的量可以考虑用定积分求解?应用微元法解决这些问题的具体步骤如何? 解析具有可加性的几何量或物理量可以考虑用定分求解,即所求量Q必须满足条件:(1)Q与变量x和x的变化区间[]b a,以及定义在该区间上某一函数f(x)有关;(2)Q在[]b a, 上具有可加性,微元法是“从分割取近似,求和取极限”的定积分基本思想方法中概括出来的,具体步骤如下: (1)选变量定区间:根据实际问题的具体情况先作草图,然后选取适当的坐标系及适当的变量(如x),并确定积分变量的变化区间[]b a,; (2)取近似找微分:在[]b x d ,+,当x d很小时运用“以 x a,内任取一代表性区间[]x 直代曲,以不变代变”的辩证思想,获取微元表达式d=()d Q f x x≈Q ?为量Q在小 ?(Q 区间[]x ,+上所分布的部分量的近似值); x x d

(3)对微元进行积分得 =d ()d b b a a Q Q f x x = ?? . 下面举例说明. 例1 用定积分求半径为R 的圆的面积. 解一 选取如图所示的坐标系,取x 为积分变量,其变化区间为[]R R ,-,分割区间 []R R ,-成若干个小区间,其代表性小区间[]x x x d ,+所对应的面积微元 x x R x x R x R A d 2d ))((d 222222-=----=, 于是 ? ? ---== R R R R x x R A A d 2d 2 2=2 πR . 解二 选取如图所示的坐标系, 取θ 为积分变量,其变化区间为[]π2,0.分割区间[]π2,0成若干个小区间,其代表性小区 间[]θθθd ,+所对应的面积微元θd 2 1d 2 R A = ,于是 2 2π20 2 π20 ππ22 1d 2 1d R R R A A =?= = = ? ? θ. 解三 选取r 为积分变量, 其变化区间为[]R ,0,如图,分割[]R ,0成若干个小区间,

定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ) )(2122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、 3 2 3xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 2 3xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==?若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、 1 2

《高等数学》不定积分课后习题详解Word版

不定积分内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解:53 22 2 3 x dx x C -- ==-+ ? ★ (2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:114 111 333 222 3 ()2 4 dx x x dx x dx x dx x x C -- -=-=-=-+ ???? ★(3)2 2x x dx + ?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:223 21 22 ln23 x x x x dx dx x dx x C +=+=++ ??? ( ) ★(4)3) x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 2222 2 3)32 5 x dx x dx x dx x x C -=-=-+ ??

★★(5)4223311 x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?? ???34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x -=-=-+++?? ★★(9) 思路=11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。

大一第一学期总结范本(3篇)

大一第一学期总结范本(3篇) 1: 光阴似箭,转眼间,我的大学生活的八分之一以匆匆过了。大学,多么美好的一个字眼,它是那些曾经在高考战线上努力奋战的少年们的梦啊!它也曾是我的梦。幸运的是,它已由梦变成了现实了。那一天,本着对大学的美好憧憬,我步入了大学,成了一名大学生,开始了我新的大学生活。一学期下来,是既有得又有失的。 在上大学以前,不断憧憬着大学校园里各种各样的社团以及丰富多彩的活动。当我长了大学生队伍里的一份子,我才发现原来每一个社团的运作都是同学们洒下的汗水的结晶,每一次活动的进行都是同学们用精力换来的成果。大一上学期,我认真思考了究竟应该参加什么样的社团,从而不仅能从中获得快乐,更重要的是在参与中学得只是,让自己更快地成长起来。在认真的考虑之下,我选择参加了理学院的记者团以及济南大学学工在线这两个社团。加入了理学院记者团的文编部和学工在线的编辑部。期间,这两个社团一次次地举办的多项活动都使我受益匪浅。记者团里,我参加了以感恩励志为主题的作文比赛、摄影比赛、梦想征集活动比赛、记者模拟秀比赛,并且在各个比赛中都获得了奖项。记者团里的任务我也尽自己的能力去完成。在记者团中,我

感触最深的是同学与同学之间的热情与友谊。在学工在线社团里,我也参加了一次征文比赛与一次元旦晚会。在参加了这两个社团之后,我深切地体会到,在社团的选择上自然要根据自己的兴趣,有兴趣才会投入,进入以后要能够积极主动,主要是培养自己的协调能力,社交的能力,与学习是会发生矛盾的,如果是喜欢社团的工作,则需要放弃一些课余的生活时间,要比别人花费更多的时间在自己的学习和工作上!在大学里自己有很多的想法是可以去尝试的,写个剧本,拍个话剧、电影什么的,都可以尝试,只要你能找到一批志同道合的朋友,大学生活只要自己认真对待生活的每一分每一秒,会给你留下美好的回忆的! 大学的学习虽然任务不重,但绝对不轻松。大学的文化学习当然很重要了,我感触最深的是在大学,你一定要掌握好方法。什么东西该学,什么不该学;该学多少,怎么学;哪个重要要多学,哪个不是很重要要浅尝辄止;要广泛涉猎,又要对某一项精益求精。当你能明白而且很快的实施以上的话时,你的大学就没有白念。说到底,大学教你的是学习的能力,和处事的方法,与人为善,又能迅速的进入你并不熟悉的领域,你就成功了。这是一种分辨的能力,不是学它是否有用。会分辨并会运用,你就真学到东西了。大一上学期所开的力学、高等数学 、线性代数及空间解析几何这三门课程,是我们理学院

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积 分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134( -+-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12) 3x x e dx ?

高等数学定积分的应用

授课单元12教案

教学内容 课题1用定积分求平面图形的面积 一、微元法 在本章第1节定积分概念的两个实例(曲边梯形的面积和变速直线运动的路程)中,我们是先把所求整体量进行分割,然后在局部范围内“以不变代变”,求出整体量在局部范围内的f (?)?x 的形式;再把这些近似值加起来,得到整体量的近似值;最近似值,即表成乘积 iinb ??????x ?ff ?xdx ?lim (即整体量) 后,当分割无限加密时取和式的极限得定积分. iia 0??1i ? 事实上,对于求几何上和物理上的许多非均匀分布的整体量都可以用这种方法计算.但在实 ??b ,aQ 的定积分的方法简化成下面的上的某个量际应用时,为了方便,一般把计算在区间 : 两步: x [a ,b ] ,求出积分区间确定积分变量1) ([x ,x ?dx ]]a ,b [ ,并在该小区间上找出所求量Q ) 在区间上,任取一小区间的微分元(2素 dQf (x )dx =b Q 的定积分表达式(3) 写出所求量?dxxQ ?)f (a 用以上两步来解决实际问题的方 法称为元素法或微元法.下面我们就用元素法来讨论定积分在几何、物理和经济学中的一些应用. 二、在直角坐标系下求平面图形的面积 b ? f (?x )dxA oxba ,x ?x ?)(xy ?f 1、 .由 轴所围成图形面积公式 及,a

d????(y?)dyA y dy,x??(y),y?c1及、轴所围成图形面积公式c3xy?2x??1,x?例求曲线轴所 ???xxdxs???dx解 围成的图形面积及x与直线172033 40?1??????????xxxy?yyx?yy?yx?a,x?b(a?b)所围2、和由两条连续曲线与直线 ?dxyy?xx?A)的面积成平面图形(如图112a 2211b??????

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分 内容概要 课后习题全解 习题4-1

1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C --=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+??? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 1 1x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★(9) 思路=?11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+?? ★★(10) 221(1)dx x x +? 思路:裂项分项积分。

高等数学定积分复习题

1. 求 dx e x ?-2ln 01。5.解:设t e x =-1,即)1ln(2+=t x ,有dt t t dx 122+= 当0=x 时,0=t ;当2ln =x 时,1=t 。 dt t dt t t dx e x )111(21211021 0222ln 0???+-=+=- 22)1arctan 1(2)arctan (210π- =-=-=x t . 2. 求由两条曲线2x y =与2y x =围成的平面区域的面积。 .解:两条曲线的交点是)0,0(与)1,1(,则此区域的面积 31)3132()(1 0323210=-=-=?x x dx x x S 3. 求反常积分 ?+∞-+222x x dx 。 解:dx x x x x dx x x dx b b b b )2111(lim 3 12lim 222222+--=-+=-+???+∞→+∞→+∞ 4ln 3 1)4ln 21(ln lim 31)21ln(lim 312=++-=+-=+∞→+∞→b b x x b b b 5、 4. 设???≤<≤≤-+=20,02,13)(32x x x x x f ,求?-22)(dx x f 解:原式=??-+0 22 0)()(dx x f dx x f ---------5分 =14 ----------5分 6. 求由曲线32,2+==x y x y 所围成的区域绕x 轴旋转而得的旋转体体积。 解:两曲线交点为(-1,1)(3,9)-------2分 面积?--+=3122)32(dx x x S π ---------5分 =17 256 7. 计算定积分2 2π π -? 8. 设()f x 在区间[,]a b 上连续,且()1b a f x dx =?,求() b a f a b x dx +-?。 答案:解:令u a b x =+-,则当x a =时,u b =;当x b =时,u a =,且d x d u =-, 故 ()b a f a b x dx +-?=()a b f u du -? =()1b a f x dx =?。

高等数学第四章不定积分课后习题详解

第4章不定积分 内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析: 利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解: 53 2 2 2 3 x dx x C -- ==-+ ? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - -=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:315 3 2 2 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质, 将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +? 思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将

相关文档
相关文档 最新文档