文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计C的习题集-计算题

概率论与数理统计C的习题集-计算题

概率论与数理统计C的习题集-计算题
概率论与数理统计C的习题集-计算题

一、概率公式的题目

1、已知()

()()0.3,0.4,

0.5,P A P B P AB === 求

()

.P B A B ?

解:()

()

()

()()()()

()

0.70.51

0.70.60.54

P A P AB P AB P B A B P A B P A P B P AB --?=

=

=

=+-?+-

2、已知()()()0.7,0.4,0.2,P A P B P AB === 求()

.P A A B ?

解:

()

()()

()

()()()

0.22

0.70.29

P A A B P AB P A A B P A B P A P B P AB ??????=

=

=

=+?+-。

3、已知随机变量(1)X P ,即X 有概率分布律{}1

(0,1,2)!

e P X k k k -==

= ,

并记事件{}{}2,

1A X B X =≥=<。 求:

(1)()P A B ?; (2) ()P A B -; (3) ()

P B A 。解:(1)()()

{}{}1

11()12,1111P A B P A B P AB P X X P X e -?=-?=-=-<≥=-==-;

(2)(){}{}{}{}1()2,1210112;P A B P AB P X X P X P X P X e --==≥≥=≥=-=-==-

(3)()

()

()

{}{}{}{}{}111,201

.20122P BA P X X P X e P B A P X P X P X e P A --<<==

====<=+= 5、为了防止意外,在矿内同时设两种报警系统,A B ,每种系统单独使用时,其有效的概率系统A 为0.92,系统B 为0.93,在A 失灵的条件下,B 有效的概率为0.85,求:

(1)发生意外时,这两个报警系统至少有一个有效的概率;(2)B 失灵的条件下,A 有效的概率。 解:设=A “系统A 有效”,=B “系统B 有效”,

()()()

0.92,0.93,0.85P A P B P B A ===,

()()()()()()()()()()1.0.988P A B P A P B P AB P A P AB P A P A P B A ?=+-=+=+=

()()()()()()()()()()()

0.070.080.152.0.8290.07P AB

P B P A P B A P B P AB P A B P B P B P B ---?=

==== 6、由长期统计资料得知,某一地区在4月份下雨(记作事件A )的概率为4

15

,刮风(记作事件B )的概率为

715,既刮风又下雨的概率为110

,求()()()(1);(2);(3)P A B P B A P A B ?。 解:()()()1

3

10(1)714

15

P AB P A B P B ===;

()()()1

3

10(2)4815P AB P B A P A ===

()()()()47119(3)15151030

P A B P A P B P AB ?=+-=

+-=。 7. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假

设男人和女人各占人数的一半).

【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式

()()()

()()()()()()

P A P B A P AB P A B P B P A P B A P A P B A =

=

+ 0.50.0520

0.50.050.50.002521

?=

=?+?

8. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A

的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?

【解】 设A ={原发信息是A },则={原发信息是B }

C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得

()()

()()()()()

P A P C A P A C P A P C A P A P C A =

+

2/30.98

0.994922/30.981/30.01

?=

=?+?

9. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个

次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率. 【解】 设A ={产品确为合格品},B ={产品被认为是合格品}

由贝叶斯公式得

()()()

()()()()()()

P A P B A P AB P A B P B P A P B A P A P B A =

=

+ 0.960.98

0.9980.960.980.040.05

?=

=?+?

10. 甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞

机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.

【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3

由全概率公式,得

3

()(|)()i i i P A P A B P B ==∑

=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+

(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7

二、已知密度(函数)求概率的题目

1、某批晶体管的使用寿命X(小时)的密度函数 ???????<≥=100

0100100

)(x x x x f , , ,

任取其中3只,求使用最初150小时内,无一晶体管损坏的概率。

解:任一晶体管使用寿命超过150小时的概率为

设Y 为任取的5只晶体管中使用寿命超过150小时的晶体管数,则)3

2

,

3(~B Y .故有 2、某城市每天耗电量不超过一百万千瓦小时,该城市每天耗电率(即每天耗电量/百万瓦小时)是一个

随机变量X ,它的分布密度为()()??

???<<-=其他

0101122

x x x x f ,

若每天供电量为80万千瓦小时,求任一天供电量不够需要的概率?

解:每天供电量80万千瓦小时,所以供给耗电率为:80万千瓦小时/百分千瓦小时=0.8,供电量不够需

要即实际耗电率大于供给耗电率。所以

{}()()11

2

0.8

0.8

0.81210.0272P X f x dx x x dx >==-=??。

令Y 表示“任取5只此种电子管中寿命大于1500小时的个数”。则)3

2

,

5(~B Y ,{}2432322431113

2511)31()32()31(1)1()0(1)2(1)2(5

41

55=-=?+-=??

??????+-==+=-=<-=≥C Y P Y P Y P Y P

三、分布函数、密度函数的题目

1、设随机变量X 的分布函数为0()arcsin

1x a x F x A B a x a

a x a

≤-?

??

=+-<≤??

>??

(1) 求系数A ,B ; (2) 求2

2a

a P X ??-

<

3

2

100100)()150(150

150

2150=-===>=∞+∞+∞+?

? x

dx x dx x f X P p 27

8)31()32()3(03

33=?==C Y P

解:(1)由F(x)在,a a -处的右连续性知?????

=+=-1202B A B A π

π 解之得??

??

?=

=π121B A (2)1

22223

a a a a P X F F ??????-

<<=--=?? ? ???????

(3)因为)()('x F x f =

,则()0x a

f x x a

<=≥?

2设随机变量X 的分布函数为 ()2

0,0,

01

1,1

x F x Ax x x ≤??=<≤??>?

求:)1(常数A ; )2({}0.30.7P X <<; )3(X 的密度函数()f x 。

解:(1)由分布函数的右连续性知:()()1

1lim 1x F A F x +

→===,所以1A =; (2){}()()0.30.70.70.30.4P X F F <<=-=; (3) ()2,

01()0,

x x f x F x <

?其它

3设连续性随机变量X 的分布函数为 2,0

()0,0.x A Be x F x x -?+>=?≤?

求:(1)常数A ,B ; (2){11}P X -<<; (3) X 的密度函数()f x 。

解:(1)由分布函数的右连续性及性质知:

()()()()20000lim lim 1lim x

x x x F F x A Be A B F F x A ++

-→→→+∞?===+=+??+∞===??

,所以0111A B A A B +==????

?==-??; (2){}()()2

11111P X F F e --<<=--=-;

(3) ()22,

0()0,0

x e x f x F x x -?>'==?

≤?。

5随机变量X 的概率密度为??

?≤>=-0

,

00)(,

x x e x f x ;求2

X Y =的概率密度. 、解:分别记X ,Y 的分布函数为F X (x ),F Y (y )

由于y =x 2≥0,故当y ≤0时,F Y (y )=0 当y =x 2>0时,有F Y (y )=P (Y ≤y )=P (X 2≤y )=P (-y ≤X ≤y )

=

y y

x y

y

X e x d e x d x f ----==??

1)(0

将F Y (y )关于y 求导数,即得y 的概率密度为

??

?

??>='--='-=---其它00,21)()1()(y e y y e e y f y y

y Y

7(12分)设A 、B 为随机事件,且

21

)(,31)(,41)(===

B A P B P A P ;令

?

?= ??=不发生发生;;

不发生

发生

B 0

1A 0

1

B Y A X

求1、二维随机变量(X ,Y )的联合概率分布;2、判定X 与Y 是否相互独立

解:12

1

3141)()()(}11{P =?=====A B P A P AB P Y X ,

6

1

12141)()()()(}01{P =-=-=-====AB P A P B A P B A P Y X ,

12

112161)()()()()()

()(}10{P =

-=-=-=-====AB P B A P AB P AB P B P A B P A B P Y X ,

3

2)()()(1)(1)()(}00{P =

+--=+-=+====AB P B P A P B A P B A P B A P Y X ,

因为2

1

}0{P }0{P 32}00{P ===≠=

==Y X Y X ,,则X 与Y 不相互独立………12分

(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立?

(2) 因{2}{0.4}0.20.8P X P Y ===? 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.

⑴ 求,a b 应满足的条件; ⑵ 若X 与Y 相互独立 ,求 a,b 的值. 【思路】 先利用联合分布律的性质1ij

i

j

p

=∑∑确定a,b 应满足的条件,再利用独立性的定义来求出a

与b.

【解】⑴ 因为

1ij i

j

p =∑∑,所以

1111

1,84248

b a +++++= 因此 11.24a b +=

⑵ 由于 X 与Y 相互独立,即对所有,i j x y 有 ()()()

,,i j i j P X x Y y P X x Y y ===== 于是 ()()()112,121,46a P X Y P X Y a a ????

=======++

???????

解得 112a =或1.2a =

同理 ()()()1

31,212,88b P X Y P X Y B b ????=======++ ???????

解得 18b =或3.8

b = 再由11.24a b +=

知 13

,128

a b == 【解毕】 【技巧】 由于X 与Y 的独立性,故对所有的,i j x y 应有()()()

,,i j i j P X x Y y P X x Y y =====

因此,我们可在联合分布律表中找到几个比较容易计算的值来分别确定分布律中的参数,例如

()13,1,24P X Y ===

而()()1131,66P X Y a ??

===?+ ???

可求得1;12a =又()13,2,8P X Y ===而

18求得3

.8

b =这种参数的确定方式,需要读者熟练掌握. 10、 变量X 与Y 相互独立 ,下表列出了二维随机变量(),X Y 的联合分布律及关于X 和关于Y 的边缘分布律中的部分数值,试将其余数值填入表中的空间处:

【思路】 利用边缘分布律的求法及独立性来进行,例如,从11,86p +=求得11,24

p =再利用独立性知1111

.6p p =? 从而知11

,4

p = 等等. 【解】 利用;i ij j

ij j

i

p p p

p ==∑∑ 以及

1i j

i

j

p p

==∑∑ 与独立性 ij i j p p p = . 求解空格内的

数值,故11111111111,,68246p p p p p =

-===? 即11,4p = 又由121,p p += 可得2131.44

p =-= 反复运用上列公式,可求得 1322232313111,,,,.128423

p p p p p ===== 将算得的数值填入表中的空格内,即得

12、随机变量(X ,Y )的概率密度为

f (x ,y )= 4.8(2),01,0,

0,.y x x y x -≤≤≤≤???

其他

求边缘概率密度.

【解】()(,)d X f x f x y y +∞

-∞

=

?

x

204.8(2)d 2.4(2),01,

=0,.0,

y x y x x x ??--≤≤?=??

????其他 ()(,)d

Y f y f x y x +∞

-∞

=

?

12y 4.8(2)d 2.4(34),01,

=0,.0,

y x x y y y y ?-?-+≤≤?

=??????其他

13维随机变量(X ,Y )的概率密度为

f (x ,y )=???<<-.,

0,0,其他e y x y

求边缘概率密度. 【解】()(,)d X f x f x y y +∞

-∞

=

?

e d e ,0,

=0,.0,

y x x y x +∞

--??>?=??

????其他 ()(,)d Y f y f x y x +∞

-∞

=?

0e d e ,0,

=0,.0,

y

y x x y y --??>?=??

????其他

16 知随机变量X 和Y 联合概率密度为 ()4, 01,01,

,0, xy x y f x y ≤<≤

其他

求⑴ 条件密度()||X Y f x y 及()||;Y X f y x

【解】⑴ 由于X 的边缘密度为 ()()1

4, 012, 0 1

,0, 0, X xydy x x x f x f x y dy +∞

-∞

?≤<≤

==?????

??

其他.其他

同理,有 ()()2, 01,

,0, Y y y f y f x y dx +∞

-∞

=?

?

?

其他 故当01y <<时,()Y f y >0,且 ()()()|4, 01,

,2|0, X Y Y xy

x f x y y f x y f y ?≤

==?

?

?其他

从而,在{}Y y =条件下,X 的条件密度为 ()|2, 01,01,

|0, X Y x x y f x y ≤<<

?

其他

同样可得,在{}X x =条件下,Y 的条件密度为 ()|2, 01,01,|0, Y X y y x f y x ≤

<<

?其他

17、(12分)随机变量X 和Y 均服从区间[0,2]上的均匀分布且相互独立.

1.写出二维随机变量(Y X ,)的边缘概率密度和联合概率密度.2.求}2

3{≤+Y X P . 解:(1)由题意得:

???

??≤≤=其它

,020,2

1

)(x x f X ?????≤≤=其它,020,21)(y y f Y 又∵ X,Y 相互独立

∴ f (x , y )=f X (x )f Y (y )=?????≤≤≤≤其它

,

02020,

4

1

y x

(2) y d x d y d x d y x f Y X P y x y x ????

+≤

+=

=

≤+2

32

341

),(}2

3{

=y d x d x ?

?

-230

230

4

1=329

四、正态分布、中心极限定理、

1、调查某地方考生的外语成绩X 近似服从正态分布,平均成绩为72分,

96分以上的占考生总数的2.3% 。试求:

(1)考生的外语成绩在60分至84分之间的概率; (2)该地外语考试的及格率;

(3)若已知第三名的成绩是96分,求不及格的人数。( ()8413.01=Φ, 977.0)2(=Φ ) 解:依题意,{}2~(72,)960.023X N P X σ≥=且

{}9672

0.0231961(

)12P X σσ

-=-≤=-Φ?=查表得

(1){}60842(1)10.6826P X ≤≤=Φ-= (2) {}60(1)0.8413P X ≥=Φ=

(3)设全班人数为n , 由(2) 知不及格率为0.1587, 则023

.02

=

n ,则不及格人数为141587.0≈n 2、某高校入学考试的数学成绩近似服从正态分布()65,100N ,如果85分以上为“优秀”,问数学成绩为“优秀”的考生大致占总人数的百分之几。()()

20.9772Φ= 解:依题意,~(65,100)X N ,85分以上学生为优秀,则

{}{}()6585658518511210.97720.0228 2.28%

10

10X P X P X P --??

≥=-<=-<=-Φ=-==????

所以优秀学生为2.28%。

4、公共汽车门的高度是按男子与车门碰头的机会在0.01以下来设计的,设男子的身高()

2

~170,6X N ,

问车门的高度应如何确定?(()2.330.99Φ=) 解:设车门的高度为x 厘米,则

{}17017010.010.996

6X x X x P X x P P μμσσ----????≤=≤=≤≥-=????????, ()2.330.99Φ=

所以

170

2.33,18

3.986

x x -= 。即车门的高度至少要183.98厘米。

5、公共汽车门的高度是按男子与车门碰头的机会在0.01以下来设计的,设男子的身高()

2

168,7X N ,

问车门的高度应如何确定?(()2.330.99Φ=) 解:设车门的高度为x 厘米,则

{}16816810.010.997

7X x X x P X x P P μμσσ----????

≤=≤=≤≥-=????????,

()2.330.99Φ= 所以

168

2.33,184.317

x x -= 。即车门的高度至少要184.31厘米。

7. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于

90%,问这批产品至少要生产多少件?

【解】令1,,

0,i i X ???若第个产品是合格品其他情形.

而至少要生产n 件,则i =1,2,…,n ,且

X 1,X 2,…,X n 独立同分布,p =P {X i =1}=0.8.

(,件产品中合格品的个数表示则令:p n ,B ~X n X ,x X n

1i i ∑==, 由中心极限定理,则n 较大时,二项分布可近似的看成正态分布, 即),(~npq np N X ,或

)1,0(~N npq

np

X -,而n 件产品的合格品率=

n X =总产品个数合格品数

现要求n ,使得

1

{0.760.84}0.9.n

i

i X

P n

=≤

≤≥∑

0.80.9n

i X n P -≤≤≥∑

由中心极限定理得

0.9,Φ-Φ≥

整理得0.95,Φ≥??

查表 1.64,10≥ n ≥268.96, 故取n =269.

10某保险公司经多年的资料统计表明,在索赔户中被盗户占20%,在随意抽查的100家索赔户中被盗的索赔数为随机变量.X

(1) 写出.X 的概率分布;

(2) 利用中心极限定理,求被盗德索赔户数不少于14户且不多于30户的概率近似值.

【解】 (1)据题意可知,100家索赔户中被盗的索赔户数()~100,0.2X B ,即X 的分布律为

()()

()

1001000.20.8, 0,1,2,,100.

k

k

k

P X k C k -=== N 较大时,二项分

N(0,1))~npq N(np,~,B ~npq

np X X p n X -?

?)(

(2)由

1000.24np =?=利用德莫佛-拉普拉斯定理知

()

()()()()1430201.5 2.542.5 1.52.5 1.510.9940.93310.927

P X P X P ≤≤??

=≤≤

-??=≤≤ ?

??

≈Φ-Φ-=Φ+Φ-=+-=

【解毕】

【技巧】 德莫佛-拉普拉斯定理在实际中由广泛的应用,运用此定理计算概率近似值时,其关键是:“标准化”和“正态近似”,当n 越大时,所得得近似值越精确.

11、一大批种子,其中良种占1/6,现从中任取6000粒种子,试分别用切比雪夫不等式和用中心极限定理计算这6000粒种子中良种所占的比例与1/6之差的绝对值不超过0.01的概率.

【解】 设随机变量X 表示所取6000粒种子中良种的粒数,由题意可知,1~6000,6X B ?

? ???

,于是

1

60001000,6

EX np ==?= ()155

160001000.666

DX np p =-=??=?

(1)

要估计的概率为()11100060,600061000X P P X ??

-<=-<

???

相当于在切比雪夫不等式中取60.ε=于是由切比雪夫不等式可得

()21110006016000610006051

11000636000.7685,

X DX P P X ??-<=-<≥- ???

=-??=

(2)

由德莫佛-拉普拉斯中心极限定理,二项分布16000,6B ?? ???

可用正态分布

51000,10006N ??

? ???

近似。于是所求概率为

(

)()111000606000610002 2.0785120.9812410.9625.

X P P X P ??

-<=-< ???=≤≈Φ-=?-≈ 【解毕】

【寓意】 从本例看出:由切比雪夫不等式只能得出要求的概率不小于0.7685,而由中心极限定理可得到要求的概率近似等于0.9625.从而可知,由切比雪夫不等式得到的下界是十分粗糙的,但由于它的要求较低,只需知道X 的期望与方差,因而在理论上由许多应用.

五、数学期望、方差的题目

1、 设随机变量X 的概率密度为:??

?

??≤≤-<≤-+=其它 ,010 ,10

1 ,1)(x x x x x f ,

求:)(),(X D X E

解: ()()()()01

10

110E X xf x dx x x dx x x dx ∞-∞-==++-=???

()()()0

1

2

2

221

1()116

E X

x f x dx x x dx x x dx ∞

-∞

-==++-=

?

?? 所以 ()()()[]6

122=-=X E X E X D

5、已知随机变量X 的密度函数为()1

cos ,2

2

0,2

x x f x x π

π

?≤??=?

?>

??

对X 独立观察3次,用Y 表示观察值大于6

π

的次数。求:(1)Y 的分布律; (2)Y 的分布函数; (3)()2E Y

解:令22

66

111

cos sin 6224

p P X xdx x

πππππ?

?=>===

???

??

(1)Y 的分布律为:{}3313,0,1,2,3.44k

k

k P Y k C k -????

=== ? ?

????

(2)

()0,027,016427,

1232

63,23641.3

y y y F y y y

(3)

()()()2222

2

21319334448

E Y D Y E Y npq n p =+=+??=??+?=

???

1.设随机变量X 的分布律为

求E (X )【解】(1) 11111

()(1)012;82842

E X =-?

+?+?+?= (2) 22

22211115()(1)012;82844

E X =-?+?+?+?=

(3) 1

(23)2()32342

E X E X +=+=?+=

8设随机变量X 的概率密度为

f (x )=??

?

??≤≤-<≤.,0,21,2,10,其他x x x x

求E (X ),D (X ). 【解】1

2

2

1

()()d d (2)d E X xf x x x x x x x +∞

-∞

=

=+-?

??

2

1

3

32011 1.33x x x ??

??=+-=???????

?

1

2

2

2

3

20

1

7

()()d d (2)d 6

E X x f x x x x x x x +∞

-∞==+-=

?

?? 故 2

2

1()()[()].6

D X

E X E X =-=

9X 表示10次独立重复射击中命中目标的次数,每次射中目标的概率为0.4,求2

EX .

【解】 由题意知()~10,0.4X B 于是

100.44,EX =?=

()100.410.4 2.4.DX =??-=

由()2

2

DX EX EX =-可推知

()2

222.4418.4.

EX DX EX =+=+=

10、X 服从参数1λ=的指数分布,求()

2X E X e -+. 【解】 由题设知,X 的密度函数为

(), 0,

0, 0.x e x f x x -?>=?

≤?

且1EX =,又因为

()2220

1,3X

x

x x

Ee

e

f x dx e e dx +∞

+∞

-----∞

=

=

=?? 从而 ()

2214

1.33

X

X E X e

EX Ee --+=+=+= 【解毕】 【寓意】 本题的目的是考查常见分布的分布密度(或分布律)以及它们的数字特征,同时也考查了随机变量函数的数学期望的求法.

11、设随机变量X 和Y 独立,且X 服从均值为1

Y 服从标准正态分布,试求随机变量23Z X Y =-+的概率密度函数.

【思路】 此题看上去好像与数字特征无多大联系,但由于X 和Y 相互独立且都服从正态分布,所以Z 作为,X Y 的线性组合也服从正态分布.故只需求EZ 和DZ ,则Z 的概率密度函数就唯一确定了. 【解】 由题设知,()()~1,2,~0,1X N Y N .从而由期望和方差的性质得

2

235,29.

EZ EX EY DZ DX DY =-+==+=

又因Z 是,X Y 的线性函数,且,X Y 是相互独立的正态随机变量,故Z 也为正态随机变量,又因正态分布完全由其期望和方差确定,故知()~5,9Z N ,于是,Z 的概率密度为

(

)()2

529

, .z Z f z z --

?=

-∞<<+∞ 【解毕】

【寓意】 本题主要考查二点内容,一是独立正态分布的线性组合仍为正态分布;其二是正态分布完全由其期望和方差决定.

13二维离散随机变量(),X Y 的分布列为

求:XY ρ,并问X 与Y 是否独立,为什么? 【解】 X 与Y 的边缘分布列分别为

X -1 0 1 Y -1 0 1 和 P 38 28 38 P 38 2

8

38

从而 0,EX EY ==

()2

22223233101,8884

EX EY ==-?+?+?=

从而 3

,4

DX DY ==

又由于

()()()3333

11

1

1

111111 110101101888888

0.

i j ij i j ij

i j j j EXY x y p x y p ======????=-?-?+?+?++?-?+?+??????

??

?

=∑∑∑∑

所以 (),0.Cov X Y EXY EX EY =-=

从而

,0.XY Cov X Y ρ=

=

因为()()()133

1,111,888

P X Y P X P Y =-=-=

≠=-=-=?所以X 与Y 不独立. 注释:通过本题目可以将离散型随机变量的数学期望、方差、协方差、相关系数及其独立性的定义及其

计算很好的巩固

14知随机变量X 与Y 分别服从正态分布()21,3N 和()

20,4N ,且X 与Y 的相关系数1

2

XY ρ=-

,设,32

X Y

Z =

+求: (1)Z 的数学期望EZ 和方差DZ ; (2)X 与Z 的相关系数XZ ρ;

【解】 (1)由数学期望的运算性质有

1

11.323

23X Y EZ E EX EY ??=+=+= ???

由()()2,D X Y DX DY Cov X Y +=++有

(

)2211112,3232321111

2,3232

111

943 142 3.

XY X Y DZ D D X D Y Cov X Y DX DY Cov X Y DX DY ρ????????

=+=++ ? ? ? ?

????????=++??=++=+-= (2)因为

()()(

)

2,,3211

,,32

11

32111 3340,

322XY X Y Cov X Z Cov X Cov X X Cov X Y DX ρ?

?=+ ?

?

?=+=+??

=?+?-??= ???

所以

,0.XZ Cov X Z ρ=

=

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12(34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计第二版_课后答案_科学出版社_参考答案_

习题2参考答案 X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36 解:根据 1)(0 ==∑∞ =k k X P ,得10 =∑∞ =-k k ae ,即111 1 =---e ae 。 故 1-=e a 解:用X 表示甲在两次投篮中所投中的次数,X~B(2, 用Y 表示乙在两次投篮中所投中的次数, Y~B(2, (1)两人投中的次数相同 P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}= 1 1 2 2 020********* 2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ?+?+?=(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}= 1 2 2 1 110220022011222222 0.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ?+?+?=解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155 ++= (2)P{

解:(1)P{X=2,4,6,…}=246211112222k +++L =11[1()] 14 41314 k k lim →∞-=- (2)P{X ≥3}=1―P{X<3}=1―P{X=1}- P{X=2}=111 1244 --= 解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,2 12341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719 ???= 1123412342341234{1}{}{}{}{} 2181716182171618182161817162322019181720191817201918172019181795 P X P A A A A P A A A A P A A A A P A A A A ==+++=???+???+???+???= 12323 {2}1{0}{1}1199595 P X P X P X ==-=-==- -= 解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4, 34 314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5, 3 4 5 324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++= (1)X ~P(λ)=P ×3)= P 0 1.51.5{0}0! P X e -=== 1.5 e - (2)X ~P(λ)=P ×4)= P(2) 0122 222{2}1{0}{1}1130!1! P X P X P X e e e ---≥=-=-==--=-

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第六章 随机变量数字特征 一.填空题 1. 若随机变量X 的概率函数为 1 .03.03.01.02.04 3211p X -,则 =≤)2(X P ;=>)3(X P ;=>=)04(X X P . 2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413 ≈--e . 3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=?==-k c k X P k 则=c 15 16 . 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.( 13 ) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.( 12 ) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __. (k 3 3(=,0,1,2k! P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为1 40000 λ=的指数分布,则此种电器的平 均使用寿命为____________小时.(40000) 10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为 11.若随机变量X 的概率密度为)(,1)(2 +∞<<-∞+= x x a x f ,则=a π1 ;=>)0(X P ;==)0(X P 0 . 12.若随机变量)1,1(~-U X ,则X 的概率密度为 1 (1,1) ()2 x f x ?∈-? =???其它

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

天津理工大学概率论与数理统计同步练习册标准答案详解

天津理工大学概率论与数理统计同步练习册答案详解

————————————————————————————————作者:————————————————————————————————日期: 2

第一章 随机变量 习题一 1、写出下列随机试验的样本空间 (1)同时掷三颗骰子,记录三颗骰子点数之和 Ω= { }1843,,,Λ (2)生产产品直到有10件正品为止,记录生产产品的总件数 Ω= { }Λ,,1110 (3)对某工厂出厂的产品进行检验,合格的记上“正品”,不合格的记上“次品”, 如连续查出2个次品就停止,或检查4个产品就停止检查,记录检查的结果。用“0”表示次品,用“1”表示正品。 Ω={111111101101011110111010110001100101010010000,,,,,,,,,,,} (4)在单位圆内任意取一点,记录它的坐标 Ω= }|),{(122<+y x y x (5)将一尺长的木棍折成三段,观察各段的长度 Ω=},,,|),,{(1000=++>>>z y x z y x z y x 其中z y x ,,分别表示第一、二、三段的长度 (6 ) .10只产品中有3只次品 ,每次从其中取一只(取后不放回) ,直到将3只次品都取出 , 写出抽取次数的基本空间U = “在 ( 6 ) 中 ,改写有放回抽取” 写出抽取次数的基本空间U = 解: ( 1 ) U = { e3 , e4 ,… e10 。} 其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。 i = 3、 4、 …、 10 ( 2 ) U = { e3 , e4 ,… } 其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。 i = 3、 4、 … 2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系 (1)δ<-||a x 与δ≥-||a x 互不相容 (2)20>x 与20≤x 对立事件 (3)20>x 与18x 与22≤x 相容事件 (5)20个产品全是合格品与20个产品中只有一个废品 互不相容 (6)20个产品全是合格品与20个产品中至少有一个废品 对立事件

概率论与数理统计必考大题解题索引

概率论与数理统计必考大题解题索引 编制:王健 审核: 题型一:古典概型:全概率公式和贝叶斯公式的应用。 【相关公式】 全概率公式: ()()()()()() n 1122S P()=|()||()() (|)() =()(|)()(|). i n n E S A E B A P A B P B P A B P B P A B P B P AB P B A P A P A P A B P B P A B P B +++= =+12设实验的样本空间为,为的事件,B ,B ,……,B 为的划分,且>0,则有: P ?…其中有:。特别地:当n 2时,有: 贝叶斯公式: ()()i 1 00(1,2,,),()(|)() (|)()(|)() =()(|)() (|)()(|)()(|)() i i i i n i i j E S A E A P B i n P B A P A B P B P B A P A P A B P B P AB P A B P B P B A P A P A B P B P A B P B =>>===== +∑12n 设实验的样本空间为。为的事件,B ,B ,……,B 为S 的一个划分,且P ,……则有:特别地: 当n 2时,有: 【相关例题】 1.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。现从出厂的产品中任取一件,求: (1)恰好取到不合格品的概率; (2)若已知取到的是不合格品,它是第二家工厂生产的概率。 解:设事件 表示:“取到的产品是不合格品”;事件i A 表示:“取到的产品是第i 家工 厂生产的”(i =123,,)。 则Ω== 3 1i i A ,且P A i ()>0,321A A A 、、两两互不相容,由全概率公式得 (1)∑=?=3 1 )|()()(i i i A A P A P A P 1000/37100 210035100410025100510040=?+?+?=

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学) 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ??? ????=n n n n o S 1001, ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生 表示为:A+B+C (4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾). 从而由加法定理得 P (AB )=P (A )+P (B )-P (A ∪B ) (*) (1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6, (2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。 7.[四] 设A ,B ,C 是三事件,且0)()(,4 1 )()()(=== ==BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )

概率论与数理统计考试试卷与答案

0506 一.填空题(每空题2分,共计60 分) 1、A、B 是两个随机事件,已知p(A) 0.4,P(B) 0.5,p(AB) 0.3 ,则p(A B) 0.6 , p(A -B) 0.1 ,P(A B)= 0.4 , p(A B) 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2 只,则第一次、第二次取红色球的概率为:1/3 。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25 。( 3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。 3、设随机变量X 服从B(2,0.5)的二项分布,则p X 1 0.75, Y 服从二项分 布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从B(100,0.5),E(X+Y)= 50 , 方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、 0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取 一件。 ( 1)抽到次品的概率为:0.12 。 2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 6、若随机变量X ~N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则P{ 2 X 4} 0.815 , Y 2X 1,则Y ~ N( 5 ,16 )。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1 ,D(Y)=2, 且 X、Y 相互独立,则:E(2X Y) - 4 ,D(2X Y) 6 。 8、设D(X) 25 ,D( Y) 1,Cov( X ,Y) 2,则D(X Y) 30 9、设X1, , X 26是总体N (8,16)的容量为26 的样本,X 为样本均值,S2为样本方 差。则:X~N(8 ,8/13 ),25S2 ~ 2(25),X 8 ~ t(25)。 16 s/ 25 10、假设检验时,易犯两类错误,第一类错误是:”弃真” ,即H0 为真时拒绝H0, 第二类错误是:“取伪”错误。一般情况下,要减少一类错误的概率,必然增大另一类错误的概率。如果只对犯第一类错误的概率加以控制,使之

概率论与数理统计教程(魏宗舒)第七章答案

. 第七章 假设检验 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设: (1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=. 解:(1)是简单假设,其余位复合假设 设1225,,,ξξξL 取自正态总体(,9)N μ,其中参数μ未知,x 是子样均值,如对检验问题0010:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c μ=-≥L ,试决定常数c ,使检验的显着性水平为 解:因为(,9)N ξμ~,故9 (,)25 N ξμ~ 在0H 成立的条件下, 000 53(||)(||)53 521()0.05 3c P c P c ξμξμ-≥=-≥? ?=-Φ=??? ? 55( )0.975,1.9633 c c Φ==,所以c =。 设子样1225,,,ξξξL 取自正态总体2 (,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>L , (1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系; (2)设0μ=,20σ=,α=,n=9,求μ=时不犯第二类错误的概率。 解:(1)在0H 成立的条件下,2 00(, )n N σξμ~,此时 00000()P c P ξαξ=≥=

10 αμ-= ,由此式解出010c αμμ-= + 在1H 成立的条件下,2 0(, )n N σξμ~,此时 1010 10 ()(P c P αξβξμ-=<==Φ=Φ=Φ- 由此可知,当α增加时,1αμ-减小,从而β减小;反之当α减少时,则β增加。 (2)不犯第二类错误的概率为 10 0.9511(0.650.51(3) 0.2 1(0.605)(0.605)0.7274αβμμ--=-Φ-=-Φ- =-Φ-=Φ= 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设: 0011101 201 :():()00x x x H f x H f x ≤≤≤≤??==? ??? 其他其他 试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。 解 设检验函数为 1()0x c x φ∈?=?? 其他(c 为检验的拒绝域)

概率论与数理统计第四版-课后习题答案_盛骤__浙江大学

完全版 概率论与数理统计习题答案 第四版 盛骤 (浙江大学) 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ??? ????=n n n n o S 1001, ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生 表示为:A+B+C (4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾). 从而由加法定理得 P (AB )=P (A )+P (B )-P (A ∪B ) (*) (1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6, (2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。 7.[四] 设A ,B ,C 是三事件,且0)()(,4 1 )()()(=== ==BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )= 8 508143=+-

《概率论与数理统计》袁荫棠 中国人民大学出版社 课后答案 概率论第一章

概论论与数理统计 习题参考解答 习题一 8.掷3枚硬币,求出现3个正面的概率. 解:设事件A ={出现3个正面} 基本事件总数n =23,有利于A 的基本事件数n A =1,即A 为一基本事件, 则.125.08 121)(3====n n A P A 9.10把钥匙中有3把能打开门,今任取两把,求能打开门的概率. 解:设事件A ={能打开门},则为不能打开门 A 基本事件总数,有利于的基本事件数,210C n =A 27C n A =467.0157910212167)(21027==××?××==C C A P 因此,.533.0467.01(1)(=?=?=A P A P 10.一部四卷的文集随便放在书架上,问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少?解:设A ={能打开门},基本事件总数,2412344=×××==P n 有利于A 的基本事件数为,2=A n 因此,.0833.012 1)(===n n A P A 11.100个产品中有3个次品,任取5个,求其次品数分别为0,1,2,3的概率. 解:设A i 为取到i 个次品,i =0,1,2,3, 基本事件总数,有利于A i 的基本事件数为5100C n =3 ,2,1,0,5973==?i C C n i i i 则w w w .k h d a w .c o m 课后答案网

00006.098 33512196979697989910054321)(006.0983359532195969739697989910054321)(138.098 33209495432194959697396979899100543213)(856.033 4920314719969798991009394959697)(5100297335100 39723225100 49711510059700=××==××?××××××××====××= ×××××?××××××××====×××=×××××××?××××××××=×===××××=××××××××===C C n n A P C C C n n A P C C n n A P C C n n A P 12.N 个产品中有N 1个次品,从中任取n 个(1≤n ≤N 1≤N ),求其中有k (k ≤n )个次品的概率.解:设A k 为有k 个次品的概率,k =0,1,2,…,n ,基本事件总数,有利于事件A k 的基本事件数,k =0,1,2,…,n ,n N C m =k n N N k N k C C m ??=11因此,n k C C C m m A P n N k n N N k N k k ,,1,0,)(11?===??13.一个袋内有5个红球,3个白球,2个黑球,计算任取3个球恰为一红,一白,一黑的概率.解:设A 为任取三个球恰为一红一白一黑的事件, 则基本事件总数,有利于A 的基本事件数为, 310C n =121315C C C n A =则25.04 12358910321)(310121315==×××××××===C C C C n n A P A 14.两封信随机地投入四个邮筒,求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解:设A 为前两个邮筒没有信的事件,B 为第一个邮筒内只有一封信的事件,则基本事件总数,1644=×=n 有利于A 的基本事件数,422=×=A n 有利于B 的基本事件数, 632=×=B n 则25.041164)(====n n A P A .375.083166)(====n n B P B w w w .k h d a w .c o m 课后答案网

相关文档
相关文档 最新文档