文档库 最新最全的文档下载
当前位置:文档库 › 指数与指数幂的运算(基础)

指数与指数幂的运算(基础)

指数与指数幂的运算(基础)
指数与指数幂的运算(基础)

指数与指数幂的运算 A

一、目标与策略

明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!

学习目标:

1.理解分数指数的概念,掌握有理指数幂的运算性质

(1)理解n 次方根,n 次根式的概念及其性质,能根据性质进行相应的根式计算;

(2)能认识到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化;

(3)能利用有理指数运算性质简化根式运算.

2.掌握无理指数幂的概念,将指数的取值范围推广到实数集;

3.通过指数范围的扩大,我们要能理解运算的本质,认识到知识之间的联系和转化,认识到符号化思想的重要性,在抽象的符号或字母的运算中提高运算能力;

4.通过对根式与分数指数幂的关系的认识,能学会透过表面去认清事物的本质.

学习策略:

学习实数指数幂及其运算时,应熟练掌握基本技能:运算能力、处理数据能力以及运用科学计算器的能力.

二、学习与应用

(1

)零指数幂:a 0= (a 0)

“凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对性.我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记.

知识回顾——复习

学习新知识之前,看看你的知识贮备过关了吗?

(2)负整数指数幂:a-p= (a0, p是数)

(3)一般地,如果一个数x的等于a,即a

x=

2,那么,这个数x就叫做a的平方根。也叫做二次方根.一个正数有个平方根,它们是互为;0只有个平方根,它是;负数平方根.

(4)一般地,如果一个数的等于a,这个数就叫做a的立方根(也叫做三次方根).

要点一:整数指数幂的概念及运算性质

1.整数指数幂的概念

(

)*

....................................

n

a n Z

=∈;

()

......................................

a a

=;

...................................

(0,)

n

a a n Z*

-=∈.

2.运算法则

(1)m n

a a?=;

(2)()n m a=;

(3)()

............................

m

n

a

m n a

a

=>≠

,;

(4)()m

ab=.

要点二:根式的概念和运算法则

1.n次方根的定义:

若x n=y(n∈N*,n>1,y∈R),则x称为y的n次方根.

n为奇数时,正数y的奇次方根有个,是数,记为n y;负数y的

奇次方根有个,是数,记为n y;零的奇次方根为,记为

要点梳理——预习和课堂学习

认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听

课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源

ID:#10160#391630

00

n=;

n为偶数时,正数y的偶次方根有个,记为n y

±;负数偶次方

根;零的偶次方根为,记为.

2.两个等式

(1)当1

n>且*

n N

∈时,()n

n a=;

(2)

,()

||()

n

n

a n

a

a n

?

=?

?

.........

.......

为数

为数

要点诠释:

①要注意上述等式在形式上的联系与区别;

②计算根式的结果关键取决于根指数的取值,尤其当根指数取时,开方后的结果必为非负数,可先写成||a的形式,这样能避免出现错误.

要点三:分数指数幂的概念和运算法则

为避免讨论,我们约定a>0,n,m∈N*,且

m

n

为既约分数,分数指数幂可如下定

义:

1

n

a=;

....................................

()

m

m

n n

a==;

m

n

a-=.

要点四:有理数指数幂的运算性质

1.有理数指数幂的运算性质

()

00,

a b Q

αβ

>>∈

,,

(1)a a

αβ

?=

(2)()

aαβ=

(3)()

abα=

当a>0,p为无理数时,a p是一个确定的实数,上述有理数指数幂的运算性质仍适

用.

要点诠释:

(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;

(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时

不能交换.如22

4

4(4)(4)

-≠-;

(3)幂指数不能随便约分.如

21

42

(4)(4)

-≠-.

2.指数幂的一般运算步骤

有括号先算的;无括号先做.负指数幂化为.

底数是负数,先确定 ,底数是小数,先要化成 ,底数是带分数,

先要化成 ,然后要尽可能用幂的形式表示,便于用指数运算性质.

在化简运算中,也要注意公式:a 2-b 2= ,

(a ±b )2= ,

(a ±b )3= ,

a 3-

b 3= ,

a 3+

b 3= 的运用,能够简化运算.

类型一:根式

例1. 求下列各式的值:

1)5242544(3);(2)(10);(3)(3);(4)()a b π----.

【答案】

【解析】熟练掌握基本根式的运算,特别注意运算结果的符号.

(1)

(2)

(3)

(4)

【总结升华】

举一反三:

【变式1】计算下列各式的值:

(1)33(2)-;(2)24(9)-;(3)66(4)π-;(4)88(2)a -.

【答案】

典型例题——自主学习

认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完

成举一反三.课堂笔记或者其它补充填在右栏.更多精彩内容请学习网校资源ID :

#10169#391630

例2.计算:(1)526743642++---;

(2)1

1

2121++-.

【答案】

【解析】对于(1)需把各项被开方数变为完全平方形式,然后再利用根式运算性质求解.

对于(2),则应分子、分母同乘以分母的有理化因式.

(1)

(2)

【总结升华】

举一反三:

【变式1】化简:(1)3434322(12)(12)-+-+-;

(2)222169(||3)x x x x x -+-++<

【答案】(1) ;(2) 。

类型二:指数运算、化简、求值

例3.用分数指数幂形式表示下列各式(式中a>0):

(1)2a a ?;(2)332a a ?;(3)a a ;(4)2

3

6

33y x y x y x 。

【答案】

【解析】先将根式写成分数指数幂的形式,再利用幂的运算性质化简即可。

(1)

(2)

(3)

(4)解法一:

解法二:

【总结升华】

举一反三:

【变式1】把下列根式用指数形式表示出来,并化简

(1)52a a ?;6

3x

x x ?

【答案】(1) ;(2) 。

【变式2】把下列根式化成分数指数幂:

(1)682;(2)(0)a a a >;(3)332b b ?;(4)522

31()x x 。

【答案】

【解析】(1)

(2)

(3)

(4)

例4.计算: (1)1

11

1

2

00.253473(0.0081)3()81(3)88-----??

??-??+????????

(2)433331733246339--+ (3)2633634125(36)(4)(3)ππ-+-+---。

【答案】 ; ;

【解析】(1)

(2)

(3)

注意:

举一反三:

【变式1】计算下列各式: (1)1

00.25634317

()()82(23)86-?-+?+?; (2)41

33

3

3223338(12)24a a b

b a a a ab b -÷-?++.

【答案】

【解析】(1)

(2)

【变式2】计算下列各式:

1

203

31

1

326()()(1.03)()426632--+++-?--

【答案】

【解析】

例5.化简下列各式. (1) 21

32

111136251546x y

x y x y ---????-- ? ?????

; (2)111

22

2m m m m --+++

; (3)10.5

23

3277(0.027)21259-??

??

+- ? ?????.

【答案】

【解析】

(1)

(2)

(3)

举一反三:

【变式1】化简:

233()xy xy .

答案:

【解析】

注意:当n 为偶数时,(0)||(0)

n n a a a a a a ≥?==?-

2

2

2223333

x y x y x y x y --------+--+-

【答案】

【解析】

【总结升华】

【变式3】化简下列式子: (1)33223

+-- (2)4226+ (3)323221331x x x x x +++-+-

【答案】

【解析】(1)

(2)

(3)

例6.已知

11

223

x x-

+=,求

33

22

22

3

2

x x

x x

-

-

+-

+-

的值。

【答案】

【解析】

【总结升华】

举一反三:

【变式1】求值:

(1)已知

11

225

x x-

+=,求

21

x

x

+

的值;

(2)已知a>0, b>0,且a b=b a, b=9a,求a的值. 【答案】;

【解析】(1)

(2)

三、测评与总结

要想学习成绩好,总结测评少不了!课后复习是学习不可或缺的环节,它可以帮助我们

巩固学习效果,弥补知识缺漏,提高学习能力.

知识点:指数与指数幂的运算

测评系统分数:

模拟考试系统分数:

如果你的分数在85分以下,请进入网校资源ID :#10203#391630 进行巩固练习,如果你的分数在85分以上,请进入网校资源ID :#10208#391629 进行能力提升.

我的收获

习题整理

题目或题目出处 所属类型或知识点 分析及注意问题

成果测评 现在来检测一下学习的成果吧!请到网校测评系统和模拟考试系统进行相关知识点的

测试.

自我反馈 学完本节知识,你有哪些新收获?总结本节的有关习题,将其中的好题及错题分类整理.如有问题,请到北京四中网校的“名师答疑”或“互帮互学”交流.

好题

错题

注:本表格为建议样式,请同学们单独建立错题本,或者使用四中网校错题本进行记录.

○网○校○重○要○资○源

知识导学:指数与指数幂的运算(基础)(#391630)

若想知道北京四中的同学们在学什么,请去“四中同步”看看吧!和四中的学生同步学习,同步提高!更多资源,请使用网校的学习引领或搜索功能来查看使用.

对本知识的学案导学的使用率:

□ 好(基本按照学案导学的资源、例题进行复习、预习和进行课堂笔记等,使用率达到80%以上)

□ 中(使用本学案导学提供的资源、例题和笔记,使用率在50%-80%左右)

□ 弱(仅作一般参考,使用率在50%以下)

学生:_______________ 家长:______________ 指导教师:_________________

请联系北京四中网校当地分校以获得更多知识点学案导学.

整数指数幂及其运算(1)

整数指数幂及其运算 主备人季春鸿 教学目标 1.理解负整数指数幂的概念,了解整式和分式在形式上的统一 2.掌握整数指数幂运算的性质,会用性质进行简单的整数指数幂的相关计算 3.体验由正整数指数幂到负整数指数幂的扩充过程,体验数学研究的一般方法:由特殊到一般及转化思想 教学重点与难点 1.负整数指数幂的概念 2.理解整数指数幂的运算性质;会运用性质进行相关的计算 教学过程 一.复习引入: 1.计算:27÷23=_____,a9÷a4=_____; (由学生用数学式子表示上述同底数幂的除法法则,并指出其中字母的规定,强调指数是正整数,底数不等于零) 2.思考:22÷25=______;a2÷a4=_____; 在学生独立思考的基础上,让学生猜测计算的结果,并请学生讲解计算的过程及依据,体验分数与除法的关系;然后进一步提出“如何用

幂的形式表示计算结果”的问题 222 12=-、331a a -= 二.学习新课:整数指数幂及其运算 1.负整数指数幂的概念:p p a 1a =-(a ≠0,p 是自然数) 2.整数指数幂:当a ≠0时,n a 就是整数指数幂,n 可以是正整数、负整数和零 将下列各式写成只含正整数指数幂的形式: 2210 110=-、551x x -= 变式训练1:221(10)(10)--= -、551(1)(1)x x --=- 变式训练2:13 2()23-=、2227()()72-= 通过变式训练2,学生同桌讨论当指数为负数,底数为分数时的情形,并总结出()()p p a b b a -= 判断正误: 02122 2271 (2)4 1(50)501 7729()34x x -----=-=-=- ==①②③④⑤

最新指数和指数幂的运算教案和课后习题汇编

指数与指数幂的运算 【知能点】 知能点1:有理数指数幂及运算性质 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=??? ?∈个 ; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* = ≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)()()0,0,m m m ab a b a b m Q =>>∈ ① 引例:a >0 102 5 a a === → ?=; 3 23 3 3 23 2 )(a a a == → ?=. ① 定义分数指数幂: 规定* 0,,,1)m n a a m n N n =>∈> ;*1 0,,,1)m n m n a a m n N n a -= = >∈> ③ 练习:A.将下列根式写成分数指数幂形式: (0,,1)a m n N n *>∈>; ; 例 1:把下列各式中的a 写成分数指数幂的形式 (1)5 256a =;(2)4 28a -=;(3)765a -=;(4)()353,n m a m n N -+=∈ 解:(1)1 5 256a =;(2)1428a - =;(3)6 7 5a - =;(4)533 m n a - = 例 2:计算 (1)32 9; (2)32 16- 解:(1)() 3 3322 3 2 2 2 933 327? ====;(2)() 332312 2 116 4 464 - ---====

17.4零指数幂与负整数指数幂练习题及答案

零指数幂与负整数指数幂练习题 一.解答题(共30小题) 1.计算:. 2.计算: 3.(1)计算:|﹣3|﹣+(π﹣3.14)0 (2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m= 4.计算:. 5.计算: 6.计算:22﹣(﹣1)0+. 7.计算:. 8.计算:.

9.(1)计算|﹣2|+(﹣1)0﹣()﹣1﹣(﹣1)2011 (2)化简. 10.计算: 11.(1)计算:. (2)化简:求值.3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中x=﹣,y=﹣3.12.(1)计算:23+﹣﹣; (2)解方程组:. 13.计算:.14.(2009?重庆)计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2. 15.计算:﹣12+|﹣2|+()﹣1﹣5×(2009﹣π)0

16.计算:(﹣2)2+2×(﹣3)+()﹣1 17.(1)计算:()﹣1﹣++(﹣1)2009 (2)解方程组: 18.计算:|﹣|+(3.14﹣π)0+(﹣)2×()﹣2 19.计算﹣22+|4﹣7|+(﹣π)0 20.(1)计算:()2﹣(﹣3)+20(2)因式分解:a3﹣ab2.21.计算:﹣(﹣1)+|﹣2|+(π+3)0﹣. 22.计算:+(﹣)0+(﹣1)3﹣|﹣1|. 23.计算:. 24.计算:22+(4﹣7)÷+()0

25.计算: 26.计算:|﹣2|+﹣()﹣1+(3﹣π)0 27.计算:﹣1+(﹣2)3+|﹣3|﹣ 28.计算:(﹣1)2006+|﹣|﹣(2﹣)0﹣3.29.计算:.30.计算:

零指数幂与负整数指数幂练习题及答案 参考答案与试题解析 一.解答题(共30小题) 1.计算:. 解 答: 解:原式=3﹣1+4=6.故答案为6. 2.计算: 解 答: 解:, =2+1+4﹣2, =5. 故答案为:5. 3.(1)计算:|﹣3|﹣+(π﹣3.14)0 (2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m= 解答:解:(1)原式=3﹣4+1 =0; (2)原式=9﹣m2+m2﹣4m﹣7 =2﹣4m, 当m=时,原式=2﹣4×=1. 4.计算:. 解 答: 解:原式=(﹣2)+1+2=1,故答案为1.5.计算:. 解答:解:原式=2+3+1﹣1 =5. 6.计算:22﹣(﹣1)0+. 解 答: 解:原式=4﹣1+2=5. 7.计算:. 解答:解: =1+3﹣1﹣(﹣2)=5. 故答案为5. 8.计算:.解 答: 解:原式= =. 9.(1)计算|﹣2|+(﹣1)0﹣()﹣1﹣(﹣1)2011

整数指数幂的运算法则

整数指数幂的运算法则 教学目标:1、通过探索掌握整数指数幂的运算法则。 2、会熟练进行整数指数幂的运算。 3、让学生感受从特殊到一般的数学研究的一个重要方法。 重 点:整数指数幂的运算法则的推导和应用。 难 点:整数指数幂的运算法则的理解。 过 程: (一)课前检测 正整数指数幂运算法则: =?n m a a =n m a )( =?n b a )( =n m a a =n b a )( (二)新课预习 1、自主探究: 1)、阅读教材P41~42 2)、尝试完成下列练习,检查自学效果: 1、下列运算正确的是: A:632a a a =? B: 532a a --=)( C:22-a 412a --= D: 222a 3a a --=- 2、设a ≠0,b ≠0,计算下列各式: =?-25a a =-3-2a )( =-4-12b a b a )( =-33b 2a )( 3、计算下列各式: 23222x 3y x y -- 22 222 x 2()xy y x y --+- = = = = 3)、完成课后练习。 (三)、成果呈现 1)、抽查各小组预习答案,并请学生代表小组展示。 2)、其它小组质疑、辩论、点评。 3)、全班归纳总结本节知识。 (四):练习巩固:

A 1、计算 =?-38x x =--332y x )( =-3-24ab a )( =?-382-2)( =÷-2 35ab 2b -a )( =-+--2224x 4x 4x )( B 2、若27 13x =,则x= 3、一个分式含有x 的负整数指数幂,且当x=2时,分式没有意义,请你写出一个这样的分式 。 C 4、已知01132=++x x ,求1-+x x 与2 2-+x x 的值。 6、小结: 整数指数幂的运算法则: =?n m a a =n m a )( =?n b a )( =n m a a =n b a )( 错题更正:

知识点 :负整数指数幂(解答题)

一、解答题(共30小题) 1、(2010?漳州)计算:(﹣2)0+(﹣1)2010﹣() ﹣ 考点:负整数指数幂;有理数的乘方;零指数幂。 专题:计算题。 分析:本题涉及零指数幂、乘方、负整数指数幂三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 解答:解:原式=1+1﹣2 =0. 故答案为0. 点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方等考点的运算. 2、(2010?西宁)计算:()﹣ ﹣(﹣) 考点:负整数指数幂;有理数的乘方;零指数幂。 专题:计算题。 分析:此题涉及到负整数指数幂、零指数幂、乘方三个知识点,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得结果. 解答:解:原式=2﹣1+()(3分) =2﹣1+1(5分) =2.(7分) 点评:本题考查实数的综合运算能力,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方等考点的运算. 3、(2010?邵阳)计算:()﹣ ﹣ 考点:负整数指数幂。 专题:计算题。 分析:根据负整数指数幂、倒数、立方根的知识点进行解答,一个数的负指数次幂等于这个数的正指数次幂的倒数;互为倒数的两个数的积为1;8的立方根是2. 解答:解:原式=3﹣1+2=4.故答案为4. 点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、立方根、倒数的知识点. 4、(2009?重庆)计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2. 考点:负整数指数幂;绝对值;有理数的乘方;算术平方根;零指数幂。 专题:计算题。 分析:根据绝对值、负整数指数幂、零指数幂、算术平方根、有理数的乘方等知识点进行解答.

指数与指数幂的运算教案

指数与指数幂的运算 课题:指数与指数幂的运算 课型:新授课 教学方法:讲授法与探究法 教学媒体选择:多媒体教学 学习者分析: 1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础. 2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入. 学习任务分析: 1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值. 2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化. 3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算. 教学目标阐明:

1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化. 2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力. 3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n 次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面. 教学流程图: 教学过程设计: 一.新课引入:

(一)本章知识结构介绍 (二)问题引入 1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P 与死亡年数t 之间的关系: (1)当生物死亡了5730年后,它体内的碳14含量P 的值为 (2)当生物死亡了5730×2年后,它体内的碳14含量P 的值为 (3) 当生物死亡了6000年后,它体内的碳14含量P 的值为 (4)当生物死亡了10000年后,它体内的碳14含量P 的值为 122 12?? ???6000 5730 12?? ???100005730 12?? ? ??

指数幂与负整数指数幂练习题及答案

零指数幂与负整数指数幂练习题及答案 一.解答题(共30小题) 1.计算:. 2.计算: 3.(1)计算:|﹣3|﹣+(π﹣)0 (2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m= 4.计算:. 5.计算:6.计算:22﹣(﹣1)0+.7.计算:. 8.计算:.

9.(1)计算|﹣2|+(﹣1)0﹣()﹣1﹣(﹣1)2011 (2)化简. 10.计算: 11.(1)计算:. (2)化简:求值.3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中x=﹣,y=﹣3.12.(1)计算:23+﹣﹣; (2)解方程组:. 13.计算:.14.(2009重庆)计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.

15.计算:﹣12+|﹣2|+()﹣1﹣5×(2009﹣π)0 16.计算:(﹣2)2+2×(﹣3)+()﹣1 17.(1)计算:()﹣1﹣++(﹣1)2009 (2)解方程组: 18.计算:|﹣|+(﹣π)0+(﹣)2×()﹣2 19.计算﹣22+|4﹣7|+(﹣π)0 20.(1)计算:()2﹣(﹣3)+20(2)因式分解:a3﹣ab2. 21.计算:﹣(﹣1)+|﹣2|+(π+3)0﹣. 22.计算:+(﹣)0+(﹣1)3﹣|﹣1|.

23.计算:.24.计算:22+(4﹣7)÷+()0 25.计算: 26.计算:|﹣2|+﹣()﹣1+(3﹣π)0 27.计算:﹣1+(﹣2)3+|﹣3|﹣ 28.计算:(﹣1)2006+|﹣|﹣(2﹣)0﹣3.29.计算:.30.计算:

零指数幂与负整数指数幂练习题及答案 参考答案与试题解析 一.解答题(共30小题) 1.计算:. 解答:解:原式=3﹣1+4=6.故答案为6. 2.计算: 解答: 解:, =2+1+4﹣2, =5. 故答案为:5. 3.(1)计算:|﹣3|﹣+(π﹣)0 (2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m= 解答:解:(1)原式=3﹣4+1 =0; (2)原式=9﹣m2+m2﹣4m﹣7 =2﹣4m, 当m=时,原式=2﹣4×=1. 4.计算:. 解答:解:原式=(﹣2)+1+2=1,故答案为1. 5.计算:. 解答:解:原式=2+3+1﹣1 =5. 6.计算:22﹣(﹣1)0+. 解答:解:原式=4﹣1+2=5. 7.计算:. 解答: 解: =1+3﹣1﹣(﹣2) =5. 故答案为5. 8.计算:. 解答: 解:原式= =.

指数与指数幂的运算备课教案

2.1.1 指数与指数幂的运算(2课时) 第一课时根式 教学目标:1.理解n次方根、根式、分数指数幂的概念; 2.正确运用根式运算性质和有理指数幂的运算性质; 3.培养学生认识、接受新事物和用联系观点看问题的能力。教学重点:根式的概念、分数指数幂的概念和运算性质 教学难点:根式概念和分数指数幂概念的理解 教学方法:学导式 教学过程: (I)复习回顾 引例:填空 m n =(m,n∈Z); a+

(II )讲授新课 1.引入: (1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m n a a ÷可看作m n a a -?,所以m n m n a a a -÷=可以归入性质m n m n a a a +?=;又因为n b a )(可看作 m n a a -?,所以n n n b a b a =)(可以归入性质()n n n ab a b =?(n ∈Z)),这是为下面学习分 数指数幂的概念和性质做准备。为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。 (2)填空(3),(4)复习了平方根、立方根这两个概念。如: 分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。由此,可有:

2.n 次方根的定义:(板书) 问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确? 分析过程: 解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根; 因为632a )a (=,所以a 2是a 6的3次方根。 结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。此时,a 的n 次方根可表示为n a x =。 从而有:3273=,2325-=-,236a a = 解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;

高中数学指数与指数幂的运算(一)

课题:指数与指数幂的运算(一) 课 型:新授课 教学目标: 了解指数函数模型背景及实用性必要性,了解根式的概念及表示方法. 理解根式的概念 教学重点:掌握n 次方根的求解. 教学难点:理解根式的概念,了解指数函数模型的应用背景 教学过程: 一、复习准备: 1、提问:正方形面积公式?正方体的体积公式?(2a 、3a ) 2、回顾初中根式的概念:如果一个数的平方等于a ,那么这个数叫做a 的平方根;如果一 个数的立方等于a ,那么这个数叫做a 的立方根. → 二. 讲授新课: 1. 教学指数函数模型应用背景: ① 探究下面实例,了解指数指数概念提出的背景,体会引入指数函数的必要性. 实例1.某市人口平均年增长率为1.25℅,1990年人口数为a 万,则x 年后人口数为多少万? 实例2. 给一张报纸,先实验最多可折多少次(8次) 计算:若报纸长50cm ,宽34cm ,厚0.01mm ,进行对折x 次后,问对折后的面积与厚度? ② 书P52 问题1. 国务院发展研究中心在2000年分析,我国未来20年GDP (国内生产总值)年平均增长率达7.3℅, 则x 年后GDP 为2000年的多少倍? 书P52 问题2. 生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t 年后 体内碳14的含量P 与死亡时碳14的关系为57301()2 t P =. 探究该式意义? ③小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学. 2. 教学根式的概念及运算: ① 复习实例蕴含的概念:2(2)4±=,2±就叫4的平方根;3327=,3就叫27的立方根. 探究:4(3)81±=,3±就叫做81的?次方根, 依此类推,若n x a =,那么x 叫做a 的n 次方根. ② 定义n 次方根:一般地,若n x a =,那么x 叫做a 的n 次方根.( n th root ),其中1n >,n *∈N 例如:328=2= ③ 讨论:当n 为奇数时, n 次方根情况如何?, 例如: 33-, 记:x 当n 为偶数时,正数的n 次方根情况? 例如: 4(3)81±=,81的4次方根就是3±, 记: 强调:负数没有偶次方根,0的任何次方根都是0, 即. 0= ④ 练习:4b a =,则a 的4次方根为 ; 3b a =, 则a 的3次方根为 . ⑤ radical ), 这里n 叫做根指数(radical exponent ), a 叫做被开方数(radicand ). ⑥ 计算2→ 探究: n 、n n a 的意义及结果? (特殊到一般) n a =. 当n 是奇数时,a a n n =;当n (0)||(0)a a a a a ≥?==?-

零指数幂与负整数指数幂练习题

【典型例题】 例1. 若式子0 (21)x -有意义,求x 的取值范围。 分析:由零指数幂的意义可知.只要底数不等于零即可。 解:由2x -1≠0,得1 2x ≠ 即,当 1 2x ≠ 时,0 (21)x -有意义 例2. 计算:(1) 32 031110( )(5)(3)0.31230π--+?---?+-; (2) 42310 [()()](0)a a a a -?-÷≠。 分析:按照有关法则进行运算即可,注意运算顺序。 解:(1)32 031110( )(5)(3)0.31230π--+?---?+- =213 100030127()12 10-+?+?+ =10 10009002712 3++?+ =2002 (2)4 23 10 4 6 10 10 10 [()()][()]1a a a a a a a a -?-÷=?-÷=-÷=- 例3. 计算下列各式,并把结果化为只含有正整数指数幂的形式. (1)1 322 (3)m n ---- (2) 2 2 1 23 [2()()][()()]x y x y x y x y -----+?-?+?- 分析:正整数指数幂的相关运算对负整数指数幂和零指数幂同样适用.对于第(2)题,在运算过程中要把(x+y)、(x-y)看成一个整体进行运算。 解:(1) 4 1 322 12 32 22 2 6 4 6 9(3)(3)()()(3)n m n m n m n m ----------=-=-=; 或者:3224 1 322 23322326 2222 11(3)9(3)()()3()()3(3)m n n m n m m n m m n n -----=-==== (2) 22123 [2()()][()()]x y x y x y x y -----+?-?+?- =22221323 (2)[()]()[()][()]x y x y x y x y --------?+?-?+?- =42362 1()()()()(2)x y x y x y x y --?+?-?+?-- =4326 1 ()()4x y x y -+-+?+- =4()4()x y x y -+. 例4. 用科学记数法表示下列各数.

指数与指数幂的运算

指数与指数幂的运算 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈64748 L 个; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* =≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)() ()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2 (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则???<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3227= ;(6)23)4936(= ;(7)23)4 25 (-= ;(8)23 25= (9)12 2 [(] - = (10)(1 2 2 1?????? = (11)=3 264

指数与指数幂的运算(一)

§2.1.1 指数与指数幂的运算(一) 学习目标:⒈理解n 次方根、根式概念,能正确应用根式的运算性质; ⒉提高认识、接受新事物的能力. 教学重点:根式的概念. 教学难点:根式的概念的理解. 教学方法:讲授式. 教具准备:投影. 教学过程: (I )复习引入: 师:请同学们思考下面的问题: 根据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国国内生产总值(GDP )年平均增长率可望达到7.3%.那么,在2001~2020年,各年的国内生产总值可望为2000年的多少倍? 生:2001年我国的国内生产总值可望为2000年的(1+7.3%)倍; 2002年我国的国内生产总值可望为2000年的2(17.3%)+倍; 2003年我国的国内生产总值可望为2000年的3(17.3%)+倍; …… …… 设x 年后我国的国内生产总值为2000年的y 倍,那么 (17.3%)x y =+*(x N ∈,20)x ≤ 即从2000年起,x 年后我国的国内生产总值为2000年的(17.3%)x +倍. 师:整数指数幂n a 的含义是什么?它具有哪些运算性质? 生:n n a a a a a =??? 个 *()n N ∈,01a =,1n n a a -= *()n N ∈; 整数指数幂有如下运算性质: ⑴m n m n a a a +?=; ⑵()m n mn a a =; ⑶()n n n ab a b =,以上m n Z ∈、. 师:由于m n m n m n a a a a a --÷=?=,1()n n n n n n a a a b a b b b --??=?=?= ???,所以m n m n a a a -÷=归入性质⑴,n n n a a b b ??= ??? 归入性质⑶. 下面同学们再来看一个生物数学问题: 生物学家通过研究发现,当生物死亡以后,其体内含有的放射性同位素14C

(完整版)指数与指数幂的运算练习题

2.1.1指数与指数幂的运算练习题 1、有理数指数幂的分类 (1)正整数指数幂; (2)零指数幂; (3)负整数指数幂 (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1) (2) (3) 知能点2:无理数指数幂 若>0,是一个无理数,则表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果,那么叫做的次方根,其中,叫做根式,叫做根指数,叫被开方数。 2、对于根式记号,要注意以下几点: (1),且; (2)当是奇数,则;当是偶数,则; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1); (2) 一、填空 1、用根式的形式表示下列各式 (1)= (2)= (3)= (4)= 2、用分数指数幂的形式表示下列各式: (1)= (2) (3)= ;(4)= ; (5)(6)(7) (8) 3、求下列各式的值 (1)= ;(2)= ;(3)= ; (4)= ;(5)= ;(6)= ; (7)= ;(8)= ;(9)= ; (10) 4.化简 (1)(2)

(3)(4)= (5)= (6)= (7)= (8)= 5.计算 (1)(2) (3)(4) 6.已知,求下列各式的值(1)= ;(2)= 7.若,则和用根式形式表示分别为和,和用分数指数幂形式表示分别为和。 8.使式子有意义的x的取值范围是_. 9.若,,则的值= . 10.已知,则的值为. 二.选择题. ,下列各式一定有意义的是() A. B. C. D. ,下列各式一定有意义的是() A. B. C. D. 下列各式计算正确的是() A. B. C. D. 4、若,且为整数,则下列各式中正确的是() A、B、C、D、 5、下列运算结果中,正确的是() A.B.C.D. 6.下列各式中成立的是() A.B.C.D. 7.下列各式成立的是() A. B. C. D.

零指数幂与负整数指数幂练习题

? 零指数幂与负整数指数幂练习题 1、计算:-1-(-1)0的结果正确是() A.0 B.1 C.2 D.-2 2、芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为() A.×10-6千克 B.×10-5千克 C.×10-7千克 D.×10-7千克 3、已知空气的单位体积质量为1.24×10-3克/厘米3,1.24×10-3用小数表示为() A.B.C.D. 4、如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小,正确的是() : A.30×10-9米B.×10-8米C.×10-10米D.×10-9米 5、计算的结果是( ) A.4 B.-4 C. D. 6、若(x-2)0=1,则( ) A.x≠0 B.x≥2 C.x≤2 D.x≠2 7、若,则x=( ) A.10 B.1 C.0 D.以上结论都不对 > 8、下列运算正确的是( )

A.=0 B.(9-33)0=0 C.(-1)0=1 D.(-2)0=-2 9、化简(x≠-y)为() A.1 B.0 C.x+y D.以上结论都不对 10、英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅000 000 34米,将这个数用科学记数法表示为() A.×10-9B.×10-9%C.×10-10D.×10-11 11、花粉的质量很小,一粒某种植物花粉的质量约为毫克,已知1克=1000毫克,那么毫克可用科学记数法表示为() A.×10﹣5克B.×10﹣6克 C.37×10﹣7克D.×10﹣8克 12、计算:. ' 13、某种原子直径为×10-2纳米,把这个数化为小数是_______纳米. 14、钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为平方公里,最小的岛是飞濑屿,面积约为平方公里.请用科学记数法表示飞濑屿的面积约为_______平方公里. 15、若(a-2)a+1=1,则a=______. 16、若,则x=______. 17、如果无意义,则=______. 18、计算:4-2x5?(23x-2)2=________. 19、用小数表示:×10-5=______. 20、 ,

(精品)初中数学讲义13整数指数幂及其运算(学生)

第13课时 整数指数幂及其运算 教学目标 理解整数指数幂的概念,掌握其运算法则. 知识精要 1.零指数 )0(10≠=a a 2.负整数指数 ).,0(1为正整数p a a a p p ≠=- 注意正整数幂的运算性质: n n n mn n m n m n m n m n m b a ab a a a a a a a a a ==≠=÷=?-+)(, )(), 0(, 可以推广到整数指数幂,也就是上述等式中的m 、 n 可以是0或负整数. 3. 用科学记数法表示绝对值大于0而小于1的数的方法: 绝对值大于0而小于1的数可以表示为:10n a -?(其中110,a n ≤<为正整数) 热身练习 1. 当x ________时,2(42)x -+有意义? 2. 将代数式22 2332b a ----化成不含负指数的形式_______. 3. 将235()x y --+写成只含有正整数幂的形式是_______. 4. 计算: (1)03211(0.5)()()22 ---÷-+ (2)2574x x x x x ÷÷?? (3)2222()()a b a b -----÷+ (4) 32 3()xy -

(5)02140)21()31()101()21()2(?++------ (6) 52332()()y y y ---÷? 5. 用小数表示下列各数 (1)610- (2)31.20810-? (3)59.0410--? 6. 用科学记数法表示下列各数 (1)34200 (2)0.0000543 (3)-0.000789 7. 计算:22(2)2----=_______. 8.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”.已知52个纳米的长度为0.000000052米,用科学记数法表示此数为_________米. 精解名题 1. 用负整数指数幂表示下列各式

整数指数幂 优秀教案

整数指数幂 【教学目标】 1.了解负整数指数幂的意义; 2.了解整数指数幂的性质并能运用它进行计算; 3.会利用10的负整数次幂,用科学记数法表示一些小于1的正数。 【教学重难点】 让学生意识到有关幂的运算最终结果要化成正整数指数幂,学会负整数指数幂的意义的合理性和整数指数幂的性质应用。 【教学过程】 一、复习引入新课。 1.问题1:你们还记得正整数指数幂的意义吗?正整数指数幂有哪些运算性质呢? 追问:将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,这些性质还适用吗? 师生活动:教师设疑,学生回忆,引出本节课的课题。 2.探索负整数指数幂的意义。 问题2:m a中指数m可以是负整数吗?如果可以,那么负整数指数幂m a表示什么? (1)根据分式的约分,当a≠0时,如何计算35 a a ÷? (2)如果把正整数指数幂的运算性质m n m n ÷=(a≠0,m,n是正整数,m>n)中 a a a- 的条件m>n去掉,即假设这个性质对于像35 ÷的情形也能使用,如何计算? a a 师生活动:教师提出问题,学生独立思考后,交流自己的做法,激发学生探究新知的欲望。 3.探索整数指数幂的性质。 问题3:引入负整数指数和0指数后,m n m n ÷=(m,n是正整数)这条性质能否推 a a a- 广到m,n是任意整数的情形? 师生活动:教师提出问题,引发学生思考。教师可以适当引导学生从特殊情形入手进行研究,然后再用其他整数指数验证这个规律是否仍然成立。 问题4:类似地,你可以用负整数指数幂或0指数幂对于其他正整数指数幂的运算性质进

0.00001= = 归纳:10n -= = 师生活动:师生共同探索,发现规律。 追问1:如何用科学记数法表示0.0035和0.0000982呢? 师生活动:教师提出问题,学生讲述方法,教师板书。 0.0035=3.5×0.001=-33.510?, 0.0000982=9.82×0.00001=-59.8210?。 追问2:观察这两个等式,你能发现10的指数与什么有关呢? 师生活动:学生独立思考后交流看法,师生共同寻找规律:对于一个小于1的正数,从小数点前的第一个0算起至小数点后第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几。 例10:用科学记数法表示下列各数: (1)0.3;(2)0.00078;(3)0.00002009. 师生活动:教师提出问题,学生口述,教师板书。 例11:纳米(nm )是非常小的长度单位,1nm =-910m 。把13nm 的物体放到乒乓球上,就如同把乒乓球放到地球上。13mm 的空间可以放多少个13nm 的物体(物体之间的间隙忽略不计)? 师生活动:教师提出问题,由学生独立思考,并讲解解题思路。首先需要将1和13nm 的单位统一。由于1mm =-310m ,1nm =-910m ,所以13mm =()3-3103m ,13nm =()3-9310m ,再做除法即可求解。 二、练习。 1.用科学记数法表示下列各数: 000001,0.0012,0.000000345,0.0000000108。 师生活动:两名学生板书,其他学生在练习本上完成,教师巡视,及时给予指导,解题过程可由学生进行评价。 三、小结。 教师与学生一起回顾本节课所学习的主要内容,并请学生回答以下问题: (1)本节课学习了哪些主要内容? 3m m

零指数幂与负整数指数幂练习题

零指数幂与负整数指数幂练习题 1、计算:-1-(-1)0的结果正确是() A.0 B.1 C.2 D.-2 2、芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为() A.2.01×10-6千克 B.0.201×10-5千克 C.20.1×10-7千克 D.2.01×10-7千克 3、已知空气的单位体积质量为1.24×10-3克/厘米3,1.24×10-3用小数表示为() A.0.000124 B.0.0124 C.-0.00124 D.0.00124 4、如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小,正确的是() A.30×10-9米 B.3.0×10-8米 C.3.0×10-10米 D.0.3×10-9米 5、计算的结果是( ) A.4 B.-4 C. D. 6、若(x-2)0=1,则( ) A.x≠0 B.x≥2 C.x≤2 D.x≠2 7、若,则x=( ) A.10 B.1 C.0 D.以上结论都不对 8、下列运算正确的是( ) A.0.050=0 B.(9-33)0=0 C.(-1)0=1 D.(-2)0=-2 9、化简(x≠-y)为() A.1 B.0 C.x+y D.以上结论都不对

10、英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为() A.0.34×10-9B.3.4×10-9C.3.4×10-10D.3.4×10-11 11、花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为() A.3.7×10﹣5克B.3.7×10﹣6克 C.37×10﹣7克D.3.7×10﹣8克 12、计算:. 13、某种原子直径为1.2×10-2纳米,把这个数化为小数是_______纳米. 14、钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公 里,最小的岛是飞濑屿,面积约为0.0008平方公里.请用科学记数法表示飞濑屿的面积约为_______平方公里. 15、若(a-2)a+1=1,则a=______. 16、若,则x=______. 17、如果无意义,则=______. 18、计算:4-2x5?(23x-2)2=________. 19、用小数表示:-2.18×10-5=______. 20、 21、计算:. 22、计算:. 23、化简:. 24、计算:. 25、计算:(1)100;(2)m0(m0);(3)a5÷a0?a3(a0).

指数与指数幂的运算练习题

指数与指数幂的运算练习题 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈个 ; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* = ≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)() ()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2,要注意以下几点: (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则???<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1) 3 4y x = (2) )0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3 227= ;(6)23)4936(= ;(7)2 3)4 25(-= ;(8)23 25= (9)12 2 [(]- = (10)(1 2 2 1?????? = (11)=3 264 4.化简

高中数学指数与指数幂的运算

课题 指数与指数幂的运算(三) 课 型:练习课 教学目标: n 次方根的求解,会用分数指数幂表示根式, 掌握根式与分数指数幂的运算. 教学重点:掌握根式与指数幂的运算. 教学难点:准确运用性质进行计算. 教学过程: 一、复习提问: (学生回答,老师板演) 1. 提问:什么叫做根式? 运算性质? 2. 提问:分数指数幂如何定义?运算性质? 3. 基础习题练习: (口答下列基础题) ① n 为 时,(0) ||...........(0)x x x ≥?=?

1. 化简:)()(41412121y x y x -÷-. 2. 已知12(),0x f x x x π=?>,试求 )()(21x f x f ?的值 3. 用根式表示2134()m n -, 其中,0m n >. 4. 已知x +x -1=3,求下列各式的值:.)2(,)1(23232121--++x x x x 5. 求值:2325; 2327; 3236()49; 3225()4- 6. 已知32x a b --=+, . 7.从盛满1升纯酒精的容器中倒出31升,然后用水填满,再倒出3 1升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少? 四、小结: 1. 熟练掌握有理指数幂的运算法则,化简的基础. 2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算. 五,作业 化简:(1)2932)- (2 (3)

相关文档
相关文档 最新文档