文档库 最新最全的文档下载
当前位置:文档库 › 向量的数量积(二)

向量的数量积(二)

向量的数量积(二)
向量的数量积(二)

§ 2.4 向量的数量积(二)

编写:唐肖准 审核:顾冬梅 2015-1-8

【学习目标】:

1.掌握数量积的坐标表达式,并会简单应用;

2.掌握向量垂直的坐标表示的充要条件,及向量的长度、距离和夹角公式.

【重点与难点】:

重点:数量积的坐标表达式及其简单应用;

难点: 用坐标法处理长度、角度、垂直问题.

【教学思路】:

活动一

1. 两向量共线的坐标表示;

2. 如何用坐标表示a b ??

活动二

1.向量数量积的坐标表示:

设1122(,),(,)a x y b x y == ,设i 是x 轴上的单位向量,j 是y 轴上的单位向量,试用a 和b 的坐标

表示a b ?.

这就是说:两个向量的数量积等于它们对应坐标的乘积的和 即a b ?2121y y x x +=

2.长度、夹角、垂直的坐标表示: (1)长度:设(,)a x y =,则2||a = ||a ?=

(2)两点间的距离公式:若1122(,),(,)A x y B x y ,则||AB ??→= ;

(3)夹角:cos θ= ;(πθ≤≤0) (4)垂直的等价条件:设1122(,),(,)a x y b x y ==,则b a

⊥?

活动三

例1. 已知(2,1),(3,2)a b =-=-,求(3)(2)a b a b -?-.

例2. 设(6,2),(3,)a b k ==-,当k 为何值时:

(1)//a b ? (2)a b ⊥ (3)a b 与的夹角是钝角?

变式1:已知1,3,(3,1)a b a b ==+=,试求:

(1)a b +; (2)a b +与a b -的夹角。

例3. 在ABC ?中,设)3,2(=?→?AB ,),1(k AC =?→

?,且ABC ?是直角三角形,求k 的值。

变式1:已知(1,8),(4,1),(1,3)OA OB OC =-=-=,求证ABC ?是等腰直角三角形。

变式2: 如图,以原点和(5,2)A 为顶点作等腰直角OAB ?,使90B ∠=, 求点B 和向量?→

?AB 的坐标。

活动四、巩固深化,反馈矫正

1、给定两个向量)2,1(=a ,)1,(x b =,若)2(b a +与)22(b a 平行,则x 的值等于

2、(1,1),(13,1a b ==-两个向量,a b 的夹角

3、已知平面内三个点A )7,1(、B )0,0(、C )3,8(、D 为线段BC 上一点,且)(DA CA BA ++⊥BC ,求D 点坐标。

活动五、归纳整理,整体认识

1.平面向量数量积的坐标公式;向量垂直的坐标表示的条件,复习向量平行的坐标表示的条件.

2.向量长度(模)的公式及两点间的距离公式和夹角公式;

活动六.课后作业 班级 姓名

1.已知(1,2),(3,2),(2,1)a b c ==-=-,求a a ?= .a b ?= a c ?=

2.已知(2,8),(8,16)a b a b +=--=-,a b ?= .

3.两个向量(3,1),(23,2)a b ==-的夹角

4. 已知(1,2),(3,2)a b ==-.a b += ;a b -=

k= ,向量ka b +与3a b -垂直k= 时,向量ka b +与3a b -平行

5.若(4,3),||1,5a b a b =-=?=,则向量b =

6.已知点A(-2,3),B(2,3),C(-2,-1),则三角形ABC 的形状为

7.已知(2,2),(5,)a b k =-=,若a b +不大于5,则k 的取值范围为

8.与(3,2)a =垂直的单位向量为

9.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b ,则|2|b a -的最大值是 、

最小值分别是

10.设(,3),(2,1)a x b ==-,若a b 与的夹角为钝角,求x 的取值范围。

10.已知(cos ,sin ),(cos ,sin )a b ααββ==,0αβπ<<<,(1)求证:()()a b a b +⊥- (2)若ka b +与a kb -的模相等,且0k ≠,求βα-的值。

2014级高一数学集体备课讲义 编号:055 11.已知a =(3,4),b =(4,3),求y x ,的值使(x a +y b )⊥a ,且|x a +y b |=1.

12、已知△ABC 中,A )1,2(-、B )2,3(、C )1,3(--,BC 边上的高为AD ,求D 点坐标及AD 的坐标。

13、已知平面向量a =(3,-1),b =(21,2

3), (1)证明:a ⊥ b ;

(2)若存在不同时为零的实数k 和g ,使x =a +(g 2-3)b ,y =-k a +g b ,且x ⊥y ,试求函数关系式k =f (g );

(3)椐(2)的结论,讨论关于g 的方程f (g )-k =0的解的情况

平面向量数量积

第三节平面向量数量积及应用重点: 1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系. 2.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. 4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 难点: 1.掌握数量积的坐标表达式,会进行平面向量数量积的运算. 2 .会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题. 教学过程: 1.平面向量的数量积 (1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a =0. (2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 2.平面向量数量积的性质及其坐标表示 设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角. (1)数量积:a·b=|a||b|cos θ=x1x2+y1y2. (2)模:|a|=a·a=x21+y21.学-科网 (3)夹角:cos θ=a·b |a||b|= x1x2+y1y2 x21+y21·x22+y22 . (4)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0. (5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)?|x1x2+y1y2|≤ x21+y21·x22+y22. 3.平面向量数量积的运算律 (1)a·b=b·a(交换律). (2)λa·b=λ(a·b)=a·(λb)(结合律). (3)(a+b)·c=a·c+b·c(分配律).

平面向量数量积教学反思

平面向量数量积教学反思 一、本节课的设想与基本流程:本节课主要是研究向量与向量的内积的问题,也就是向量的数量积。因为之前刚学习了向量的线性运算,所以我就直接从向量的线性运算引入了数量积这一概念,请同学来回答数量积的概念,在此过程中特别强调了夹角的概念,强调要共起点。这是学生容易出问题的地方,因此后面安排的例题就特意考察了这一问题;另外还强调了两个向量的数量积不是一个向量,而是一个数量,这也是它与之前的线性运算的区别;接下来,通过分析平面向量数量积的定义,体会平面向量的数量积的几何意义,从而使学生从代数和几何两个方面对数量积的“质变”特征有了更加充分的认识。 二、我的体会:通过本节课的教学,我有以下几点体会: (1)让学生经历数学知识的形成与应用过程高中数学教学应体现知识的来龙去脉,创设问题情景,建立数学模型,让学生经历数学知识的形成与应用,可以更好的理解数学概念、结论的形成过程,体会蕴含在其中的思想方法,增强学好数学的愿望和信心。对于抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。 (2)鼓励学生自主探索、自主学习教师是学生学习的引导者、组织者,教师在教学中的作用必须以确定学生主体地位为前提,教学过程中要发扬民主,要鼓励学生质疑,提倡独立思考、动手实践、自主探索、阅读自学等学习方式。对于教学中问题情境的设计、教学过程的展开、练习的安排等,要尽可能地让所有学生都能主动参与,提出各自解决问题的方案,并引导学生在与他人的交流中选择合适的策略,使学生切实体会到自主探索数学的规律和问题解决是学好数学的有效途径。 (3)注重学生数学思维的培养本节通过特殊到一般进行观察归纳、合情推理,探求定义、性质和几何意义。在整个探求过程中,充分利用“旧知识”及“旧知识形成过程”,并利用它探求新知识。这样的过程,既是学生获得新知识的过程,更是培养学生能力的过程。我感觉不足的有:(1)教师应该如何准确的提出问题在教学中,教师提出的问题要具体、准确,而不应该模棱两可。(2)教师如何把握“收”与“放”的问题何时放手让学生思考,何时教师引导学生,何时教师讲授,这是个值得思考的问题。(3)教师要点拨到位在学生出现问题后,教师要及时点评加以总结,要重视思维的提升,提高学生的数学能力和素质。(4)课堂语言还需要进一步提炼。在教学中,提出的问题,分析引导的话应具体,明确,不能让学生不知道如何回答,当然有些问题我也考虑过该如何问,只是没有找到更合适的提问方法,这方面的能力有待加强。 以上就是本人的教学反思,只有不断地反思,不断地总结才能在今后的教学中取得更好的教学效果,尽快地提高自身的教学水平。

两个向量的数量积说课稿

《两个向量的数量积》说课稿 各位评委:您们好! 我叫李健,来自川师成都学院。今天我说课的课题是高二下册第九章第2节《两个向量的数量积》(第一课时),现我就教材分析、教学目标分析、教学重难点、教法与学法设计、教学过程、五个方面进行说明。恳请在座的各位评委批评指正。 一、教材分析 本节课是人教B版选修2-1第三章第节的内容,是在学生学习了空间向量的线性运算和空间向量基本定理的基础上进一步学习的内容,是平面向量数量积及其研究方法的推广和拓展。它丰富了学生的认知结构,为学生学习立体几何提供了新的视角、新的观点、新的方法,并且是本章和今后学习的重要基础。 二、教学目标 介于本节课的重要地位和课程标准的要求,根据学生实际学习水平和思维特点,我确立本节课的教学目标如下: 知识与技能:(1)掌握空间向量夹角和模的概念及表示方法;(2)掌握两个向量数量积的概念、性质和计算方法及运算律;(3)掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题。 ! 过程与方法:(1)经历空间向量数量积知识的形成过程(2)体会低维与高维相互转化的思维过程(3)发展联想、类比、探究的能力、培养数学表达和交流能力(4)培养用联系的观点看问题,渗透数形结合的思想 情感、态度:(1)激发学生求知欲,提高学习兴趣,树立学好数学的信心(2)认识数学的科学价值、应用价值,体会数学的理性精神 三、教学重难点分析 根据教材内容和学生观察、形象思维能力强,而空间想象能力不足的特点,我制定了以下重难点 教学重点:两个向量的数量积的计算方法及其应用 教学难点:(1)两个向量的数量积的几何意义(2)如何把立体几何问题转化为向量计算问题

平面向量的数量积知识点整理

平面向量的数量积 一、平面向量数量积的含义 1. 平面向量数量积的运算 1.已知2,5,(1)||a b a b ==若; (2) a b ⊥;(3) a b 与的夹角为030,分别求. 2.△ABC 中,3||=?→?AB ,4||=?→?AC ,5||=?→ ?BC ,则=?_________ 3.在ABC ?中,已知7=AB ,5=BC ,6=AC ,则________ 2.夹角问题 1.已知|a |=4,|b|=3, a ·b=6,求a 与b 夹角 2.已知,a b 是两个非零向量,且a b a b ==-,则与的夹角为____ 3.已知3||=→a ,5||=→b ,且12=?→→b a ,则向量→a 在向量→b 上的投影为_____ 4.若1,2,a b c a b ===+,且c a ⊥,则向量a 与向量b 的夹角为 5.已知向量、不共线,且||||=,则+与-的夹角为 __________ 6.在ABC ?中=,= ,=,则下列推导正确的是__ _ ① 若0

高中数学-两个向量的数量积测试题

高中数学-两个向量的数量积测试题 自我小测 1.已知非零向量a ,b 不平行,并且其模相等,则a +b 与a -b 之间的关系是( ) A .垂直 B .共线 C .不垂直 D .以上都有可能 2.已知|a |=2,|b |=3,〈a ,b 〉=60°,则|2a -3b |等于( ) A.97 B .97 C.61 D .61 3.在空间四边形OABC 中,OB =OC ,∠AOB =∠AOC = π3 ,则cos 〈OA →,BC →〉=( ) A.12 B.22 C .-12 D .0 4.设A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0, 则△BCD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .不确定 5.已知向量a ,b 满足|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则 a 与 b 的夹角的取值范围是( ) A.??????0,π6 B.??????π3,π C.??????π3,23π D.???? ??π6,π 6.已知|a|=|b|=|c|=1,a·b =b·c =c·a =0,则a +b +c 的模等于__________. 7.已知a ,b 是异面直线,a ⊥b ,e 1,e 2分别为取自直线a ,b 上的单位向量,且a =2e 1+3e 2,b =k e 1-4e 2,a⊥b ,则实数k 的值为__________. 8.如图所示,AB =AC =BD =1,AB ?平面α,AC ⊥平面α,BD ⊥AB ,BD 与平面α成30°角,则点C 与D 之间的距离为__________. 9.已知空间四边形ABCD ,求AB →·CD →+BC →·AD →+CA →·BD → 的值.

平面向量的数量积

平面向量的数量积 一.选择题: 1.在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?= ( ) A .23- B .3 2 - C .32 D .23 2.已知平面向量a =(1,-3),b =(4,-2),a b λ+与a 垂直,则λ是( ) A. -1 B. 1 C. -2 D. 2 3.若,a b 是非零向量且满足(2)a b a -⊥,(2)b a b -⊥ ,则a 与b 的夹角是( ) A . 6π B .3π C .32π D .65π 4、若向量a =),sin ,(cos θθb =(1,-1),则|2a b -|的取值范围是( ) (A)]22,22[+ - (B)]2,0[ (C)]2,0[ (D)[1,3] 5.(选)已知a b c ,,为ABC △的三个内角A B C ,,的对边,向 量 1)(cos sin )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( ) A .ππ 63 , B . 2ππ36 , C .ππ36, D .ππ33 , 二.填空题: 1、如图,半圆的直径6AB =,O 为圆心,C 为半圆 上不同于A B 、的任意一点,若P 为半径OC 上的动 点,则()PA PB PC +?的最小值是__________. 2.已知)1,2(=a 与)2,1(=b ,要使b t a +最小,则实数t 的值为___________。 3.(选)已知a 是平面内的单位向量,若向量b 满足()0b a b -=,则||b 的取值范围是 。 三.解答题; 1. △ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,向量m =(2sinB ,2-cos2B), 2(2sin (),1)42 B n π=+ ,m ⊥n , (I) 求角B 的大小; O P C B A 第13题图

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2平面向量数量积的运算 1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16 DC ,则AE ·AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题 意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =? ????-12,1,所以a ·b =-1×? ?? ??-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23 BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =? ????23 BC -BA ·? ????-712 BA +BC =712 |BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 的关系 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 [解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2 =4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,- 6).

空间向量的数量积(人教A版)(含答案)

空间向量的数量积(人教A版) 一、单选题(共10道,每道10分) 1.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),,若向量分别与,垂直,则向量的坐标为( ) A.(1,1,1) B.(-2,-1,1) C.(1,-3,1) D.(1,-1,1) 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的坐标表示 2.已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设,则与夹角的余弦值为( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:空间向量的坐标表示 3.(上接试题2)若向量与互相垂直,则实数k的值为( ) A.或2 B.或2 C.2 D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的坐标表示 4.向量,若,且,则的值为( ) A.-2 B.2 C.-1 D.1

答案:C 解题思路: 试题难度:三颗星知识点:空间向量的坐标表示 5.已知空间向量,若与垂直,则( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:空间向量的坐标表示 6.若向量,且与夹角的余弦值为,则λ等于( ) A.4 B.−4 C. D. 答案:C 解题思路:

试题难度:三颗星知识点:空间向量的坐标表示 7.如图,在长方体ABCD-A1B1C1D1中,设AD=AA1=1,AB=2,则( ) A.1 B.2 C.3 D. 答案:A 解题思路: 试题难度:三颗星知识点:空间向量的数量积 8.如图,棱长为a的正四面体ABCD中,( )

(完整版)平面向量数量积运算专题(附答案)

平面向量数量积运算 题型一 平面向量数量积的基本运算 例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF → =1,则λ的值为________. (2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB → 的最小值为( ) A.-4+ 2 B.-3+2 C.-4+2 2 D.-3+22 变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB → =________. 题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=22 3 |b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4 D.π (2)若平面向量a 与平面向量b 的夹角等于π 3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦 值等于( ) A.126 B.-126 C.112 D.-1 12 变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB → 与 AC → 的夹角为________.

题型三 利用数量积求向量的模 例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5 D.6 (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB → |的最小值为________. 变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=1 2.若平面向量b 满足b ·e 1=b ·e 2 =1,则|b |=________. 高考题型精练 1.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD → 等于( ) A.-3 2a 2 B.-34a 2 C.3 4 a 2 D.3 2 a 2 2.(2014·浙江)记max{x ,y }=????? x ,x ≥y ,y ,x

两个向量的数量积的性质.

课 题:向量的数量积(1) 教学目的:掌握向量的数量积及其几何意义;掌握向量数量积的重要性质及运算律;了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;掌握向量垂直的条件. 教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 教学过程: 一、问题情境: 1.问题:向量的运算有向量的加法、减法、数乘,那么向量与向量能否“相乘”呢? 2.实例:一个物体在力的作用下发生了位移,那么该力对此物体所做的功为多少? 力做的功:θcos ||.||s F w =,θ是F 与s 的夹角. 二、讲解新课: (一)概念形成与知识建构: 1.两个非零向量夹角: ,叫做向量a 与b 的夹角. 注:当0=θ时,与同向;当πθ=时,与反向;当2π θ=时,与垂直,记⊥. 2.平面向量数量积(或内积)的定义: ,记作?,即?a b θcos ||.||b a =,(0≤θ≤π).规定0与任何向量的数量积为0. 注:当与同向时,?= ;当与反向时,? ; 特别地, ?a a 2||a = 或=||a (二)?探究: 两个向量的数量积与向量同实数积有很大区别: (1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定 (2)两个向量的数量积称为内积,书写时符号“· ”不能省略,也不能用“×”代替. (3)在实数中,若0≠a ,且0=?b a ,则0=b ;但是在数量积中,若0≠a ,且?0=,不能推出0 =. (三)知识应用: 例1. 判断正误,并简要说明理由 ①00=?;②00=?;③-0=;④?||.||b =;⑤若0≠a ,则对任一

《空间向量的数量积运算》示范教案

3.1.3空间向量的数量积运算 整体设计 教材分析 本节课在平面向量的夹角和向量长度的概念的基础上,引入了空间向量的夹角和向量长度的概念和表示方法,介绍了空间两个向量数量积的概念、计算方法、性质和运算律,并举例说明利用向量的数量积解决问题的基本方法. 通常,按照传统方法解立体几何题,需要有较强的空间想象能力、逻辑推理能力以及作图能力,学生往往由于这些能力的不足造成解题困难.用向量处理立体几何问题,可使学生克服空间想象力的障碍而顺利解题,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性;而且,在丰富学生思维结构的同时,应用数学的能力也得到了锻炼和提高.课时分配 1课时 教学目标 知识与技能 1.掌握空间向量夹角的概念及表示方法; 2.掌握两个向量数量积的概念、性质和计算方法及运算律; 3.掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题. 过程与方法 1.运用类比方法,经历向量的数量积运算由平面向空间推广的过程; 2.引导学生借助空间几何体理解空间向量数量积运算的意义. 情感、态度与价值观 1.培养学生的类比思想、转化思想,培养探究、研讨、综合自学应用能力; 2.培养学生空间向量的应用意识. 重点难点 教学重点: 1.空间向量的数量积运算及其运算律、几何意义; 2.空间向量的数量积运算及其变形在空间几何体中的应用. 教学难点: 1.空间想象能力的培养,思想方法的理解和应用; 2.空间向量的数量积运算及其几何应用和理解. 教学过程 引入新课 提出问题:已知在正方体ABCD—A′B′C′D′中,E为AA′的中点,点F在线段 D′C′上,D′F=1 2FC′,如何确定BE → ,FD → 的夹角?

选修2-1两个向量的数量积课时作业

课时作业18两个向量的数量积 时间:45分钟满分:100分 一、选择题(每小题5分,共30分) 1.下列式子中正确的是() A.|a|·a=a2 B.|a·b|2=a2·b2 C.(a·b)·c=a(b·c) D.|a·b|≤|a||b| * 【答案】D 【解析】选项A,|a|·a应是一个向量,而a2是一个数.选项B,|a·b|2=a2·b2·cos2〈a,b〉,而不是a2·b2.选项C,向量运算中没有乘法结合律. 2.已知空间四边形每条边和对角线的长等于a,点E、F、G分别是AB、AD、DC的中点,则a2等于() A.2BA→·AC→B.2AD→·BD→ C.2FG→·CA→D.2EF→·CB→ 【答案】B 【解析】2BA →·AC→=-a2,2AD→·BD→=a2,2FG→·CA→=-a2,2EF→·CA→=- a2,2EF→·CB→=-1 2a2. 3.已知a,b是异面直线,A、B∈a,C、D∈b,AC⊥b,BD⊥b 且AB=2,CD=1,则a与b所成的角是() ( A.30°B.45°

C .60° D .90° 【答案】 C 【解析】 AB →=AC →+CD →+DB →, ∴AB →·CD →=(A C →+C D →+D B →)·C D → =A C →·C D →+CD 2→+D B →·C D →=0+12+0=1,又|A B →|=2,|C D →|=1. ∴cos 〈A B →,C D →〉=A B →·C D →|A B →||C D →|=12×1=12. ∴a 与b 所成的角是60°. } 4.已知向量a ,b ,c 两两之间的夹角都为60°,其模都为1,则 |a -b +2c |等于( ) B .5 C .6 【答案】 A 【解析】 (a -b +2c )2=a 2+b 2+4c 2-2a ·b +4a ·c -4b ·c =1+1+4-2cos60°=5.∴|a -b +2c |= 5. 5.在正三棱柱ABC -A 1B 1C 1中,若AB =2BB 1,则AB 1与BC 1所成角的大小为( ) A .60° B .90° C .105° D .75° 。 【答案】 B 【解析】 设AB =2BB 1=2a ,则AB 1→·BC 1→=(AB →+BB 1→)·(BC →+CC 1→)=AB →·BC →+BB 1→·BC →+AB →·CC 1→+BB 1→·CC 1→=2a 2·cos120°+a 2=0,∴AB 1→⊥BC 1→,即AB 1与BC 1所成角的大小为90°. 6.正三棱柱ABC -A 1B 1C 1的各棱长都为2,E 、F 分别是AB 、A 1C 1

最新平面向量的数量积说课稿

《平面向量的数量积及运算律》 一教材分析 1 教材地位及其作用 本节选自普通高中课程标准实验教科书《数学》必修第4册第二章第5节第一课时,两个向量的数量积是中学代数以往内容中从未遇到过的一种新的乘法,它区别于数的乘法.这节内容是整个向量部分的重要内容之一,对它的理解与掌握将直接影响向量其他内容的学习,具有承上启下的作用。 2 教学目标 根据课程标准,教材内容,学生认知水平,确定 知识目标:理解并掌握平面向量的数量积、几何意义和运算律。 能力目标:通过对数量积的引入和应用,初步体会知识发生、发展的过程和运用过程,培养学生的科学思维习惯。 情感目标:让学生在类比、观察、探究、发现中学习,体验学习的乐趣,增强自信心,树立积极的学习态度。 3 教学重点与难点 根据以上对教材、教学目标的分析,确定如下教学重点和难点: 重点:平面向量数量积定义及运算律的理解 难点:平面向量数量积的定义及运算律的理解和对平面向量数量积的应用。 二教法分析 本节课主要采用引导发现法,通过物理情景中功的概念抽象出向量数量

积的定义,再引导学生探究其几何意义和运算律,与讲授法,讨论法,练习法等相结合 三学法分析 本节课在学法上,主要采用类比法,通过物理情景中功的概念来理解向量数量积的物理意义,进而理解其几何意义。再通过实数的运算律类比发现向量数量积的运算律,同时结合例题讲解和练习巩固。 四教学过程分析 1 问题情景 如图所示,一个力F作用于一个物体,使该物体发生了位移S,如何计算这个力所做的功. 设计意图:通过物理实例引出向量数量积的定义,为以后理解向量数量积打下基础。 2 建立模型 (1)引导学生从“功”的模型中得到如下概念: 已知两个非零向量a与b,把数量|a||b|cosθ叫a与b的数量积(内积),记作a·b=|a||b|cosθ.其中θ是a与b夹角,|a|cos θ(|b|cosθ)叫a在b方向上(b在a方向上)的投影. 规定0与任一向量的数量积为0. 由上述定义可知,两个向量a与b的数量积是一个实数. 说明:向量a与b的夹角θ是指把a,b起点平移到一起所成的夹角,其中0≤θ≤π.当θ=π/2时,称a和b垂直,记作a⊥b.为方便起

(完整版)《平面向量的数量积》教学设计及反思

《平面向量的数量积》教学设计及反思 交口第一中学赵云鹏平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,它是沟通代数、几何与三角函数的一种重要工具,在每年高考中也是重点考查的内容。向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。 一、总体设想: 本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。 二、教学目标: 1.了解向量的数量积的抽象根源。 2.了解平面的数量积的概念、向量的夹角 3.数量积与向量投影的关系及数量积的几何意义 4.理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算 三、重、难点: 【重点】1.平面向量数量积的概念和性质 2.平面向量数量积的运算律的探究和应用

【难点】平面向量数量积的应用 四、课时安排: 2课时 五、教学方案及其设计意图: 1.平面向量数量积的物理背景 平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F 的所做的功为Wθ ? F,这里的θ是矢量F和s的夹角,也即是两个 =s cos ? 向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a, b的数量积的概念。 2.平面向量数量积(内积)的定义 已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a?b,即有a?b = |a||b|cosθ,(0≤θ≤π). 并规定0与任何向量的数量积为0. 零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义a?b = |a||b|cosθ无法得到,因此另外进行了规定。 3. 两个非零向量夹角的概念 已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)

空间向量的数量积运算练习题

课时作业(十五) [学业水平层次] 一、选择题 1.设a 、b 、c 是任意的非零平面向量,且它们相互不共线,下列命题:①(a ·b )c -(c ·a )b =0;②|a |=a ·a ;③a 2b =b 2a ;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( ) A .①② B .②③ C .③④ D .②④ 【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中|a |2·b =|b |2·a 不一定成立,④运算正确. 【答案】 D 2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则a 与b 的夹角〈a ,b 〉=( ) A .30° B .45° C .60° D .以上都不对 【解析】 ∵a +b +c =0,∴a +b =-c ,∴(a +b )2=|a |2+|b |2+2a ·b =|c |2,∴a ·b =32,∴cos 〈a ,b 〉=a ·b |a ||b |=14. 【答案】 D 3.已知四边形ABCD 为矩形,P A ⊥平面ABCD ,连结AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积不为零的是( ) A.PC →与BD → B.DA →与PB → C.PD →与AB → D.P A →与CD →

【解析】 用排除法,因为P A ⊥平面ABCD ,所以P A ⊥CD ,故P A →·CD → =0,排除D ;因为AD ⊥AB ,P A ⊥AD ,又P A ∩AB =A ,所以AD ⊥平面P AB ,所以AD ⊥PB ,故DA →·PB →=0,排除B ,同理PD →·AB →=0,排除C. 【答案】 A 4. 如图3-1-21,已知空间四边形每条边和对角线都等于a ,点E ,F ,G 分别是AB ,AD ,DC 的中点,则下列向量的数量积等于a 2的是( ) 图3-1-21 A .2BA →·AC → B .2AD →·DB → C .2FG →·AC → D .2EF →·CB → 【解析】 2BA →·AC →=-a 2,故A 错;2AD →·DB →=-a 2,故B 错;2EF →·CB →=-12a 2 ,故D 错;2FG →·AC →=AC →2=a 2,故只有C 正确.

6.3.2 平面向量数量积的坐标表示(精讲)(原卷版)

6.3.2 平面向量数量积的坐标表示(精讲)

考法一 数量积的坐标运算 【例1】(1)(2020·全国高一)向量()2,3a =-,()2,1b =,则a b ?=( ) A .1 B .1- C .7 D .0 (2)(2020·全国高一)已知向量(1,3)a =,(b =-,则a 与b 的夹角是( ) A . 6 π B . 4 π C . 3 π D . 2 π (3)(2020·全国)已知()2,1a =,()11 b =-,,则a 在b 上的投影的数量为( ) A . 2 B . C .5 - D (4)(2020·天津和平区·耀华中学高一期末)已知向量(1,2)a =-,(3,1)b m =+,若a b ⊥,则m 等于( ) A .7- B .5 C .5 2 - D . 12 (5)(2020·黑龙江双鸭山市·双鸭山一中)设平面向量()2,1a =-,()1,b λ=,若a 与b 的夹角为钝角,则λ的取值范围______. 【一隅三反】

1.(2020·银川市·宁夏大学附属中学高一期末)向量()()2112a b =-=-, ,,,则() 2a b a +?=( ) A .1 B .1- C .6- D .6 2.(2020·广东高一期末)向量()1,2a =-,()2,1b =,则( ) A .//a b B .a b ⊥ C .a 与b 的夹角为60° D .a 与b 的夹角为30 3.(2020·湖北省汉川市第一高级中学高一期末)已知向量(0,23),(1,3)a b ==,则向量a 在b 上的投影为( ) A .3 B C . D .3- 4.(2020·北京高一期末)已知向量()4,2a =,()1,b m =-,若a b ⊥,那么m 的值为( ) A . 1 2 B .12 - C .2 D .2- 5.(2020·沙坪坝区·重庆八中高一期末)已知(2,3)a =-,a 与b 的夹角为60?,则a 在b 方向上的投影为( ) A B . 72 C .27 D 6.(2020·湖南郴州市·高一月考)若向量()2,1a =-,()1,1b =,则向量a b +与a b -的夹角的余弦值为( ) A B .C D . 7.(2020·河北唐山市·唐山一中高一月考)平面向量()1,2a =,()4,2b =,c ma b =+(m R ∈),且 c 与a 的夹角与c 与b 的夹角互补,则m =( ) A .2- B .1- C .1 D .2 8.(2020·宝山区·上海交大附中高一期末)已知向量()5,5a =,(),1b λ=,若a b +与a b -的夹角是锐角,则实数λ的取值范围为______; 考法二 巧建坐标解数量积 【例2】(2020·四川高一期末)如图,边长为1的等边△ABC 中,AD 为边BC 上的高,P 为线段AD 上的动

高中数学-两个向量的数量积练习题

高中数学-两个向量的数量积练习题 课后训练 1.|a +b|=|a -b |的充要条件是( ) A .a =0或b =0 B .a∥b C .a·b =0 D .|a|=|b| 2.下列式子中正确的是( ) A .|a|·a =a B .(a·b )2=a 2·b 2 C .(a·b )c =a (b·c ) D .|a·b|≤|a|·|b| 3.空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =π3 ,则cos 〈OA u u u r ,BC uuu r 〉=( ) A .12 B .2 C .12 D .0 4.设A ,B ,C ,D 是空间不共面的四点,且满足AB u u u r ·AC u u u r =0, AC u u u r ·AD u u u r =0,AB u u u r ·AD u u u r =0,则△BCD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .不确定 5.若|a|=1,|b|=2,c =a +b 且c ⊥a ,则向量a 与b 的夹角是( ) A .30° B .60° C .120° D .150° 6.|a|=|b|=|c|=1,a·b =b·c =c·a =0,则a +b +c 的模等于__________. 7.a≠c ,b≠0,a·b =b·c 且d =a -c ,则〈b ,d 〉=__________. 8.向量a ,b 之间的夹角为30°,|a|=3,|b|=4,求a·b ,a 2,b 2,(a +2b )·(a - b ). 9.在正方体ABCD -A 1B 1C 1D 1中,求异面直线A 1B 与AC 所成的角.

两个向量的数量积(教案)

高二数学教学案 一、预习提纲: 1.空间向量的夹角及其表示、异面直线 2.向量的数量积 3.空间向量数量积的性质 4.空间向量数量积运算律 二、预习达标: 1、=++ ,2 =3,4=,则,a b <>r r =______ A 、3π B 、 4π C 、2π D 、32π 2、空间向量a 、b =8,,a b <>r r =3 2π,求 (1)(+2)?=_____________, (2)(+2)?(2?)=__________________ 三、学案导学: 1.空间向量的夹角及其表示: 已知两非零向量,a b r r ,在空间任取一点O ,作,OA a OB b ==u u u r u u u r r r ,则AOB ∠叫做向量a r 与b r 的夹角,记作,a b <>r r ;且规定0,a b π≤<>≤r r ,显然有,,a b b a <>=<>r r r r ; 若,2 a b π<>=r r ,则称a r 与b r 互相垂直,记作:a b ⊥r r ; ﹡ 异面直线:_______________________________

2.向量的模: 设OA a =u u u r r ,则有向线段OA u u u r 的长度叫做向量a r 的长度或模,记作:||a r ; 3.向量的数量积: 已知向量,a b r r ,则||||cos ,a b a b ??<>r r r r 叫做,a b r r 的数量积,记作a b ?r r ,即a b ?=r r ||||cos ,a b a b ??<>r r r r . 已知向量AB a =u u u r r 和轴l ,e r 是l 上与l 同方向的单位向 量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''u u u u r 叫做向量AB u u u r 在轴l 上或在e r 上的正射影;可以证明A B ''u u u u r 的长度||||cos ,||A B AB a e a e ''=<>=?u u u u r u u u r r r r r . 4.空间向量数量积的性质: (1)||cos ,a e a a e ?=<>r r r r r . (2)0a b a b ⊥??=r r r r . (3)2||a a a =?r r r . 5.空间向量数量积运算律: (1)()()()a b a b a b λλλ?=?=?r r r r r r . (2)a b b a ?=?r r r r (交换律). (3)()a b c a b a c ?+=?+?r r r r r r r (分配律). 四、典例剖析: 例1.用向量方法证明:直线和平面垂直的判定定理。 已知:,m n 是平面α内的两条相交直线,直线l 与平面α的交点为B ,且,l m l n ⊥⊥ 求证:l α⊥. 证明:在α内作不与,m n 重合的任一直线g , 在,,,l m n g 上取非零向量,,,l m n g r r r r ,∵,m n 相交, ∴向量,m n r r 不平行,由共面定理可知,存在 唯一有序实数对(,)x y ,使g xm yn =+r r r , ∴l g xl m yl n ?=?+?r r r r r r ,又∵0,0l m l n ?=?=r r r r , ∴0l g ?=r r ,∴l g ⊥r r ,∴l g ⊥, 所以,直线l 垂直于平面内的任意一条直线,即得l α⊥. 例2.已知空间四边形ABCD 中,AB CD ⊥,AC BD ⊥,求证:AD BC ⊥. 证明:(法一)()()AD BC AB BD AC AB ?=+?-u u u r u u u r u u u r u u u r u u u r u u u r 2AB AC BD AC AB AB BD =?+?--?u u u r u u u r u u u r u u u r u u u r u u u r u u u r ()0AB AC AB BD AB DC =?--=?=u u u r u u u r u u u r u u u r u u u r u u u r . l m n m n g g l

相关文档
相关文档 最新文档