文档库 最新最全的文档下载
当前位置:文档库 › 燃气轮机故障分析及维护措施

燃气轮机故障分析及维护措施

燃气轮机故障分析及维护措施
燃气轮机故障分析及维护措施

龙源期刊网 https://www.wendangku.net/doc/8b11893309.html,

燃气轮机故障分析及维护措施

作者:崔明旭

来源:《装饰装修天地》2020年第10期

摘; ; 要:伴随着我国经济的的飞速提升,社会生产生活对于电力的需求也越来越多,而我国的电力生产主要方式就是火力发电。而伴随着人们对于环境问题的重视,使用清洁能源,优化电力资源生产结构逐渐受到人们的关注。因此,引进燃气轮机设备到电力生产中去,是减少占地面积、解决生产成本、保护环境的重要措施。但就我国的技术水平来讲,不仅不足以设计与制造良好的燃气轮机,更是在设备的检修上还存在相当多的问题。

关键词:发电厂;燃气轮机;运行与检修

1; 前言

良好的运行状况和优良严谨的维修作风,对延长燃气轮机寿命以及减少停机时间和减少检查间隔都有着重要的作用。燃气轮机在实际运行中有很多因素如燃料、滑油、启动循环以及我们的维修思想和外部环境都直接影响着燃气轮机、重要部件或附件的寿命。我们在掌握了燃气轮机的结构原理的同时,还必须清楚这些因素的影响,以利于制定合理的运行方式和维修计划,最大限度的延长燃气轮机的寿命,最大限度的减少运行维修费用和停机时间。

2; 燃气轮机应用研究现状

与国际对燃气轮机的故障分析相比,我国起步较晚。随着当前科学技术的不断改进以及国内航空航天事业的不断发展,国家现已投人大量的技术在研发方面,并已取得了显著成就。燃气轮机主要工作原理便是提供扇叶旋转的动力,将外界连续流动的气体经过轴流压缩机的高强度压缩,将压缩后的气体经过燃烧室与燃料混合后,推动外负荷转子做功。整体而言,我国燃气轮机的状态的监测和故障诊断方面还存在着较多问题,一些可靠的专家系统还没有得到真正的应用。因此,在我国,燃油轮机状态监测与故障诊断技术的研究还有很大的空间,值得相关技术人员的研究。

3; 汽轮机常见问题分析

3.1; 轴承损坏

轴承损环主要包括三种,推力轴承损坏、气流轴承出现激振和轴承振动。如果推力轴承出现损坏现象,那么轴向通常情况下就会发生移动,随之而至的就是推力瓦的乌金温度升高,严重的时候推力瓦块会甚至会出现冒烟或者局部及全部熔化的情况。然后就是气流轴承出现激振,这个问题的出现一般都是由于汽轮在机运行的时候蒸汽的密度大、压力高所导致的,因为

燃气轮机运行典型故障分析及其处理

燃气轮机运行故障及典型事故的处理 1 燃气轮机事故的概念及处理原则 111 事故概念 燃气轮机事故指直接威胁到机组安全运行或设备发生损坏的各种异常状态。凡正常运行工况遭到破坏,机组被迫降低出力或停运等严重故障,甚至造成设备损坏、人身伤害的统称为事故。造成设备事故的原因是多方面的,有设计制造方面的原因,也有安装检修、运行维护甚至人为方面的原因。 112 故障、事故的处理原则 当燃气轮机运行过程中发生异常或故障时,处理时应掌握以下原 则:(1) 根据异常和故障的设备反映出来的现象及参数进行综合分析和判断,迅速确定故障原因,必要时立即解列机组,防止故障蔓延、扩大。(2) 在事故处理中,必须首先消除危及人身安全及设备损坏的危险因素,充分评估事故可能的对人身安全和设备损害的后果,及时、果断的进行处理。(3) 在处理事故时牢固树立保设备的观念。要认识到如果设备严重损坏以至长期不能投入运行对电力系统造成的影响更大。所以在紧急情况下应果断的按照规程进行处理,必要时停机检查。 (4) 在事故发生后,运行各岗人员要服从值班长的统一指挥,各施其责,加强联系和配合,尽可能将事故控制在最小的损坏程度。(5) 当设备故障原因无法判断时,应及时汇报寻求技术支持,并按最严重的后果估计予以处理。(6) 事故处理后,应如实将事故发生的地点、时 间及事故前设备运行状态、参数和事故处理过程进行详细记录和总

结。 2 燃气轮机的运行故障、典型事故及处理 211 燃机在启动过程“热挂” “热挂”现象:当燃机启动点火后,在升速过程中透平排气温度升高达到温控线时燃机由速度控制转入温度控制,这抑制了燃油量的增加速率而影响燃机升速,延长燃机启动时间,严重时燃机一直维持在温控状态使燃机无法升速,处于“热挂”状态。随后燃机转速下降致使启动失败,只能停机检查。 “热挂”的原因及处理办法有: (1) 启动系统的问题。①启动柴油机出力不足;②液力变扭器故障。液力变扭器主要由一个离心泵叶轮、一个透平轮和一个带有固定叶片的导向角组成。在启动过程中通过液体将启动柴油机的力矩传送给燃机主轴。液力变扭器的故障可通过比较柴油机加速时燃机0 转速到14HM 的启动时间来判断;③启动离合器主从动爪形状变化,使燃机还没超过自持转速,爪式离合器就提前脱离(柴油机进入冷机后停机) ,这时燃机升速很慢。而燃油参考值是以0105 %FRS/ S 的速度上升的,由于燃机升速慢而喷油量增速率不变使燃油相对过量,使排气温度T4 升高而进入温控,导致燃机的启动失败。(2) 压气机进气滤网堵塞、压气机流道脏,压缩效率下降。进气滤网堵塞会引起空气量不足;压气机流道脏会使压气机性能下降。必须定期更换进气滤网并对压气机进行清洗,及时更换堵塞的滤网和清除压气机流道上的积垢及油污。(3) 燃机控制系统故障。当燃油系统或控制系统异常时,有可能引起燃油

燃气轮机控制系统概况

燃气轮机控制系统—SPEEDTRONIC Mark V 摘要:本文介绍了燃气轮机及其控制系统的发展历程,以及燃气轮机控制系统—SPEEDTRONIC Mark V的工作原理及主要功能,并列举了几个燃气轮机控制系统的例子。 关键词:燃气轮机;控制系统 SPEEDTRONIC Mark V Gas Turbine Control System Abstract: This paper introduce the development history of gas turbines and their control system, and the functional principle and main features of gas turbine control systems, accompanied by some exemplifying system. Keywords: Gas Turbine; control system 1.燃气轮机控制系统的发展 燃气轮机开始成为工矿企业和公用事业的原动机组始于40年代后期,其最初被用作管道天然气输送及电网调峰。早期的控制系统采纳了液压机械式气轮机调速器,并辅以气动温控,启机燃料限制稳定及手动程控等功能。其余诸如超速、超温、着火、熄火、无润滑油及振动超标等保护均由独立的装置来实现。 随着控制技术的飞快发展,燃气轮机控制系统出现了以燃料调节器为代表的液压机械操动机构,以及用于启、停机自动控制的继电器自动程序控制。继电器自动程序控制,结合简单的报警监视亦可和SCADA(监控与数据采集)系统接口,用于连续遥控运行。这便是于1966年美国GE公司推出的第一台燃机电子控制系统的雏形。该套系

燃气轮机EOH解读

燃气轮机等效运行小时计算分析 【摘要】:燃气轮机制造商都有一个预先制定好的维修计划,以便获得最佳的设备可用率和最经济的维修成本,计算燃气轮机的等效运行小时(EOH )就是为了判燃气轮机机在何时应该进行维修。本文对三菱重工、西门子、GE 三大燃气轮机制造商的燃气轮机等效运行小时的计算公式进行了分析,以便充分了解他们的维修计划。 【关键词】:燃气轮机 等效运行小时 EOH 1 前言 从2003年开始,我国新开工建设了一大批F 级的重型燃气-蒸汽联合循环电站,主要作为调峰机组。热力机械疲劳是影响调峰机组寿命的主要因素,蠕变、氧化和腐蚀是影响连续运行机组寿命的主要因素。F 级重型燃气轮机的初温已达1300~1400℃之间,燃气轮机高温部件(热通道部件)的工作条件越来越恶劣。为了保证燃气轮机运行可靠性,就必须定期地检查、检修或更换这些热通道部件。燃气轮机的高温部件是指暴露在从燃烧系统排出的高温气体中的部件,包括燃烧室、火焰筒、过渡段、喷嘴、联焰管和透平动、静叶等。 燃气轮机的高温部件必须要有一个预先制定好的合理的检查维修计划,可以减少电站非计划故障停机,提高机组起动可靠性。高温部件的检查维修计划根据计算机组的等效运行小时EOH (Equivalent Operating Hours )来制定。在国家标准GB/T 14099.9 《燃气轮机 采购》第9部分 (等效国际标准 ISO 3977-9:1999)中,对EOH 的计算公式做出了规定。但三大燃气轮机制造商(GE 、西门子、三菱重工)在各自的运行经验基础上,都规定了各自的EOH 计算公式,制定了相应的高温部件检修计划。 2 国家(国际)标准EOH 计算 在国家标准GB/T 14099 《燃气轮机 采购》第9部分中,对EOH 的计算公式做出了规定,见公式(1),公式中考虑了各种运行过程影响机组寿命的加权系数。 )(22111 2211t b t b f t n a n a T n i i eq ++++=∑=ω (1) 其中:

燃气轮机故障类型及原因

燃气轮机故障监测及诊断 1. 国内燃气轮机主要类型 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。 燃气轮机分为: (1)轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。 (2)重型燃气轮机为工业型燃气轮机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 燃气轮机有不同的分类方法,一般情况如图1-1所示。 图1-1

2. 燃气轮机故障类型 1.燃机在启动过程中“热挂” 2.压气机喘振 3.机组运行振动大 4.点火失败 5.燃烧故障 6.启动不成功 7.燃机大轴弯曲 8.燃机轴瓦烧坏 9.燃机严重超速 10.燃机通流部分损坏 11.润滑油温度高 12.燃机排气温差大 3. 燃气轮机故障原因 “热挂”的原因: (1)启动系统的问题。启动柴油机出力不足;液力变扭器故障等。 (2)压气机进气滤网堵塞、压气机流道脏,压缩效率下降。 (3)燃机控制系统故障。 (4)燃油雾化不良。 (5)透平出力不足。 产生压气机喘振的原因: 压气机喘振主要发生在启动和停机过程中。引起喘振的原因主要有:机组在启动过程升速慢,压气机偏离设计工况;机组启动时防喘放气阀不在打开状态;停机过程防喘放气阀没有打开。 机组运行振动大的原因: 引起燃气轮机运行振动的原因较多,对机组安全运行构成威胁,因此应高度重视。下面列举部分引起机组振动的情况: (1)机组启动过程过临界转速时振动略微升高,属正常现象,但在临界转速后振动会下降。按正常程序启动燃气轮机时,机组会快速越过临界转速,如果由于升速慢引起振动偏高,应检查处理升速较慢的原因。 (2)启动过程中由于压气机喘振引起的振动偏高,喘振时压气机内部发

大型天然气燃气轮机机型选择

大型天然气燃气轮机机型选择 1.E级燃机与F级燃机的比较 由于E级燃气轮机的燃气初温(1105℃)较低,自身效率要比F级燃气轮机低4个百分点。E级燃气轮机的排气温度仅540℃,蒸汽循环不能再热,只能采用双压循环;而F 级燃气轮机排烟温度高达576℃,蒸汽循环可采用高参数的三压再热循环。因而E级联合循环的效率要比F级低6个百分点。 SIEMENS公司E级和F级机组技术性能比较表 燃机型号V94.2 V94.3A 燃气初温(℃)一级动叶进口1105 一级动叶进口1320 燃机效率(%)34.4 38.7 排气温度(℃)540 576 蒸汽系统双压无再热三压有再热 联合循环效率(%)51.7 57.4 另外由于E级机组容量较小,需要2+1(两台燃机带一台汽机)组成的联合循环,容量才能达到1台F级机组的容量。因而设备增多(2台燃机、1台汽机、3台发电机、3台主变压器、3条电气出线、3套润滑油系统、3套辅机)、系统复杂(汽水系统需要母管制)、厂房和占地较大。E级联合循环机组单位容量的投资比F级联合循环机组的大。 经过多方面的技术和经济比较,我们得出结论:在天然气价格逐年增高的趋势下,建设大型联合循环电厂,不宜选用E级燃气轮机作为基本机型,而大功率、高效率的F级燃气轮机才是联合循环电厂的首选机型。 在中国,2005年以来,与西气东输及LNG(液化天然气)输入工程相配套,我们共

建设了48套F级联合循环机组。 2.F级燃机及联合循环的性能 通过“以市场换技术”,中国已形成了哈尔滨动力集团-GE公司(美国通用电器)、上海电气集团-SIEMENS公司(西门子)、和东方电气集团-三菱公司(MITSUBISHI)三家大型燃气轮机制造集团。每个厂家栏目下左侧的产品是在中国已生产投运的产品,每个厂家栏目下右侧的产品为改进型产品。 表1 F级燃气轮机的技术性能 公司哈动力-GE 上海电气-SIEMENS 东方电气-三菱 燃机型号9FA 9FB V94.3A SGT5-40 00F(2) V94.3A SGT5-40 00F(4) M701F3 M701F4 净功率(MW)256 282.3 271 287 270 312 净热耗 (Kj/Kwh) 9757 9620 9302 9424 净效率(%)36.9 37.4 38.9 39.5 38.2 39.3 压气机级数18 18 15 15 17 17 压比15.4 18.5 16.9 16.9 17 18 燃烧室型式环管型环管型环形环形分管环状分管环状 燃烧器型式/数量DLN2.0+ /18 DLN2.6+ 混合型 DLN/24 混合型 DLN/24 干式低 NOx 干式低 NOx

通用9FA燃气轮机配套二氧化碳来火系统工作原理介绍

CO2灭火系统介绍 CO2火灾保护系统用于燃气轮机组发生火宅时向发生火宅的舱室自动喷入CO2,通过将舱室空气中的氧气含量从标准大气的21%降低到起燃水平(一般为 15%)以下的方法进行灭火。为了降低氧气含量,在一分钟之内把相当于或大于隔间容积 34%的大量二氧化碳排放到隔间中;同时考虑到暴露于高温金属下易燃物的潜在复燃性,需长时期的连续排放以维持灭火浓度,使潜在的复燃条件减少到最小。 灭火系统采用两个独立分配系统:初始排放系统和连续排放系统。在启动后的几秒种之内,充分的二氧化碳从初始排放系统流向燃气轮机隔间以迅速达到灭火浓度(标准为 34%)。然后二氧化碳浓度(通常为 30%)由延续排放系统所逐渐放出的更多补充二氧化碳进行维持,以补偿隔间的泄漏。初始排放系统和延续排放系统的二氧化碳流量,由各个隔间中排放喷嘴的孔板尺寸所控制。初始排放系统的孔板比较大,可以快速排放二氧化碳以迅速获得上述灭火浓度。延续排放系统的孔板比较小,采用相对较慢的排放率得以在整个延长时段内。 燃气轮机机组具有三个防火区域,每个区域由初始排放系统和延续排放系统所成。这个三区域防火系统允许每个区域可各自独立运作,即区域 1 的火灾不会启动区域2区域 3 的二氧化碳排放,区域 2 的火灾不会启动区域 1 或区域 3 的二氧化碳排放,而区域3火灾也不会启动区域 1 或区域 2 的二氧化碳排放。这种区域防护/检测功能通过采用分离热感应火灾探测器 A 和 B 回路而获得。每个火灾探测器连接到防火系统的控制面板上,区域中的 A 探测器和 B 探测器必须同时断开时才能排放二氧化碳(A、B探测器应为A组、B组,每组两个探头,两组中均有探头动作判断为火灾启动)。在相应隔间的外部及内合理布置了脉冲信号、鸣叫声和二氧化碳报警信号,用以向人们发出二氧化碳排放警告。预排放定时器通常设定为30 秒,以便人们从隔间中撤离。 我厂三个区分别为: CO2灭火装置包括下列设备: 1、CO2储罐:CO2储罐上配有压缩机(88RC-1A)、压力开关(63CT-1)、 压力表、液位显示器、安全阀、CO2喷放控制用气隔离阀。

燃气轮机控制系统概况模板

燃气轮机控制系统 概况 燃气轮机控制系统—SPEEDTRONIC Mark V 摘要:本文介绍了燃气轮机及其控制系统的发展历程,以及燃气轮 机控制系统—SPEEDTRONIC Mark V 的工作原理及主要功能,并列举了几个燃气轮机控制系统的例子。 关键词:燃气轮机;控制系统 SPEEDTRONIC Mark V Gas Turbine Control System Abstract: This paper introduce the development history of gas turbines and their control system, and the functional principle and main features of gas turbine control systems, accompanied by some exemplifying

system. Keywords: Gas Turbine; control system 1. 燃气轮机控制系统的发展燃气轮机开始成为工矿企业和公用事业的原 动机组始于40 年代后期,其最初被用作管道天然气输送及电网调峰。早期的控制系统采纳了液压机械式气轮机调速器,并辅以气动温控,启机燃料限制稳定及手动程控等功能。其余诸如超速、超温、着火、熄火、无润滑油及振动超标等保护均由独立的装置来实现。 随着控制技术的飞快发展, 燃气轮机控制系统出现了以燃料调节器为代表的液压机械操动机构,以及用于启、停机自动控制的继电器自动程序控制。继电器自动程序控制,结合简单的报警监视亦 可和SCADA(监控与数据采集)系统接口,用于连续遥控运行。这便是于1966 年美国GE 公司推出的第一台燃机电子控制系统的雏形。该套系统, 也就是后来被定名为SPEEDTRONIC MARK I 的控制系统,以电子装置取代了早期的燃料调节器。 MARK I 系统采用固态系列元件模拟式控制系统, 大约50 块印刷电路板, 继电器型顺序控制和输出逻辑。 MARK II 在1973 年开始使用。其改进主要是采用了固态逻辑系统, 改进了启动热过渡过程, 对应用的环境温度要求放宽了。 在MARK II 的基础上, 对温度测量系统的补偿、剔除、计算等进行改型, 在70 年代后期生产出MARK II +ITS, 即增加了一套集成温度系统。对排气温度的控制能力得以加强, 主要是对损坏的排气热电偶

国内外燃气轮机发电技术的进展与前景

国内外燃气轮机发电技术的进展与前景 1前言 随着社会生产力水平的不断提高和经济的迅速增长,对于能源的需求也在快速增长。目前,世界火电站汽轮机长期占统治地位的局面已开始动摇,“大型电站以联合机组为主,中、小型机组以热电并供居多”已是许多工业发达国家电站发展的主要格局。燃气轮机具有极强的适配性,能够作为多种发电模式,以成为当今世界发电的主要形式之一,由于该装置,特别是联合循环发电装置具有效率高、机动性好,不仅可以作为电网的调峰机组,且更多地用于电网的基本负荷发电,又能满足日益严格的环保要求,其地位将得到巩固和加强。 我国自改革开放以来,随着电力工业的迅猛发展和电网峰谷差的日趋增大,燃气轮机发电得到重视和发展。近几年已相继兴建了一批具有80年代国际先进水平的机组,在缓解电力紧缺的同时,有效地发挥了其增强电网调峰能力的作用。跨入21世纪,随着科技发展、能源政策的调整,如何高效、洁净利用化石能源已成为电力领 域的突出问题。燃气—蒸汽联合循环发电越来越受到国家有关方面的重视,必将得到进一步的快速发展。 2 国际燃气轮机发电技术

燃气轮机是从20世纪50年代开始逐渐登上发电工业舞台的,由于当时机组的单机容量小、热效率低而在电力系统中只能作为紧急备用电源和调峰机组。60年代加深了对电网中必须配备一定数量的燃气轮发电机组的认识,从安全和调峰的目的出发,燃气轮发电机组在电网中的比例达到8%~12%。从80年代以后由于燃气轮机的功率和热效率均得到很大程度的提高,特别是燃气—蒸汽联合循环机型成熟,再加上世界范围内天然气资源进一步开发,燃气轮机及其联合循环在世界电力系统中的地位发生了明显变化,它们不仅仅可以用作紧急备用电源和调峰负荷机组,还能带基本负荷和中间负荷。美国在1990~2000年期间新增长的发电容量为1.13亿kW,其中燃气轮机电站和蒸汽轮机电站的容量分别为44%,第一次出现了朗肯循环和布莱顿循环平分秋色的局面,在德国前者则占2/3左右,由此可见在世界范围内燃气轮机及其联合循环已成为火电发展的主要方向。 近几年来,世界燃气轮机工业取得相当的成就和飞速的发展,几家著名的公司GE、ABB、Siemens、西屋等均与航空发动机设计、研究、制造厂彼此联营,保证及时地把航空发动机领域内的先进技术用来武装重型燃气轮机,以确保技术的先进性。如压气机已采用“可控扩压”的概念进行设计,把单轴压气机的压缩比提高到了24~30的水平,透平叶片采用了航空机组的先进冷却结构和定向结晶制造工艺,使透平前的燃气温度提高到了1300℃的水平,由此明显地提高了机组的输出功率和热效率。如GE公司的9FA、Siemens的V94.3A等典型机组的燃机单循环功率为266MW,燃气初温为1270~1300℃,压缩比为16,

索拉燃气轮机

燃气轮机发电案例介绍-天然气应用 1 案例背景 燃气轮机热电(冷)联产系统可同时提供电能和热(冷)能,相比传统能源解决方式,系统效率高,简单可靠,应用灵活,节能环保,且受国家政策鼓励,可广泛应用于各种场合,为用户降低能耗并改善当地环境,以下是以天然气为燃料,应用于工业用户的典型案例介绍。 1.1 现场条件(以上海为例) 海拔高度5m 设计大气温度14℃ 设计大气压力101.3Kpa 设计大气相对湿度60% 1.2 燃料 以天然气为燃料 燃气热值:8400 KCal/Nm3 燃气压力:0.3Mpa(假设) 1.3 热电负荷及运行时数 最大蒸汽流量:29t/hr 蒸汽压力: 1.0 Mpa 蒸汽温度:185℃ 年供热时间:7000小时 年运行小时数:7000小时 2 方案 燃气轮机热电联产系统一般根据以热定电的原则进行设计和设备选择,该项目选用1台索拉公司大力神130(TITAN 130)燃气轮机,配1台余热锅炉,两台燃气压缩机(1用1备),整个系统可布置在简易厂房内,总占地面积约3200平方米。 2.1 燃气轮机 每台大力神130机组在项目现场主要参数如下: 铭牌功率:15000KW 发电机出力:14556 KW 燃烧空气进口温度:14℃ 燃机工况点:满负荷运行 燃料流量:4339Nm3/hr 涡轮排气温度:500 ℃ 尾气流量:177882 Kg/hr

2.2 余热锅炉 每台余热锅炉在项目现场主要参数如下: 蒸汽温度:185.5℃ 蒸汽压力: 1.03 Mpa 蒸汽流量:29245 kg/hr 2.4 系统总容量及实际出力 总装机铭牌功率:15000 KW 现场实际净输出功率:14556 KW 总蒸汽流量:29245 Kg/hr 总燃气消耗量: 4339 Nm3/hr 3 索拉中国业绩 索拉公司进入中国已经超过30年,在国内已经有超过260台机组,其中金牛60机组超过70台,大力神130超过70台。在项目执行过程中和国内的许多设计院建立了良好的合作关系,他们也对索拉机组有充分的了解,可以非常快速地和可靠地完成设计任务。 此外,上海力顺燃机科技有限公司作为索拉在中国工业发电行业的代理,已在国内完成了多个燃气轮机热电联产项目,可以为项目的规划、建设提供技术服务。 在国内已经建设成功、投入使用的索拉燃气轮机天然气热电联产项目有:浦东国际机场能源中心热电联产项目和成都国际会展中心热电联产项目,其中浦东机场项目运行已经超过十年,目前运行情况良好。 ●浦东国际机场能源中心(1×4000KW)1999年建成并投入使用。 ●成都国际会展中心(1×10690KW,1×5670KW)分别于2005年11月 和2009年4月建成并投入使用。 此外,针对中低热值燃气应用,索拉燃气轮机热电联产项目清单: 1)山东金能煤气化有限公司一期项目(1×5670KW 热电联产),2006 年4 月 投产,目前运行情况良好。 2)内蒙古太西煤集团乌斯太项目(2×5670KW 热电联产),2008 年10 月投产, 目前运行情况良好。 3)山东金能煤气化有限公司二期项目(3×5670KW 联合循环),2008 年4 月 投产,目前运行情况良好。 4)河南顺成集团煤焦有限公司一、二项目(2×15000KW 热电联产),分别于

燃气轮机的技术发展趋势

燃气轮机的技术发展趋势

燃气轮机的技术发展趋势 近年来,燃气轮机的技术发展非常迅速,性能日益完善,大型燃气轮机联合循环电厂的功率等级已与汽轮机电厂相当,发电效率普遍超过了50%,最高已达58%,远远超过汽轮机电厂的效率,加之还有初始投资省、占地面积少、耗水少、环境污染少、运行维护方便等优点,使燃气轮机联合循环电厂在世界范围内获得了迅速的推广应用,因而,各主要燃气轮机制造厂都已成套供应燃气一蒸汽联合循环发电机组,安装和使用都很方便。据统计,目前全世界新增发电设备中,燃气轮机及联合循环发电机组约占40%,已与汽轮发电机组平分秋色,而美、日等发达国家,燃气轮机已经超过了汽轮机。据美国电力研究所的专题报告预测,美国1993一2001年内新增发电设备的2/3将是燃气轮机发电机组,到2015年,世界新增发电设备中燃气轮发电机组约占63%。美好的应用前景进一步刺激了燃气轮机的研究和发展,下面将对近期的研究和发展情况分别进行介绍。 由于工业化国家对环境保护的要求越来越严格,促使燃气轮机制造厂将较多的精力放在努力减少排气污染方面,其经费已占燃气轮机研究经费的最大份朽。燃气轮机一般燃用天然气或蒸馏油等清洁燃料,其含硫和含尘量极低,因而,排气中烟尘和502含量极低。所以燃气轮机考虑的排气污染物主要有未燃烧的碳氢化合物(UHC)、一氧化碳(CO)和氮氧化物(NOx)3种,由于燃烧技术的成熟和燃烧室结构的完善,目前先进燃气轮机的燃烧效率几近100%,排气中的UHC和CO极其微少,可以满足工业化国家严格的环保要求。但是,由于燃气轮机燃烧室中的火焰温度比较高,在高温下产生了一定数量的NO、,一般可达200又10一6左右,超过了许多工业化国家的环保规定。因此,减少燃气轮机排气污染的努力,近年来主要是集中在减少NO二产生方面。向燃烧室的燃烧区按照一定比例注入水或蒸汽,可以降低最高燃烧温度,有效地抑制Ox的产生量,这是目前一种比较成熟而能有效减少燃气轮机NO、排放的方法,已获得了较广泛的应用。一般注水与燃料之比约为0.95左右。在燃气轮机的排气通道应用选择催化还原S(CR)技术,即布置催化床并注入氨气,使NOx还原成NZ和水蒸气,这也可有效地减少NOx的排放。但上述两种方法成本比较高,而且对环境又会造成另外的有害影响,如氨气泄漏等,所以,目前的研究重点已转向干式低NO、(DLN)燃烧室的研制,即不向燃烧室中注入水或蒸汽,而通过优化燃烧室结构和合理组织燃烧来减少NOx的产生。目前,GE、西屋、ABB、西门子、索拉等主要燃气轮机制造厂都已研制成各自的DLN燃烧室,具体措施大致有以下几种: 1预混稀相燃烧(或称预混贫燃料燃烧) 该方法通过燃料与空气预先混合成稀相,再组织燃烧,使燃烧更为完全,而且可降低燃烧室内的最高燃烧温度。例如,在大多数范围内,可使火焰温度低于1400’C。因而有效地抑制了NO二的产生量。该方法的缺点是运行范围比较窄,低工况时容易熄火。目前,大多数DLN燃烧室都是应用这种方法,但都采取了一些稳定燃烧的措施,如应用值班喷嘴、控制燃料的分配等。例如,爱利松公司的501型燃气轮机采用预混锥使燃料与空气产生稀相预混,再配合旋流器、值班喷嘴和空气掺混系统来控制燃料/空气比和火焰分布,实现了低NOx排放,同时在低负荷时无熄火和不稳定现象。索拉公司1993年以后应用该方法,使其燃气轮机在50%一100%负荷范围内NOx产生量少于42x10一6。西门子公司应用该技术,使其燃气轮机的NOx排放量低达9火10一6CO排放量少于5火106,而成本仅增加不到10%。GE公司应用该技术,计划要使NOx排放量降低至9又10一6。EGT公司在其

燃气轮机原理与结构解析

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

国内外燃气轮机发电技术的进展与前景

国内外燃气轮机发电技术 的进展与前景 Ting Bao was revised on January 6, 20021

国内外燃气轮机发电技术的进展与前景 阎保康 浙江省电力试验研究所杭州310014 1前言 随着社会生产力水平的不断提高和经济的迅速增长,对于能源的需求也在快速增长。目前,世界火电站汽轮机长期占统治地位的局面已开始动摇,“大型电站以联合机组为主,中、小型机组以热电并供居多”已是许多工业发达国家电站发展的主要格局。燃气轮机具有极强的适配性,能够作为多种发电模式,以成为当今世界发电的主要形式之一,由于该装置,特别是联合循环发电装置具有效率高、机动性好,不仅可以作为电网的调峰机组,且更多地用于电网的基本负荷发电,又能满足日益严格的环保要求,其地位将得到巩固和加强。 我国自改革开放以来,随着电力工业的迅猛发展和电网峰谷差的日趋增大,燃气轮机发电得到重视和发展。近几年已相继兴建了一批具有80年代国际先进水平的机组,在缓解电力紧缺的同时,有效地发挥了其增强电网调峰能力的作用。跨入21世纪,随着科技发展、能源政策的调整,如何高效、洁净利用化石能源已成为电力领 域的突出问题。燃气—蒸汽联合循环发电越来越受到国家有关方面的重视,必将得到进一步的快速发展。 2 国际燃气轮机发电技术 燃气轮机是从20世纪50年代开始逐渐登上发电工业舞台的,由于当时机组的单机容量小、热效率低而在电力系统中只能作为紧急备用电源和调峰机组。60年代加深了对电网中必须配备一定数量的燃气轮发电机组的认识,从安全和调峰的目的出发,燃气轮发电机组在电网中的比例达到8%~12%。从80年代以后由于燃气轮机的功率和热效率均得到很大程度的提高,特别是燃气—蒸汽联合循环机型成熟,再加上世界范围内天然气资源进一步开发,燃气轮机及其联合循环在世界电力系统中的地位发生了明显变化,它们不仅仅可以用作紧急备用电源和调峰负荷机组,还能带基本负荷和中间负荷。美国在1990~2000年期间新增长的发电容量为1.13亿kW,其中燃气轮机电站和蒸汽轮机电站的容量分别为44%,第一次出现了朗肯循环和布莱顿循环平分秋色的局面,在德国前者则占2/3左右,由此可见在世界范围内燃气轮机及其联合循环已成为火电发展的主要方向。近几年来,世界燃气轮机工业取得相当的成就和飞速的发展,几家

燃气轮机故障诊断毕业论文(含程序)

舰用燃气轮机某关键部件故障诊断方法研究 系别信息工程系 专业测控技术与仪器 班级 学号 姓名 指导教师崔建国 负责教师崔建国 2015年6月

摘要 燃气轮机的关键部件之一滚动轴承是机械设备运行过程中产生最易产生故障的零件,它运行的正常与否直接影响到整台机器的性能。防止故障升级,发生灾难性事故。所以对滚动轴承故障诊断技术进行探讨和学习就具有十分重要的意义。 本文主要以燃气轮机的滚动轴承为研究对象,利用测量的轴承振动信号参数来进行故障诊断,利用神经网络技术对某一动态的模拟原理,应用到对滚动轴承故障诊断的具体方面,设计并构建了基于BP神经网络和自适应模糊神经网络(Adaptive Network Fuzzy Inference System)的滚动轴承故障诊断系统,在MATLAB软件里对构造的训练样本进行训练,利用训练完成后的神经网络我们就可以对滚动状态故障进行诊断。 关键词:滚动轴承;BP神经网络;模糊神经网络

Abstract Rolling bearing is one of the most ordinary parts in mechanical machine, its running state can influence the performance of the whole machine directly, the aircraft stabilizer health status need to be monitored in real time to ensure the aircraft fly safety. so it is important to study the technology of fault diagnosis for rolling bearing. On the basis of analyzing the fault mechanism and vibration signal characteristics of rolling bearing systematically, and after analyzing and processing the vibration signals of right and fault state of rolling bearing, partial appropriate feature parameters are selected as the input of the neural network according to the time and frequency domain characteristics of parameters in this thesis. and the fault diagnosis system for rolling bearing based on BP neural network is built up. Finally,and fuzzy artificial neural network diagnosis technique the training set of right and fault states of rolling bearing is built up by using the measuring data of rolling bearing from former research, the neural network model is trained on the platform of Matlab software.the operating state of rolling bearing has been diagnosed by using the above network which has been trained well. Keywords: rolling bearing; BP neural network; fuzzy artificial neural network

大型天然气联合循环电厂燃气轮机选择探讨

大型天然气联合循环电厂燃气轮机选择探讨 发表时间:2018-01-10T10:17:36.613Z 来源:《电力设备》2017年第27期作者:黄杨[导读] 摘要:电能是我们生产生活的必备能源,目前我国发电主要以火力发电为主,虽然潮汐能、风能、太阳能等清洁能源已逐步应用到发电中,但这些能源极不稳定,产出的电能质量差,因此尚未得到普及。(中国电建集团湖北工程有限公司工程建设公司湖北武汉 430081)摘要:电能是我们生产生活的必备能源,目前我国发电主要以火力发电为主,虽然潮汐能、风能、太阳能等清洁能源已逐步应用到发电中,但这些能源极不稳定,产出的电能质量差,因此尚未得到普及。而天然气发电解决了这些问题,目前我国东部地区打算建造一批大型天然气联合循环电厂以缓解西电东输的压力,本文就大型天然气联合循环电厂燃气轮机的选择做出了探讨。 关键词:天然气;燃气机轮;机组选择燃气轮机直接影响电厂的热效率,决定电厂建成后的效益,因此,选择合适的燃气轮机至关重要。为降低大型天然气联合循环电厂的成本,本文调查了通用电气公司、西门子公司、阿尔斯通公司和日本三菱公司的燃气轮机组,将四家公司F型燃气轮机的技术性能及结构特性做了对比,以供电厂选择参考。 一、四大燃气机轮公司 1.1 通用电气公司通用电气公司是最早的几家燃气轮机制造商之一,目前已发展为行业之首,亚洲百分之五十的燃气轮机都来自通用电气公司。该公司的首批燃气轮机于上世纪七十年代末研发成功,该机组是七十五兆瓦、六十赫兹的7E型燃气机组。仅两年后,该公司又研发出了一百零五兆瓦、五十赫兹的9E型机组,为世界燃气轮机的研究发展奠定了基石。八十年代末,通用电气成功将E型机组发展成为F机组,也是目前发展最为成熟的燃气轮机组。 1.2 西门子公司德国西门子公司是世界电子电气工程领域的领先企业,一九九零年西门子公司开发了旗下首批燃气轮机组。四年后,启动了一百七十兆瓦、六十赫兹的V84.3A机组,并在随后的几年内以该机组为基础研发了二百六十五兆瓦、五十赫兹的V94.3A机组和同样为五十赫兹的六十七兆瓦V64.3A小型燃气轮机组。西门子公司虽不像通用电气公司专注于燃汽轮机,但该公司的燃汽轮机的热效率相对更高,是我国大型天然气联合循环电厂燃汽轮机的不错选择。 1.3 阿尔斯通公司阿尔斯通公司于一八八五年收购了ABB公司的汽轮机部门,次年研发出了一百六十兆瓦的GT13E燃气轮机组,这是当时世界上热效率最高的燃汽轮机组,热效率高达百分之三十五。随后在一九九六年推出的GT24和GT26燃汽轮机组,分别为六十赫兹、一百八十三兆瓦和五十赫兹、二百六十五兆瓦,热效率分别高达百分之三十八点五和三十八点三,依然为当时世界之最,阿尔斯通公司的燃气轮机组一直以热效率著称。 1.4 日本三菱公司日本三菱公司与美国西屋公司在二十世纪八十年代合作生产燃气轮机,并于一九九六年结束合作独自进行燃气轮机的开发。三菱公司发展最完善的燃气机组是701F机组,该机组是一款五十赫兹的大型燃气机组,由于其性能好、热效率高等特点得到世界广泛认可,至今仍被沿用。二、四家公司F型燃气轮机的技术性能我国大型天然气联合循环电厂燃气轮机的选择可以在这四家公司所产的燃气轮机中进行选择,经过从经济、热效率、性能、结构等角度的筛选后,以下四个型号的机组比较出众。他们分别是:PG8248FA、V96.3A、GT26以及701F,这四台机组无论从经济型还是实用性上都能满足我国大型天然气联合循环电厂的需求。下面我们从技术性能角度阐述一下选择这四台机组的原因,首先这四台机组均为五十赫兹三百九十兆瓦以上,在容量上满足我国大型天然气联合循环电厂的需要。其次,它们的水循环系统相对完善,一个电厂的效率除了热效率以外还要结合蒸汽循环的效率,这四台机组的排气温度都可达到五百八十四摄氏度,有效提高了蒸汽循环的效率,从而使整个联合循环的效率高达百分之五十八点三。综上所述,我国大型天然气联合循环电厂燃气轮机应从上述四种机组中选择,除了良好的性能外,这四种机组都已发展超过十年,经过多年运行的检测,这四台机组的安全性都能得到良好保证。 三、四家公司F型燃气轮机的结构特性 3.1 压气机的级数和压比经调查得知,PG8248FA、V96.3A、GT26以及701F的空压机级数分别为:18、15、22、17;压比分别为:15.4、16.9、30、17。从数据上看,阿尔斯通公司的GT26具有最高的空压机级数和压比,稳定性最高。 3.2 透平的级数和效率这四家燃气机组的透平级数分别为:3、4、5、4;燃气轮机效率分别为:百分之三十六点九、百分之三十八点七、百分之三十八点五、百分之三十八点二;燃气轮机结构分别是:简单、介于简单复杂之间、复杂、介于简单复杂之间。从数据上看,这四台机组的燃气轮机效率除通用电气公司只有百分之三十六点九之外其他三家公司都在百分之三十八左右,相差不大。但通用电气公司的机组结构简单,安装方便经济性比较好。 3.3压气机和透平转子整体结构的链接方式通用电气燃气轮机的转子链接方式为外围拉杆螺栓压紧,盘鼓间的摩擦力传扭,这种传扭方式的优点是拉杆可以承受精确的压缩预警力,但是对加工水平和装配能力要求很高。四门子的传扭方式为中心拉杆和端面齿传扭,这种传扭方式可靠性高,热对中性好。缺点是结构轻,加工成本高。阿尔斯通的GT26采用焊接转子,传扭可靠,不易出故障,但是比较笨重。三菱燃气机组压气机和透平转子整体结构的链接方式为除了外围拉杆螺栓,压气机增加径向销钉,透平层增加端面齿。优点是可靠性高,热对中性好。缺点是结构复杂,加工要求高。 四、结语

燃气轮机简介.

我国工业燃气轮机的现状与前景 一、世界工业燃气轮机的发展趋势 1、世界工业燃气轮机的发展途径与现状 自1939年瑞士BBC公司制成世界上第一台工业燃气轮机以来,经过60多年的发展,燃气轮机已在发电、管线动力、舰船动力、坦克和机车动力等领域获得了广泛应用。 由于结构上的分野,工业燃气轮机分为重型燃气轮机和轻型燃气轮机(包括航机改型燃气轮机)。 80年代以后,燃气轮机及其联合循环技术日臻成熟。由于其热效率高、污染低、工程总投资低、建设周期短、占地和用水量少、启停灵活、自动化程度高等优点,逐步成为继汽轮机后的主要动力装置。为此,美国、欧洲、日本等国政府制定了扶持燃气轮机产业的政策和发展计划,投入大量研究资金,使燃气轮机技术得到了更快的发展。80年代末到90年代中期,重型燃气轮机普遍采用了航空发动机的先进技术,发展了一批大功率高效率的燃气轮机,既具有重型燃气轮机的单轴结构、寿命长等特点,又具有航机的高燃气初温、高压比、高效率的特点,透平进口温度达1300℃以上,简单循环发电效率达36%~38%,单机功率达200MW以上。 90年代后期,大型燃气轮机开始应用蒸汽冷却技术,使燃气初温和循环效率进一步提高,单机功率进一步增大。透平进口温度达1400℃以上,简单循环发电效率达37%~39.5%,单机功率达300MW以上。 这些大功率高效率的燃气轮机,主要用来组成高效率的燃气-蒸汽联合循环发电机组,由一台燃气轮机组成的联合循环最大功率等级接近500MW,供电效率已达55%~58%,最高60%,远高于超临界汽轮发电机组的效率(约40%~45%)。而且,其初始投资、占地面积和耗水量等都比同功率等级的汽轮机电厂少得多,已经成为烧天然气和石油制品的电厂的主要选择方案。由于世界天然气供应充足,价格低廉,所以,最近几年世界上新增加的发电机组中,燃气轮机及其联合循环机组在美国和西欧已占大多数,亚洲平均也已达36%,世界市场上已出现了燃气轮机供不应求的局面。 目前,美、英、俄等国的水面舰艇已基本上实现了燃气轮机化,现代化的坦克应用燃气轮机为动力,输气输油管线增压和海上采油平台动力也普遍应用了轻型燃气轮机。先进的轻型燃气轮机简单循环热效率达41.6%。采用间冷—回热循 36

燃气轮机设备检修工高级(DOC)

2011年职业技能鉴定操作技能考核项目燃气轮机设备检修工 高 级

中国石油大庆职业技能鉴定中心

燃气轮机设备检修工高级试题目录 试题一、操作研磨(使用工具量具20%) 试题二、刮削支持轴承轴瓦(使用工具量具20%)试题三、使用合像水平仪(使用工具量具20%) 试题四、调整润滑油油压(维修附属设备40%)试题五、冷油器查漏(维修附属设备40%)试题六、检修危急继动器(维修附属设备40%) 试题七、测量和调整汽轮机汽门凸轮与滑轮间隙(维修燃机40%)试题八、检修汽轮机汽封(维修燃机40%)试题九、定位燃气轮机转子(维修燃机40%)

燃气轮机设备检修工高级试题组合目录 组合一: 1. 操作研磨(使用工具量具20%) 2. 调整润滑油油压(维修附属设备40%) 3. 检修汽轮机汽封(维修燃机40%) 组合二: 1.刮削支持轴承轴瓦(使用工具量具20%) 2. 冷油器查漏(维修附属设备40%) 3. 测量和调整汽轮机汽门凸轮与滑轮间隙(维修燃机40%) 组合三: 1.使用合像水平仪(使用工具量具20%) 2. 检修危急继动器(维修附属设备40%) 3. 定位燃气轮机转子(维修燃机40%)

试题一、操作研磨 附图 1.准备要求 (1)材料准备 (2)设备准备

(3)工具、量具准备 (1)操作程序说明: 1)准备工作; 2)清洗; 3)使用研磨剂; 4)研磨; 5)检验。 (2)考核规定说明: 1)如操作违章或未按操作程序执行操作,将停止考核; 2)考核采用百分制,考核项目得分按鉴定比重进行折算。 (3)考核方式说明:该项目为实际操作题,全过程按操作标准结果进行评定。 (4)测量技能说明:本项目主要考核考生对操作研磨的熟悉程度。 3.考核时限 (1)准备时间:2min (2)操作时间:25min (3)从正式操作开始计时 (4)提前完成操作不加分,到时停止操作考核。 4.评分记录表 中国石油天然气集团公司职业技能鉴定统一试卷燃气轮机设备检修工高级操作技能考核评分记录表 现场号工位号性别

相关文档