文档库 最新最全的文档下载
当前位置:文档库 › 北航惯性导航综合实验四实验报告

北航惯性导航综合实验四实验报告

北航惯性导航综合实验四实验报告
北航惯性导航综合实验四实验报告

基于运动规划的惯性导航系统动态实验

二零一三年六月十日

实验4.1 惯性导航系统运动轨迹规划与设计实验

一、实验目的

为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。

二、实验内容

学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。

三、实验系统组成

USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。

四、实验原理

IMU安装误差系数的计算方法

USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。

USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意 2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由

USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。

图4-1-1USB_PCL6045B 评估板原理框图

如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。

USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。

五、实验内容

1、操作步骤

1)检查电机驱动电源(24V)

2)检查USB_PCL6045B 控制板与上位机及电机驱动器间的连接电缆

3)启动USB_PCL6045B 控制板评估测试系统检查系统是否正常工作。

4)运行编写的定长运动程序,并比较实际位移与设定位移。

5)修改程序设定不同运动长度,并重复执行步骤4)。

6)对记录实验数据,并进行误差分析。

2、实验数据处理

基于VC的控制界面:

本次实验必须先设计控制系统的上位机,通过上位机的串口向下位机发送控制命令,下位机接收到命令后,产生PWM波,控制电机的正反转以此达到控制导轨运动的目的。系统的控制界面如图1所示:

图1 系统的控制界面

控制导轨运动,运动采取正向运动,再返回,即IMU的实际运行位移为零。并保存数据

控制界面的应用程序

源程序仅写出VC中按钮的响应程序:

void CAaaDlg::Online() ////定长运动

{

// TODO: Add your control notification handler code here

USB_initial();

USB_default_set();

USB_set_org_logic(AXS_AX,0);//原点开关的逻辑, 负逻辑

USB_set_el_logic(AXS_AX,0);//硬极限输入逻辑,低电平使能

USB_set_sd_logic(AXS_AX,0);//减速开关的输入逻辑,负逻辑

USB_set_alm_logic(AXS_AX, 1);//报警输入信号逻辑

USB_set_inp_logic(AXS_AX,1);//in的输入信号逻辑

USB_ez_logic(AXS_AX,0);//Z相的输入逻辑

USB_set_pls_outmode(AXS_AX,1);

USB_set_out_enable(AXS_AX,1);//脉冲输出使能

// USB_jog_continue(AXS_AX,150,20000,20,20,20,20,1,30000);

USB_start_tr_move(AXS_AX, m_dist, 0, m_inspeed, 5000, 5000); // USB_tv_move(AXS_AX, 150, 2000, 3000);

/* USB_v_change(AXS_AX, 5000, 5000);

while(1)

{

USB_get_speed(AXS_AX, &m_speed);

UpdateData(FALSE);

MSG msg;

while(PeekMessage(&msg,0,0,100,PM_REMOVE))

{

TranslateMessage(&msg);

DispatchMessage(&msg);

}

Sleep(100);

}

*/

}

void CAaaDlg::OnButton1() //////停止运动

{

// TODO: Add your control notification handler code here

USB_sd_stop(AXS_AX);

}

void CAaaDlg::OnGetSpeed() //////获得速度

{

// TODO: Add your control notification handler code here

USB_get_speed(AXS_AX, &m_speed);

UpdateData(FALSE);

}

void CAaaDlg::OnButton3() ///OK 按钮程序

{

// TODO: Add your control notification handler code here

UpdateData(true);

}

3,处理数据

由实验原理可知,惯性测量单元(IMU)可以通过自身独立的测量结果进行积分,计算出目标运动的角度和位移等量。本次实验就是利用IMU的加速度计的某一敏感轴测量导轨运行的加速度,通过加速度两次积分得到物体的位移,计算结果如图2所示:

实验经过往返,从原理上讲位移应该为零。

处理结果:

位移曲线:

速度曲线:

4,源程序:

A=load('E:\惯性器件综合实验\我的作业\实验四\X300000_V10000.txt');

T=1/200; %%%%单位为秒

g=9.78;

Ax=A(:,4)*g/1000; %%%提取加速度计的值转化为m/s^2

Ax=Ax*(1.0009)-0.0036595*g;

vx=zeros(12657,1);

sx=zeros(12657,1);

u=zeros(12657,1);

%%%%%计算位移

for i=2:12657

vx(i)=vx(i-1)+(Ax(i-1)+Ax(i-1))*T /2;

sx(i)=sx(i-1)+(vx(i-1)+ vx(i))/2*T+0.5*A(i-1)*T*T;

u(i)=i;

end

figure

plot(u/100,vx);

xlabel('时间/秒'),ylabel('速度米/秒');

figure

plot(u/100,sx);

xlabel('时间/秒'),ylabel('位移米');

5,实验结果分析

从原理上讲IMU做往返运动,位移应该出现增大和减小的趋势,但是由于各种误差角,而且滑轨也不能保证当地水平,在计算过程中,也未减去有害加速度。所以误差很大。而且根据所采集的数据可知加速度计并没有感知方向,在实验过程中应该根据计算脉冲与时间,自己计算方向时间

惯性导航系统半物理仿真实验

一、实验目的

进行惯导系统半物理仿真实验,以验证惯性器件真实误差特性情况下惯性导航系统的性能。

二、实验内容

将采集到陀螺仪与加速度计的真实误差数据叠加到轨迹发生器产生的导航参数真值上,进行惯导解算,并分析误差特性。

三、实验系统组成

真实的陀螺仪、加速度计或 IMU,数据采集系统和数据处理计算机。

四、实验步骤

(1)采集实验数据

(2)处理采集的实验数据,生成半物理的惯性器件误差数据

(3)生成半物理的导航数据,进行导航解算

(4)对导航解算结果进行分析

(5)完成实验报告

五、实验内容及结果

(1)半物理仿真数据的生成:

a)应用前面IMU实验或惯性导航系统动态实验中采集的陀螺仪与加速度计的

静态数据DATA

b)对以上采集的静态数据求取均方差X(结果为X度/小时或Xg)

c)将DATA中数据去掉均值生成新的数据DATA1(器件噪声)

d)自己设定要仿真的陀螺或加速度计的精度Y(度/小时或g)

e)将DATA1中数据乘以Y/X生成新的数据DATA2(半物理仿真噪声)

f)从DATA2中读取数据并叠加到轨迹发生器产生的标准数据(不含噪声)上,

进行导航解算。(如初始采集的数据长度不够,可以将DATA2中数据重复利用,即将生成一个几倍长度于DATA2和数据文件DATA3,并从DATA3中读取半物理数据并叠加到轨迹发生器产生的标准数据上)

(2)加半物理仿真噪声数据的导航结果:

(3)叠加噪声的导航结果:

(4)结果分析:

由实验结果可见,叠加的仿真噪声数据对姿态的解算影响很大;但由于所加噪声较小,所以噪声数据对位移和速度的解算影响不大。

六,源程序

clear,clc

invout=load('E:\惯导实验数据\第四次\实验4.3\第四部分半物理仿真数据生成方法及数据格式说明\IMU数据\invout.dat');

CaijiShuju=load('E:\惯导实验数据\第四次\实验4.3\第四部分半物理仿真数据生成方法及数据格式说明\IMU数据\data2.txt');

W=CaijiShuju(:,3:5);

F=CaijiShuju(:,9:11);

W_pingjun=mean(W);

F_pingjun=mean(F);

%%%%%%%%%%%%%%%%%%%%%%%%%%生成噪声%%%%%%%%%%%%%%

wx=W(:,1)-W_pingjun(1,1);%器件噪声

wy=W(:,2)-W_pingjun(1,2);

wz=W(:,3)-W_pingjun(1,3);

fx=F(:,1)-F_pingjun(1,1);

fx=F(:,2)-F_pingjun(1,2);

fx=F(:,3)-F_pingjun(1,3); %%%%%%%%%%%%%%%%%%%%%%%%%%%求陀螺均方差%%%%%%%%%%%%%%%%%%%%

N=size(W);

n=N(1,1);

%%%%%%%%%%%%%陀螺的精度设为0.5度/小时%%%%%%%%%%%%%%%%%%%

w_jingdu=0.5/3600*pi/180%0.5度/小时转成弧度

sx=0;

for i=1:n

sx=sx+(W(i,1)-W_pingjun(1,1))^2

end

wx_junfangcha=sqrt(sx/n);%x陀螺的均方差

wx1=w_jingdu/wx_junfangcha;

Wx=wx*wx1 %半物理仿真噪声Wx

sx=0;

for i=1:n

sx=sx+(W(i,2)-W_pingjun(1,2))^2

end

wy_junfangcha=sqrt(sx/n);%y陀螺的均方差

wy2=w_jingdu/wy_junfangcha;

Wy=wy*wy2 %半物理仿真噪声Wy

sx=0;

for i=1:n

sx=sx+(W(i,3)-W_pingjun(1,3))^2

end

wz_junfangcha=sqrt(sx/n);%z陀螺的均方差

wz3=w_jingdu/wz_junfangcha;

Wz=wz*wz3 %半物理仿真噪声Wz %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%求加计的均方差%%%%%%%%%%%%%%%%%%%%%%%

f_jingdu=1/1000*9.8%加计的精度为1mg

sx=0;

for i=1:n

sx=sx+(F(i,1)-F_pingjun(1,1))^2

end

fx_junfangcha=sqrt(sx/n);%x加计的均方差

fx1= f_jingdu/fx_junfangcha;

Fx=fx*fx1;

sx=0;

for i=1:n

sx=sx+(F(i,2)-F_pingjun(1,2))^2

end

fy_junfangcha=sqrt(sx/n);%y加计的均方差

fx2= f_jingdu/fy_junfangcha;

Fy=fx*fx2;

sx=0;

for i=1:n

sx=sx+(F(i,3)-F_pingjun(1,3))^2

end

fz_junfangcha=sqrt(sx/n);%z加计的均方差

fx3= f_jingdu/fz_junfangcha;

Fz=fx*fx3;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%轨迹发生器数据叠加噪声%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Wx_invout=invout(:,5);

Wy_invout=invout(:,6);

Wz_invout=invout(:,7);

Fx_invout=invout(:,2);

Fy_invout=invout(:,3);

Fz_invout=invout(:,4);

L_invout=invout(:,8); %纬度

Jingdu_invout=invout(:,9);%经度

Height_invout=invout(:,10);%高度

%%%%%%%%%%%%%%%开始叠加%%%%%%%%%%%%%%%%%%%%

N1=size(invout);

n1=N1(1,1);%%%%应为采样点数大于轨迹发生器的个数,所以以轨迹发生器的个数为准

Wxx=Wx(1:n1,1)+Wx_invout;

Wyy=Wy(1:n1,1)+Wy_invout ;

Wzz=Wz(1:n1,1)+Wz_invout;

Wibb=[Wxx,Wyy,Wzz];

Fxx=Fx(1:n1,1)+Fx_invout;

Fyy=Fy(1:n1,1)+Fy_invout ;

Fzz=Fz(1:n1,1)+Fz_invout;

Fibb=[Fxx,Fyy,Fzz];

q0=zeros(n1,1);

q1=zeros(n1,1);

q2=zeros(n1,1);

q3=zeros(n1,1);

Phai=zeros(n1,1);

Thita=zeros(n1,1);

Gama=zeros(n1,1);

Phai(1)=0/180*pi;%偏航初始角

Thita(1)=(0)*pi/180;%俯仰初始角

Gama(1)=(0)*pi/180;%横滚初始角

L=zeros(n1,1);

nmda=zeros(n1,1);

Vxt=zeros(n1+1,1);

Vyt=zeros(n1+1,1);

q0(1)=cos(-Phai(1)/2)*cos(Thita(1)/2)*cos(Gama(1)/2)+sin(-Phai(1)/2)*sin(Thita(1)/2)*sin(Gama(1)/2);

q1(1)=cos(-Phai(1)/2)*sin(Thita(1)/2)*cos(Gama(1)/2)+sin(-Phai(1)/2)*cos(Thita(1)/2)*sin(Gama(1)/2);

q2(1)=cos(-Phai(1)/2)*cos(Thita(1)/2)*sin(Gama(1)/2)-sin(-Phai(1)/2)*sin(Thita(1)/2)*cos(Gama(1)/2);

q3(1)=cos(-Phai(1)/2)*sin(Thita(1)/2)*sin(Gama(1)/2)-sin(-Phai(1)/2)*cos(Thita(1)/2)*cos(Gama(1)/2);

Wie=0.000072921151467;%已经是弧度制

L(1)=40/180*pi;

nmda(1)=116.0/180*pi;

T=0.01;%采样频率为100Hz

Vxt(1)=0;

Vyt(1)=0;

Re=6378245+80;%加高度80米

e=1/298.3;

for k=1:n1

c11=q0(k)^2+q1(k)^2-q2(k)^2-q3(k)^2;

c12=2*(q1(k)*q2(k)+q0(k)*q3(k));

c13=2*(q1(k)*q3(k)-q0(k)*q2(k));

c21=2*(q1(k)*q2(k)-q0(k)*q3(k));

c22=q0(k)^2-q1(k)^2+q2(k)^2-q3(k)^2;

c23=2*(q2(k)*q3(k)+q0(k)*q1(k));

c31=2*(q1(k)*q3(k)+q0(k)*q2(k));

c32=2*(q2(k)*q3(k)-q0(k)*q1(k));

c33=q0(k)^2-q1(k)^2-q2(k)^2+q3(k)^2;

Cnb=[c11,c12,c13

c21,c22,c23

c31,c32,c33];

if abs(c22)>0.0000000000001

Phai(k)=atan(-c21/c22);

end

if abs(c22)>0.0000000000001 & c21>0

Phai(k)=pi/2;

end

if abs(c22)>0.0000000000001 & c21<0

Phai(k)=-pi/2;

end

if abs(c22)>0.0000000000001 & c22>0

Phai(k)=atan(-c21/c22);

end

if abs(c22)>0.0000000000001 & c22>0 & c21>0

Phai(k)=atan(c21/c22)+pi;

end

if abs(c22)>0.0000000000001 & c22>0 & c21<0

Phai(k)=atan(-c21/c22)-pi;

end

Thita(k)=asin(c23);

Gama(k)=-atan(c13/c33);

Cbn=inv(Cnb);

Aibn=Cbn*Fibb(k,:)';

Rxt=Re/(1-e*(sin(L(k))*sin(L(k))));

axt=Aibn(1,1)+2*Wie*sin(L(k))*Vyt(k)+Vyt(k)*Vxt(k)*tan(L(k))/Rxt; ayt=Aibn(2,1)-2*Wie*sin(L(k))*Vxt(k)-Vxt(k)*Vxt(k)*tan(L(k))/Rxt;

Vxt(k+1)=axt*T+Vxt(k);

Vyt(k+1)=ayt*T+Vyt(k);

Ryt=Re/(1+2*e-3*e*(sin(L(k))*sin(L(k))));

L(k+1)=0.5*T*(Vyt(k+1)+Vyt(k))/Ryt+L(k);

nmda(k+1)=0.5*T*(Vxt(k+1)+Vxt(k))/Rxt*sec(L(k))+nmda(k);

Wenn=[-Vyt(k)/Ryt;Vxt(k)/Rxt;Vxt(k)/Rxt*tan(L(k))];%课本86页4.2-38式

Winn=Wenn+[0;Wie*cos(L(k));Wie*sin(L(k))];

Winb=Cnb*Winn;

Wtbb=Wibb(k,:)'-Winb;

dltaTita0_fang=(Wtbb(1,1)*T)^2+(Wtbb(2,1)*T)^2+(Wtbb(3,1)*T)^2;

dltaTita=[0,-Wtbb(1,1)*T,-Wtbb(2,1)*T,-Wtbb(3,1)*T;

Wtbb(1,1)*T,0,Wtbb(3,1)*T,-Wtbb(2,1)*T;

Wtbb(2,1)*T,-Wtbb(3,1)*T,0,Wtbb(1,1)*T;

Wtbb(3,1)*T,Wtbb(2,1)*T,-Wtbb(1,1)*T,0]

Q=((1-

dltaTita0_fang/8)*eye(4)+0.5*dltaTita)*[q0(k);q1(k);q2(k);q3(k)]; q0(k+1)=Q(1);

q1(k+1)=Q(2);

q2(k+1)=Q(3);

q3(k+1)=Q(4);

end

figure

hold on

i=1:n1;

subplot(1,2,1),plot(i,Vxt(i))%速度误差

title('叠加噪声后的东向速度误差')

subplot(1,2,2),plot(i,Vyt(i))

title('叠加噪声后的的北向速度误差')

figure

hold on

i=1:n1;

subplot(1,2,1),plot(i,L(i)*180/pi)%位置误差

title('叠加噪声后的的纬度误差')

subplot(1,2,2),plot(i,nmda(i)*180/pi)

title('叠加噪声后的的经度误差')

figure

hold on

i=1:n1;

plot(i,Phai(i)*180/pi)%姿态角误差subplot(1,3,1),

title('叠加噪声后的的航向角误差')

figure

hold on

i=1:n1;

plot(i,Thita(i)*180/pi)%subplot(1,3,2),

title('叠加噪声后的俯仰角误差')

figure

hold on

i=1:n1;

plot(i,Gama(i)*180/pi)%subplot(1,3,3),

title('叠加噪声后的横滚角误差')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%轨迹发生器的数据处理%%%%%%%%%%%%%%%

clear,clc

invout=load('E:\惯导实验数据\第四次\实验4.3\第四部分半物理仿真数据生成方法及数据格式说明\IMU数据\invout.dat');

Wx_invout=invout(:,5);

Wy_invout=invout(:,6);

Wz_invout=invout(:,7);

Wibb=[Wx_invout,Wy_invout,Wz_invout];

Fx_invout=invout(:,2);

Fy_invout=invout(:,3);

Fz_invout=invout(:,4);

Fibb=[Fx_invout,Fy_invout,Fz_invout];

L_invout=invout(:,8); %纬度

Jingdu_invout=invout(:,9);%经度

Height_invout=invout(:,10);%高度

N1=size(invout);

n1=N1(1,1);

q0=zeros(n1,1);

q1=zeros(n1,1);

q2=zeros(n1,1);

q3=zeros(n1,1);

Phai=zeros(n1,1);

Thita=zeros(n1,1);

Gama=zeros(n1,1);

Phai(1)=0/180*pi;%偏航初始角

Thita(1)=0*pi/180;%俯仰初始角

Gama(1)=0*pi/180;%横滚初始角

L=zeros(n1,1);

nmda=zeros(n1,1);

Vxt=zeros(n1+1,1);

Vyt=zeros(n1+1,1);

q0(1)=cos(-Phai(1)/2)*cos(Thita(1)/2)*cos(Gama(1)/2)+sin(-

Phai(1)/2)*sin(Thita(1)/2)*sin(Gama(1)/2);

q1(1)=cos(-Phai(1)/2)*sin(Thita(1)/2)*cos(Gama(1)/2)+sin(-Phai(1)/2)*cos(Thita(1)/2)*sin(Gama(1)/2);

q2(1)=cos(-Phai(1)/2)*cos(Thita(1)/2)*sin(Gama(1)/2)-sin(-Phai(1)/2)*sin(Thita(1)/2)*cos(Gama(1)/2);

q3(1)=cos(-Phai(1)/2)*sin(Thita(1)/2)*sin(Gama(1)/2)-sin(-Phai(1)/2)*cos(Thita(1)/2)*cos(Gama(1)/2);

Wie=0.000072921151467;%已经是弧度制

L(1)=40/180*pi;

nmda(1)=116.0/180*pi;

T=0.01;%采样频率为100Hz

Vxt(1)=0;

Vyt(1)=0;

Re=6378245+80;%加高度80米

e=1/298.3;

for k=1:n1

c11=q0(k)^2+q1(k)^2-q2(k)^2-q3(k)^2;

c12=2*(q1(k)*q2(k)+q0(k)*q3(k));

c13=2*(q1(k)*q3(k)-q0(k)*q2(k));

c21=2*(q1(k)*q2(k)-q0(k)*q3(k));

c22=q0(k)^2-q1(k)^2+q2(k)^2-q3(k)^2;

c23=2*(q2(k)*q3(k)+q0(k)*q1(k));

c31=2*(q1(k)*q3(k)+q0(k)*q2(k));

c32=2*(q2(k)*q3(k)-q0(k)*q1(k));

c33=q0(k)^2-q1(k)^2-q2(k)^2+q3(k)^2;

Cnb=[c11,c12,c13

c21,c22,c23

c31,c32,c33];

if abs(c22)>0.0000000000001

Phai(k)=atan(-c21/c22);

end

if abs(c22)>0.0000000000001 & c21>0

Phai(k)=pi/2;

end

if abs(c22)>0.0000000000001 & c21<0

Phai(k)=-pi/2;

end

if abs(c22)>0.0000000000001 & c22>0

Phai(k)=atan(-c21/c22);

end

if abs(c22)>0.0000000000001 & c22>0 & c21>0

Phai(k)=atan(c21/c22)+pi;

end

if abs(c22)>0.0000000000001 & c22>0 & c21<0

Phai(k)=atan(-c21/c22)-pi;

end

Thita(k)=asin(c23);

Gama(k)=-atan(c13/c33);

Cbn=inv(Cnb);

Aibn=Cbn*Fibb(k,:)';

Rxt=Re/(1-e*(sin(L(k))*sin(L(k))));

axt=Aibn(1,1)+2*Wie*sin(L(k))*Vyt(k)+Vyt(k)*Vxt(k)*tan(L(k))/Rxt; ayt=Aibn(2,1)-2*Wie*sin(L(k))*Vxt(k)-Vxt(k)*Vxt(k)*tan(L(k))/Rxt;

Vxt(k+1)=axt*T+Vxt(k);

Vyt(k+1)=ayt*T+Vyt(k);

Ryt=Re/(1+2*e-3*e*(sin(L(k))*sin(L(k))));

L(k+1)=0.5*T*(Vyt(k+1)+Vyt(k))/Ryt+L(k);

nmda(k+1)=0.5*T*(Vxt(k+1)+Vxt(k))/Rxt*sec(L(k))+nmda(k);

Wenn=[-Vyt(k)/Ryt;Vxt(k)/Rxt;Vxt(k)/Rxt*tan(L(k))];%课本86页4.2-38式

Winn=Wenn+[0;Wie*cos(L(k));Wie*sin(L(k))];

Winb=Cnb*Winn;

Wtbb=Wibb(k,:)'-Winb;

dltaTita0_fang=(Wtbb(1,1)*T)^2+(Wtbb(2,1)*T)^2+(Wtbb(3,1)*T)^2;

dltaTita=[0,-Wtbb(1,1)*T,-Wtbb(2,1)*T,-Wtbb(3,1)*T;

Wtbb(1,1)*T,0,Wtbb(3,1)*T,-Wtbb(2,1)*T;

Wtbb(2,1)*T,-Wtbb(3,1)*T,0,Wtbb(1,1)*T;

Wtbb(3,1)*T,Wtbb(2,1)*T,-Wtbb(1,1)*T,0]

Q=((1-

dltaTita0_fang/8)*eye(4)+0.5*dltaTita)*[q0(k);q1(k);q2(k);q3(k)]; q0(k+1)=Q(1);

q1(k+1)=Q(2);

q2(k+1)=Q(3);

q3(k+1)=Q(4);

end

figure

hold on

惯性导航作业

惯性导航作业

一、数据说明: 1:惯导系统为指北方位的捷连系统。初始经度为116.344695283度、纬度为39.975172度,高度h为30米。初速度 v0=[-9.993908270;0.000000000;0.348994967]。 2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。 3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw.mat中保存的为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列顺序为一~三行分别为X、Y、Z向信息. 4: 航向角以逆时针为正。 5:地球椭球长半径re=6378245;地球自转角速度wie=7.292115147e-5;重力加速度g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1-gk2*c33^2); g0=9.7803267714;gk1=0.00193185138639;gk2=0.00669437999013;c33=sin(lat纬度); 二、作业要求: 1:可使用MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据:load D:\...文件路径...\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增量法。 2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图; (2) 做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s); (3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s); 以上结果均要附在作业报告中。 3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv)

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

北航物理实验绪论考试真题(4套题含问题详解)

物理实验绪论测试题1 一、单项选择题 1.某测量结果0.01010cm有( b )位有效数字。 A.3位 B.4位 C.5位 D.6位 2.已知常数e=2.718281828……,测量L=0.0023,N=2.73,则(e-L)/N=( c ) A.0.994 B.0.9949 C.0.995 D.1.00 3.物理量A=x+y x?y ,那末其相对不确定度为( a ) A. 2 x2?y2 √x2u2(y)+y2u2(x) B.2 x2?y2 √x2u2(y)?y2u2(x) C.√u 2(x)+u2(y) (x+y)2 +u2(x)+u2(y) (x?y)2 D.√u 2(x)+u2(y) (x+y)2 ?u2(x)?u2(y) (x?y)2 4.用作图法处理数据时,为保证精度,至少应使坐标纸的最小分格和测量值的( c )相对 应。 A.第一位有效数字 B.第二位有效数字 C.最后一位有效数字 D.最后一位准确数字 二、填空题: 5.用计算器算出圆柱体的转动惯量J=645.0126g?cm2,平均值的不确定度为u(J)= 则J+u(J)=( ± )×102g?cm2 6.多量程电压表(1级,3- 7.5-15-30V)用于检测某电路两端的电压,如果用3V档去测3V 电压,其相对不确定度为。如果用7.5V档去测3V电压,其相对不确定度为。 三、多项选择题: 7.满足正态分布的物理量,下面的叙述哪些是正确的?abc A 做任何次测量,其结果有68.3%的可能性落在区间[A?δ,A+δ] B 设某次测量的结果为X i,则X i±δ(x)表示真值落在[X i?δ(x),X i+δ(x)]的概率为0.683 C X i±δ(x)与x±δ(x)的置信概率是相同的 D x±δ(x)的置信概率比X i±δ(x)的置信概率高 8.指出下列关于仪器误差的叙述哪些是错误的(按物理实验课的简化要求)bcd A.千分尺的仪器误差等于最小分度的一半 B.游标卡尺的仪器误差等于游标精度的一半 C.磁电式仪表的仪器误差=等级%×测量值 D.箱式电桥? 仪 =等级%(测量值+基准值) 四、计算题

北航基础物理实验研究性实验报告_分光仪的调整及应用

北京航空航天大学物理研究性实验报告 分光仪的调整及其应用 第一作者:所在院系:就读专业:第二作者:所在院系:就读专业:

目录 目录 一.报告简介 (1) 二.实验原理 (1) 实验一.分光仪的调整 (1) 实验二.三棱镜顶角的测量 (3) 实验三.最小偏向角法测棱镜折射率 (1) 二.实验仪器 (1) 三.实验主要步骤 (2) 实验1.分光仪的调整 (2) 1.调整方法 (2) 2.要求 (4) 实验2.三棱镜顶角的测量 (4) 1.调整要求 (4) 2.实验操作 (5) 实验3.棱镜折射率的测定(最小偏向角法) (6) 四.实验数据记录 (6) 五.数据处理 (7) 实验2.反射法测三棱镜顶角 (7) 实验3.最小偏向角法测棱镜折射率 (7) 六.误差分析 (8) 七.分析总结 (8) 八.实验改进 (9) 九.实验感想 (10) 十.参考文献及图片附件: (11)

一.报告简介 本报告以分光仪的调整、三棱镜顶角和其折射率的测量为主要内容,先介绍了实验的基本原理与过程,而后进行了数据处理与不确定度计算。并以实验数据对误差的来源进行了分析。同时还给出了调节分光仪的经验总结与方法,并对现有实验仪器和试验方法提出了改进的意见。 二.实验原理 实验一.分光仪的调整 分光仪的结构因型号不同各有差别,但基本原理是相同的,一般都由底座、刻度读数盘、自准直望远镜、平行光管、载物平台5部分组成。 1-狭缝套筒;2-狭缝套筒紧固螺钉;3-平行光管;4-制动架;5-载物台;6-载物台调平螺钉;7-载物台锁紧螺钉;8-望远镜;9-望远镜锁紧螺钉;10-阿贝式自准直目镜;11-目镜;12-仰角螺钉;13-望远镜光轴水平螺钉;14-支臂;15-望远镜转角微调螺钉;16-读数刻度盘止动螺钉;17-制动架;18-望远镜止动螺钉;19底座;20-转座;21-

北航惯性导航综合实验五实验报告

惯性导航技术综合实验 实验五惯性基组合导航及应用技术实验

惯性/卫星组合导航系统车载实验 一、实验目的 ①掌握捷联惯导/GPS组合导航系统的构成和基本工作原理; ②掌握采用卡尔曼滤波方法进行捷联惯导/GPS组合的基本原理; ③掌握捷联惯导 /GPS组合导航系统静态性能; ④掌握动态情况下捷联惯导 /GPS组合导航系统的性能。 二、实验内容 ①复习卡尔曼滤波的基本原理(参考《卡尔曼滤波与组合导航原理》第二、五章); ②复习捷联惯导/GPS组合导航系统的基本工作原理(参考以光衢编著的《惯性导航原理》第七章); 三、实验系统组成 ①捷联惯导/GPS组合导航实验系统一套; ②监控计算机一台。 ③差分 GPS接收机一套; ④实验车一辆; ⑤车载大理石平台; ⑥车载电源系统。 四、实验内容 1)实验准备 ①将IMU紧固在车载大理石减振平台上,确认IMU的安装基准面紧靠实验平台; ②将IMU与导航计算机、导航计算机与车载电源、导航计算机与监控计算

机、GPS 接收机与导航计算机、GPS 天线与GPS 接收机、GPS 接收机与GPS 电池之间的连接线正确连接; ③ 打开GPS 接收机电源,确认可以接收到4颗以上卫星; ④ 打开电源,启动实验系统。 2) 捷联惯导/GPS 组合导航实验 ① 进入捷联惯导初始对准状态,记录IMU 的原始输出,注意5分钟内严禁移动实验车和IMU ; ② 实验系统经过5分钟初始对准之后,进入导航状态; ③ 移动实验车,按设计实验路线行驶; ④ 利用监控计算机中的导航软件进行导航解算,并显示导航结果。 五、 实验结果及分析 (一) 理论推导捷联惯导短时段(1分钟)位置误差,并用1分钟惯导实验数据验证。 1、一分钟惯导位置误差理论推导: 短时段内(t<5min ),忽略地球自转0ie ω=,运动轨迹近似为平面1/0R =,此时的位置误差分析可简化为: (1) 加速度计零偏?引起的位置误差:2 10.88022t x δ?==m (2) 失准角0φ引起的误差:2 02 0.92182g t x φδ==m (3) 陀螺漂移ε引起的误差:3 30.01376 g t x εδ==m 可得1min 后的位置误差值123 1.8157m x x x x δδδδ=++= 2、一分钟惯导实验数据验证结果: (1)纯惯导解算1min 的位置及位置误差图:

传感器实验报告

金属箔式应变片——半桥性能实验 一. 实验目的:比较半桥与单臂电桥的不同性能,了解其特点。 二. 基本原理:不同受力方向的两片应变片接入电桥作为邻边,电桥输出 三. 灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电 压U02=EK/ε2。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、数显表、+15V 电源、+-4V 电源、万用表 五. 实验步骤: ① 按要求将应变式传感器装与传感器模板上。 ② 按要求进行电路接线,将两个应变片接入桥路。 ③ 进行测量,将数据记录到表格中。 六.实验数据 所以可知灵敏度δ=0.3639,非线性误差为δf1=Δm/Y F.s =1.112/65=1.71% 七、思考题: 1、半桥侧量时两片不同受力状态的电阻应变片接入电桥时,应放在: (1)对边 (2)邻边。 2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性 (2)应变片应变效应是非线性的 (3)调零值不是真正为零。 答:都是。但是调零值可以通过记录最初的非零值来消除此误差

金直流全桥的应用——电子秤实验 一. 实验目的:了解应变片直流全桥的应用电路的标定。 二. 基本原理:电子秤实验原理为实验三全桥测量原理,通过对电路调节 三. 使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始 电子秤。 四. 需用器件和单元:应变式传感器实验模板、应变式传感器、砝码、±15V 电源、± 4V 电源 五. 实验步骤: 1、按实验一中2的步骤将差动放大器调零:参考图1-2将四个应变片按正确的接法接成全桥形式,合上主控箱电源开关调节电桥平衡电位器Rw1,使数显表显示0.00V 。 2、将10只砝码全部置于传感器的托盘上,调节电位器Rw3(增益即满量程调节),使数显表显示为0.200V(2V 档测显)或-0.200V 。 3、拿去托盘上的所有法码,调节电器Rw4(零位调节),使数显表显示为0。000V 或—0。000V 。 4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V 改为重量量纲g ,就可秤重,成为一台原始的电子秤。 6、根据上表计算误差与非线性误差。 所以可知灵敏度δ=1,非线性误差为δ f1=Δm/Y F.s =0

北航基础物理研究性报告讲解

北航基础物理研究性报告讲解

北航基础物理实验研究性报告1051 电位差计及其应用 140221班 2015-12-13 第一作者:邓旭锋14021014 第二作者:吴聪14021011

目录 1.引言 (4) 2.实验原理 (5) 2.1补偿原理 (5) 2.2 UJ25型电位差计 (8) 3.实验仪器 (10) 4.实验步骤 (10) 4.1自组电位差计 (10) 4.2 UJ25型箱式电位差计 (11) 5.实验数据处理 (12) 5.1 实际测量Ex的大小 (13) 5.2 不确定度的计算 (13) 5.3 测量结果最终表述 (14) 5.4 实验误差分析 (14) 6.实验改进与意见 (14) 6.1 实验器材的改进 (8) 6.2 实验方法改进 (10) 6.3 实验内容的改进 (10)

7.实验感想与体会 (21) 【参考文献】 (24) 摘要:将电位差计实验中的补偿法原理应用于电学物理量的测量中,该方法可以用来精确测量电流、电阻、电压等电学量,也可以利用电位差计,获得比较精确的二极管伏安特性曲线可以避免了因电表的内阻而引起的测量误差。利用实验室现有仪器设计了一些切实可行的新实验。 关键字:电位差计;补偿法;UJ23型电位差计;电阻;系统误差。 1.引言 电位差计是电压补偿原理应用的典型范例,它是利用电压补偿原理使电位差计变成一内阻无穷大的电压表,用于精密测量电势差或者电压。同理,利用电流补偿原理也可以制作一内阻为零的电流表,用于电流的精密测量。 电位差计的测量精确度高,且避免了测量的接入误差,但它的操作比较复杂,也不易实现测量的自动化。在数字仪表迅速发展的今天,电压

北航物理实验研究性报告

第0页 本人声明 我声明,本论文为本人独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。 3903·2415 高等工程学院 李柏

第1页 晶体的电光效应的深入剖析 第一作者:李柏(自主独立完成) 摘要 本文基于作者在认真做过实验并对内容的深刻理解,旨在对该实验从原理到操作流程以及实验数据处理进行更加深入的剖析。 在正文的第一部分,本文从一名大二本科生的角度对实验原理进行了系统地重新表述,查阅资料并补充了部分《大学物理·光学》的必要知识(例如1/4玻片、单轴晶体的定义)力求让下一届的学生们能彻底理解原理部分,部分素材也可适当补充进新版的《物理实验》课本中。 在第二部分,本文细致地描述了实验操作的各个流程,从等高共轴的调节方法开始,给出了有理有据的调节方法,可以作为今后教师指导学生的基本判据。 在第三部分,本文重新安排了数据处理,采用了更加翔实的原始数据,但必须指出本文的缺陷:依然未能定量地得出产生误差的原因。 在第四部分,包含作者对试验中一些现象的理论层面的深入剖析,以及实验感想、建议等等。 最后的最后,是完成本文参阅资料的声明。 关键词:晶体电光效应电光调制大学物理实验论文测量半波电压

第2页 第一章:实验原理的重新表述 1.1电光效应与一次电光效应 晶体在外电场作用下折射率会产生变化,这种现象称为电光效应。这种效应由于n 随电场变化而变化时间极短,甚至能跟得上1010Hz的电场变化频率,故可制成响应迅速的各种光电设备(例如斩波器、激光测距仪)。仅仅在同一教室内的光纤陀螺寻北的陀螺仪中就有电光效应制成的元件,可见电光效应的广泛应用。 电场引起折射率变化可表示为n - n0 = aE0 + bE02+…… 由一次项aE0 引起的变化称为一次电光效应,也称泡耳克斯效应。一次效应又区分纵横方向,以加载电场的取向决定。本实验研究铌酸锂晶体的一次纵向电光效应。 光在晶体中传播时,在不平行于光轴方向上,由于e光和o光传播速度不同,而出现两个不同折射率的光的像,这种现象叫做双折射现象(图1-1)。只有一个光轴的晶体就叫单轴晶体,铌酸锂原本是单轴晶体,但晶体外加电场后,将变成双轴晶体,导致与双折射类似的结果,出射光可能为椭圆偏振光。 图1-1 双折射原理示意图 1.2电光调制 在无线电通信中,为了传递信息,总是通过表征电磁波特性的正弦波性质受传递信号控制来实现,这种控制过程被称作调制。接收时,逆过程则称为解调。本实验采用强

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

北航惯性导航综合实验四实验报告

基于运动规划的惯性导航系统动态实验 二零一三年六月十日

实验4.1 惯性导航系统运动轨迹规划与设计实验 一、实验目的 为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。 二、实验内容 学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。 三、实验系统组成 USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。 四、实验原理 IMU安装误差系数的计算方法 USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。 USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由 USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。

图4-1-1USB_PCL6045B 评估板原理框图 如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。 USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。 五、实验内容 1、操作步骤 1)检查电机驱动电源(24V) 2)检查USB_PCL6045B 控制板与上位机及电机驱动器间的连接电缆 3)启动USB_PCL6045B 控制板评估测试系统检查系统是否正常工作。 4)运行编写的定长运动程序,并比较实际位移与设定位移。

传感器实验报告

传感器实验报告(二) 自动化1204班蔡华轩 U2 吴昊 U5 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔 记下位移X 与输出电压值,填入表7-1。

5、根据表7-1 数据计算电容传感器的系统灵敏度S 和非线性误差δf。 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S= 非线性误差δf=353=% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理

北航卡尔曼滤波课程-捷联惯导静基座初始对准实验

卡尔曼滤波实验报告 捷联惯导静基座初始对准实验 一、实验目的 ①掌握捷联惯导的构成和基本工作原理; ②掌握捷联惯导静基座对准的基本工作原理; ③了解捷联惯导静基座对准时的每个系统状态的可观测性; ④了解双位置对准时系统状态的可观测性的变化。 二、实验原理 选取状态变量为:[]T E N E N U x y x y z X V V δδεεε=ψψψ??,其

中导航坐标系选为东北天坐标系,E V δ为东向速度误差,N V δ为北向速度误差,E ψ为东向姿态误差角,N ψ为北向姿态误差角,U ψ为天向姿态误差角,x ?为东向加速度偏置,y ?为北向加速度偏置,x ε为东向陀螺漂移,y ε为北向陀螺漂移,z ε为天向陀螺漂移。则系统的状态模型为: X AX W =+ (1) 其中, 1112212211 12 1321222331323302sin 000002sin 000000000sin cos 0000sin 000000cos 0000000000000000000000000000000000000000000000000000 0L g C C L g C C L L C C C L C C C L C C C A Ω-? ? ??-Ω????Ω-Ω? ?-Ω????Ω=? ?????? ?????????? ? [00000]E N E N U T V V W W W W W W δδψψψ=,E D V W W δψ 为零均值高斯 白噪声,分别为加速度计误差和陀螺漂移的噪声成分,Ω为地球自转角速度,ij C 为姿态矩 阵n b C 中的元素,L 为当地纬度。 量测量选取两个水平速度误差:[ ]T E N Z V V δδ=,则量测方程为: 10000000000100000000E E N N V X V δηδη???? ??=+???????????? (2) 即Z HX η=+ 其中,H 为量测矩阵,[]T E N ηηη=为量测方程的随机噪声状态矢量,为零均值高 斯白噪声。 要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。 系统转移矩阵为: 2323/1111102!3!! n n k k k k k k n T T T I TA A A A n ∞ -----=Φ=++++=∑ (3)

北航_仪器光电综合实验报告_彩色线阵CCD传感器系列实验

2012/4/29

彩色线阵CCD传感器系列实验 实验时间:2012年4月27日星期五 (一)实验目的: 1.了解并学习CCD的使用、驱动原理和功能特性等。 (二)实验内容: 1.本实验共分为以下四个实验部分,主要内容为: 1)线阵原理及驱动 2)特性测量实验 3)输出信号二值化 4)线阵CCD的AD数据采集 (三)实验仪器: 1.双踪迹同步示波器(带宽50MHz以上)一台, 2.彩色线阵CCD多功能实验仪YHCCD-IV一台 3.实验用PC计算机及A/D数据采集基本软件 (四)实验结果及数据分析: 一、线阵原理及驱动 1)驱动频率与周期 表格 1 驱动频率与周期实验结果

由于对不同驱动频率示值,对应不同驱动频率,当显示数值为0时,f=1Mhz;为1时,f=500Khz;为2时,f=250Khz;为3时,f=125Khz; 对应F1,F2频率始终是驱动信号的8分之一,而RS则为F1,F2频率的2倍; 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 2)积分时间测量 表格 2 积分时间测量结果 现象及数据分析:由上图可知,在同一频率档位上,随着积分时间档位的增长,FC周期逐渐增加;对于同一积分档位,考虑到驱动频率间的关系,FC周期恰好成倍数关系; 二、特性测量实验 表格 3 输出信号幅度与积分时间的关系0档

对应曲线: 图表 1 输出信号幅度与积分时间的关系0档 表格 4 输出信号幅度与积分时间的关系 1档

图表 2 输出信号幅度与积分时间的关系1档 表格 5 输出信号幅度与积分时间的关系2档

北航物理演示实验报告-旋光色散

旋光色散 【实验目的】:观察旋光色散现象。 【实验仪器】:旋光色散演示仪。 【实验原理】: 图1 旋光色散原理图 旋光色散是研究光学活性材料的偏振角随波长变化的一种色散效应。当偏振光通过某些物质(如石英、氯酸钠等晶体或食糖水溶液、松节油等),光矢量的振动面将以传播方向为轴发生转动,这一现象称为旋光现象。 本实验利用糖溶液的旋光性演示旋光现象及影响旋光效应的因素。糖溶液放在两个偏振片中间,一个偏振片用于起偏,另一个偏振片用于检偏。单色偏振光通过液态旋光物质时,振动面转过的角度即旋光度ΔΦ与旋光物质的性质、偏振光在旋光物质中经过的距离L、溶液浓度C有关,其关系为 ΔΦ=αCL 比例系数α称溶液的旋光率,它是与入射光波长有关的常数。旋光度大致与入射偏振光波长的平方成反比,这种旋光度随波长而变化的现象称为旋光色散。 【实验步骤】:

图2 旋光色散实验装置图 1、配置溶液。大约用300克蔗糖,玻璃管内的溶液大约占整个容器的2/3左右为妥,将溶液摇匀。 2、打开仪器灯箱光源,连续缓慢转动前端偏振片,可观察到玻璃管下半部有糖溶液的地方透过来的光的颜色赤橙黄绿青兰紫依次变化;管的上部没有糖溶液的地方仅有明暗的变化。 3、在光源和装有糖溶液的玻璃管之间加上滤色片,旋转偏振片,观察玻璃管上下半部的变化情况。 4、换用另一种颜色的滤色片,重复3的操作。 5、实验结束,关闭电源。 【实验应用】: 1、半定量地测量不同波长的光对偏振面旋转角度的影响。 在光源和装有糖溶液的玻璃管之间加上滤色片,旋转检偏器,记录下从玻璃管上方看视场最暗时检偏器的角度;再旋转检偏器,再记下从玻璃管下方看视场最暗时检偏器的角度;上述两个测量角位置之差就是糖溶液的旋光角度。 2、旋光法可用于各种光学活性物质的定量测定或纯度检验。 将样品在指定的溶剂中配成一定浓度的溶液,由测得的旋光度算出比旋光度,与标准比较,或以不同浓度溶液制出标准曲线,求出含量。在旋光计的基础上还发展了一种糖量计,专门用于测量蔗糖含量。用白光为光源,以石英楔抵消蔗糖溶液对不同波长光的色散,并将石英楔校正,标以蔗糖的百分含量,即可直接测出浓度,简便迅速,常用于制糖工业。

波音737-800建模大作业

波音737—800飞机飞行模型建立实验 学院:航空自动化 专业:导航制导与控制

1 实验目的 根据飞机所提供的QAR数据,把飞机的飞行过程分为几个阶段,通过受力分析计算得出飞机在各阶段的各个时刻的地速以及飞机当时所处的地球经纬度。这之后,再把计算出来的这些数据与QAR里面的相对应的数据进行比较,得出数据误差。使我们对飞机各阶段的机体受力分析得到验证,最后确定飞机的整个飞行过程的模型。 2 实验内容 分析所得的QAR数据,根据QAR数据对飞机的飞行过程进行分阶段处理。然后查找相关资料,对飞机在飞行各阶段过程中进行受力分析。进而用MATLAB软件编写程序,计算出飞机各个阶段的地速和地球经纬度。最后把计算出来的数据和QAR里相应的数据作比较,用MA TLAB画出比较曲线图,得出计算误差,建立起飞机的飞行过程模型。在整个实验过程中要修学的课程有:《大气数据应用分析》、《导航原理与系统》、《飞机的飞行性能》、《惯性导航原理》、《MATLAB应用与编程》等等。

3 实验步骤 3.1 QAR数据分析 QAR数据分析 数据英文数据意义和用途所用仪表备注 1 东经Present Position Longitude 由0°本初子午线向东、西递增到180°导航仪 2 北纬Present Position Latitude 赤道向北递增到90°导航仪 3 磁航向Heading Magnetic 飞机纵轴在地平面上的投影,与磁子午线的 夹角(磁北顺时针转的夹角)。磁偏角:地 球表面任一点的磁子午圈同地理子午圈的夹 角。 磁罗盘上 有罗差修 正器,已经 抵消罗差, 所以磁罗 盘测的基 本就是磁 航向。 4 标准气压高度ALTITUDE 飞机到标准气压平面的垂直距离气压式高度表 5 左无线电高度RADIO HEIGHT Left 飞机到地面的垂直距离 无线电高 度表 6 机场标高AIR/GROUND 机场与海平面的垂直高度 7 左主起落架Left main gear air/end 起落架用于在地面停放及滑行时支撑飞机并 使飞机在地面上灵活运动,并吸收飞机运动 时产生的撞击载荷。主要用来判断飞机是否 起飞。 8 右主起落架Right main gear air/end 9 真空速Computed airspeed 飞机相对于空气的运动速度,根据空速可计 算地速,从而确定已飞距离和待飞时间。 空速表0.5~1.0 10 马赫数MACH 真空速与飞机所在高度的音速之比,当飞机 的M数超过临界M数时,飞机的空气动力特 马赫数表0.5~1.0

北航惯性导航综合实验四实验报告

基于运动规划的惯性导航系统动态实验 GAGGAGAGGAFFFFAFAF

二零一三年六月十日 实验4.1 惯性导航系统运动轨迹规划与设计实验一、实验目的 为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。 二、实验内容 学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。 三、实验系统组成 USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。 四、实验原理 IMU安装误差系数的计算方法 GAGGAGAGGAFFFFAFAF

USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。 USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意 2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由 USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。 GAGGAGAGGAFFFFAFAF

图4-1-1USB_PCL6045B 评估板原理框图如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。 USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。 五、实验内容 GAGGAGAGGAFFFFAFAF

北航电涡流传感器实验报告

电涡流传感器实验报告 38030414蔡达 一、实验目的 1.了解电涡流传感器原理; 2.了解不同被测材料对电涡流传感器的影响。 二、实验仪器 电涡流传感器实验模块,示波器:DS5062CE,微机电源:WD990型,士12V,万用表:VC9804A型,电源连接电缆,螺旋测微仪 三、实验原理 电涡流传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,在与其平行的金属片上会感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关,当平面线圈、被测体(涡流片)、激励源确定,并保持环境温度不变,阻抗Z只与距离X有关,将阻抗变化转为电压信号V输出,则输出电压是距离X的单值函数。

四. 实验数据及处理 1.铁片 0.5 1 1.52 2.5 3 3.5 电涡流传感器电压位移曲线—铁片 电压/V 位移/mm

0.5 1 1.5 2 2.53 3.5 电涡流传感器电压位移拟合曲线—铁片 电压/V 位移/mm 其线性工作区为0.6——3.4,对该段利用polyfit 进行函数拟合,可得V=-1.0488X-1.2465 2.铜片

电涡流传感器电压位移曲线—铜片 电压/V 位移/mm 2.2 2.4 2.6 2.83 3.2 3.4 3.6 -6-5.95-5.9-5.85 -5.8-5.75-5.7 -5.65-5.6-5.55-5.5电涡流传感器电压位移拟合曲线—铜片 电压/V 位移/mm 其线性工作区为2.4——3.4,对该段利用polyfit 进行函数拟合,可得V= -0.4500X -4.4667

导航系统大作业

导航系统

1.简述捷联惯性系统中地理系到机体系的姿态阵b g C 其含义及其功能。 答:含义:导航坐标系g g g O x y z -到机体坐标系b b b O x y z -的一组欧拉角为,,θγψ,导航坐 标系经过3次转动到机体坐标系。g g g x y z 依次沿g O z -、' b O x -、'' b O y -旋转角度-ψ、θ、γ后到b b b x y z 。姿态矩阵中包含了机体的姿态角方位角ψ、俯仰角θ和横滚角γ。 功能:机体陀螺仪输出的角速度信息经过补偿后,积分得到机体坐标系与导航坐标系的姿态信 息和姿态转移矩阵。捷联惯导系统中,加速度计与载体固连,利用姿态阵完成加速度计输出信息从机体坐标到导航坐标的转换。转换后的加速度计信息经过积分可得到机体在导航坐标系下的速度和位置。 2.画出并用式表达速度三角形(地速、控速、风速)及航迹角、航向角与偏流角之间的关系。 答:风速:空气相对于地面的运动速度;空速:飞机相对于空气运动的速度;地速:飞机相对 于地面的运动速度。=+v v v 风地空 航向角:机头在水平面投影与真北方向的夹角?;偏流角:空速矢量和地速矢量之间的夹角,用 δ表示;航迹角:飞机速度矢量在水平面投影与真北方向的夹角。航向角?加上偏流角δ等于地 速v 地的方位角α。 3.简述惯性导航系统、卫星导航系统、多普勒导航、塔康、VOR/DME 、天文导航其各自的基本工作原理、特点及误差特性。 答:一、惯性导航系统 (1)工作原理 以牛顿力学定律为基础,以陀螺仪和加速度计为敏感器件进行导航参数解算。系统根据陀螺

仪的输出建立导航坐标系,根据加速度计输出解算出运载体的速度和位置,从而实现姿态和航向解算。 (2)特点 惯性导航系统不需要任何外来信息,也不会向外辐射任何信息,仅依靠惯性器件就能全天候,全球性的自主三维定位和三维定向,同时具备自主性、隐蔽性和信息的完备性。 (3)误差特性 误差随时间积累,短时间导航精度较高。 二、卫星导航系统 (1)工作原理 以卫星和用户接收机天线之间的距离观测量为基准,根据已知的卫星的瞬时坐标(轨道根数),来确定用户观测点的经纬度和高程信息。 (2)特点 卫星导航系统具有全天候、高精度、自动化、高效益、性能好,应用广的特点,是一种被动式的导航系统。但需要地面站支持,电波易受干扰。 (3)误差特性 在卫星导航系统中,影响测量结果的误差因素有与卫星有关的误差,与观测有关的误差,和与观测站有关的误差。包括卫星时钟、星历误差,也受电离层、对流层和周围环境事物遮挡等影响。长时间导航精度较高。 三、多普勒导航系统 (1)工作原理 多普勒导航系统是一种自助式推算导航系统。机载多普勒雷达向地面发射电波和接收地面的回波,通过测量地面回波的多普勒频移,通过定位解算,即可得到飞行器的位置信息。 (2)特点 多普勒导航系统不需要有地面或卫星发射台,发射的波束窄,角度陡,难以被监测,自主性强,测速精度高,不需要初始对准。 (3)误差特性 影响多普勒导航系统的误差有测速误差和飞机的角度敏感误差。系统的定位误差发散,随时间推移而增大。 四、塔康导航系统 (1)工作原理 塔康导航系统是由塔康地面设备(塔康信标)和机载设备组成。其采用极坐标体制定位,飞机定时向地面台发送和接收信号,机载设备与塔康信标配合连续解算出飞机所在点相对于信标的方位角和距离。 (2)特点

北航惯性导航综合实验一实验报告

实 验一 陀螺仪关键参数测试与分析实验 加速度计关键参数测试与分析实验 二零一三年五月十二日 实验一陀螺仪关键参数测试与分析实验 一、实验目得 通过在速率转台上得测试实验,增强动手能力与对惯性测试设备得感性认识;通过对陀螺仪测试数据得分析,对陀螺漂移等参数得物理意义有清晰得认识,同时为在实际工程中应用陀螺仪与对陀螺仪进行误差建模与补偿奠定基础。 二、实验内容 利用单轴速率转台,进行陀螺仪标度因数测试、零偏测试、零偏重复性测试、零漂测试实验与陀螺仪标度因数与零偏建模、误差补偿实验。 三、实验系统组成 单轴速率转台、MEMS 陀螺仪(或光纤陀螺仪)、稳压电源、数据采集系统与分析系统。

四、实验原理 1.陀螺仪原理 陀螺仪就是角速率传感器,用来测量载体相对惯性空间得角速度,通常输出与角速率对应得电压信号。也有得陀螺输出频率信号(如激光陀螺)与数字信号(把模拟电压数字化)。以电压表示得陀螺输出信号可表示为: (1-1)式中就是与比力有关得陀螺输出误差项,反映了陀螺输出受比力得影响,本实验不考虑此项误差。因此,式(1-1)简化为 (1-2)由(1-2)式得陀螺输出值所对应得角速度测量值: (1-3) 对于数字输出得陀螺仪,传感器内部已经利用标度因数对陀螺仪模拟输出进行了量化,直接输出角速度值,即: (1-4)就是就是陀螺仪得零偏,物理意义就是输入角速度为零时,陀螺仪输出值所对应得角速度。且 (1-5) 精度受陀螺仪标度因数、随机漂移、陀螺输出信号得检测精度与得影响。通常与表现为有规律性,可通过建模与补偿方法消除,表现为随机特性,可通过信号滤波方法抵制。因此,准确标定与就是实现角速度准确测量得基础。 五、陀螺仪测试实验步骤 1)标度因数与零偏测试实验 a、接通电源,预热一定时间; b、陀螺工作稳定后,测量静止情况下陀螺输出并保存数据;

北航物理实验绪论考试真题含答案

北航物理实验绪论测试题1 一、 单项选择题 1. 某测量结果0.01010cm 有( B )位有效数字。 A.3位 B.4位 C.5位 D.6位 2. 已知常数e=2.718281828……,测量L=0.0023,N=2.73,则(e-L)/N=( C ) A.0.994 B.0.9949 C.0.995 D.1.00 3. 物理量A=错误!未找到引用源。,那末其相对不确定度为(A ) A.错误!未找到引用源。 B.错误!未找到引用源。 C .错误!未找到引用源。 D.错误!未找到引用源。 4. 用作图法处理数据时,为保证精度,至少应使坐标纸的最小分格和测量值的( C )相 对应。 A.第一位有效数字 B.第二位有效数字 C.最后一位有效数字 D.最后一位准确数字 二、填空题: 5. 用计算器算出圆柱体的转动惯量J=645.0126错误!未找到引用源。,平均值的不确定度为 u(J)= :6.5、0.2 6:0.0058 7:ABC 8:BCD 则J+u(J)=( 6.5 0.2 )错误!未找到引用源。 6. 多量程电压表(1级,3- 7.5-15-30V )用于检测某电路两端的电压,如果用3V 档去测3V 电压,其相对不确定度为 0,0058 。如果用7.5V 档去测3V 电压,其相对不确定度为 。 三、多项选择题: 7. 满足正态分布的物理量,下面的叙述哪些是正确的? A 做任何次测量,其结果有68.3%的可能性落在区间错误!未找到引用源。内 B 设某次测量的结果为错误!未找到引用源。,则错误!未找到引用源。表示真值落在错误!未找到引用源。的概率为0.683 C 错误!未找到引用源。与错误!未找到引用源。的置信概率是相同的 D 错误!未找到引用源。的置信概率比错误!未找到引用源。的置信概率高 8. 指出下列关于仪器误差的叙述哪些是错误的(按物理实验课的简化要求) A.千分尺的仪器误差等于最小分度的一半 B.游标卡尺的仪器误差等于游标精度的一半 C.磁电式仪表的仪器误差=等级%×测量值 D.箱式电桥错误!未找到引用源。=等级%(测量值+基准值) 四、计算题 9. 弹簧振子的周期T 与质量m 的关系为错误!未找到引用源。。其中错误!未找到引用源。

相关文档
相关文档 最新文档