文档库 最新最全的文档下载
当前位置:文档库 › 数学分析十讲习题册、课后习题答案

数学分析十讲习题册、课后习题答案

数学分析十讲习题册、课后习题答案
数学分析十讲习题册、课后习题答案

习 题 1-1

1.计算下列极限

(1)lim x a

x a a x x a

→--, 0;a >

解:原式lim[

]x a a a

x a a a x a x a x a

→--=---=()|()|x a x a x a a x ==''- =1

ln a

a a a a a --?=(ln 1)a

a a -

(2)sin sin lim

sin()

x a x a

x a →--;

解:原式sin sin lim x a x a

x a

→-=-(sin )'cos x a x a ===

(3

)2

lim 2), 0;n n a →∞->

解:原式2n =20[()']x x a ==2

ln a = (4)1lim [(1)1]p

n n n

→∞+-,0;p >

解:原式111(1)1lim ()|p p p x n n n

x =→∞

+-'===11

p x px p -== (5)10

10

0(1tan )(1sin )lim

;sin x x x x

→+-- 解:原式101000(1tan )1(1sin )1

lim lim tan sin x x x x x x →→+---=--

=99

0010(1)|10(1)|20t t t t ==+++=

(6)

1x →,,m n 为正整数;

解:原式1

111

n

x x x →=--11

11

()'

()'

m

x n

x x x ===n m

=

2.设()f x 在0x 处二阶可导,计算00020()2()()

lim h f x h f x f x h h

→+-+-. 解:原式000()()lim 2h f x h f x h h →''+--=00000()()()()

lim 2h f x h f x f x f x h h

→''''+-+--=

000000()()()()lim lim 22h h f x h f x f x h f x h h →→''''+---=+-00011

()()()22

f x f x f x ''''''=+=

3.设0a >,()0f a >,()f a '存在,计算1

ln ln ()lim[

]()

x a x a f x f a -

→. 解:1

ln ln ()lim[]()

x a x a f x f a -→ln ()ln ()

ln ln lim f x f a x a

x a e --→=

ln ()ln ()lim

ln ln x a f x f a x a e

→--=ln ()ln ()lim ln ln x a f x f a x a x a

x a

e

→----=

'()

()

f a

a f a e

=

习 题 1-2

1.求下列极限 (1)lim x →+∞

;

解:原式lim [(1)(1)]02x x x ξ

ξ

→+∞

=+--= ,其中ξ在1x -与1x +之间 (2)40cos(sin )cos lim sin x x x

x

→-;

解:原式=40sin (sin )

lim

x x x x ξ→--=30sin sin lim()()()x x x x x ξξξ→--

?=1

6

,其中ξ在x 与sin x 之间 (3) lim x →+∞

解:原式116611lim [(1)(1)]x x x x →+∞=+--5

6111

lim (1)[(1)(1)]6x x x x

ξ-→+∞=?+?+--

5611lim (1)33x ξ-→+∞=+= ,其中ξ在11x -与1

1x

+之间 (4) 2

11lim (arctan arctan );1

n n n n →+∞-+

解:原式2

2111lim ()11n n n n ξ→+∞=-++1=,其中其中ξ在11n +与1n

之间 2.设()f x 在a 处可导,()0f a >,计算11()lim ()n

n n n f a f a →∞??+??-?

?. 解:原式

1111

(ln ()ln ())

lim (ln ()ln ())lim n n f a f a n f a f a n n

n n

n e

e

→∞+--+--→∞

==

11

ln ()ln ()ln ()ln ()

[lim lim ]11n n f a f a f a f a n n n n

e

→∞→∞

+---+-

=

()()

2()()()

()

f a f a f a f a f a f a e

e

'''+

==

习 题 1-3

1.求下列极限

(1)0(1)1

lim (1)1

x x x λμ→+-+-,0;μ≠

解:原式0lim

x x x λλμμ

→==

(2

)0

x →;

解:02ln cos cos 2cos lim

12

x x x nx

I x

→-???=20ln cos ln cos 2ln cos 2lim x x x nx x →++???+=- 20cos 1cos 21cos 1

2lim x x x nx x →-+-+???+-=-22220(2)()lim x x x nx x →++???+=21

n

i i ==∑ (3)0

1

1

lim )1

x

x x e →-

-(; 解:原式01lim (1)x x x e x x e →--=-201lim x x e x x →--=01lim 2x x e x →-=01

lim 22

x x x →== (4)1

12

lim [(1)]x

x

x x x x →+∞

+-;

解:原式1

1ln(1)ln 2

lim ()x x x

x

x x e

e

+→+∞

=-2

1lim (ln(1)ln )x x x x x →+∞

=+-1lim ln(1)x x x

→+∞=+

1

lim 1x x

x

→+∞

== 2. 求下列极限 (1)2

2

2

1cos ln cos lim

sin x x x x x

e e x

-→----;

解:原式2222

01122lim

12x x x x x →+==- (2)0ln()2sin lim sin(2tan 2)sin(tan 2)tan x x x e x

x x x

→++--;

解:原式0ln(11)2sin lim sin(2tan 2)sin(tan 2)tan x x x e x x x x →++-+=--012sin lim sin(2tan 2)sin(tan 2)tan x x x e x

x x x

→+-+=--

02lim

442x x x x

x x x

→++==--

习 题 1-4

1.求下列极限

(1)2

1lim (1sin )n n n n

→∞

-;

解:原式2

331111lim [1(())]3!n n n o n n n →∞

=--

+11

lim((1))3!6

n o →∞=+=

(2)求3

3

601lim sin x x e x x

→--;

解:原式36

3

633

6600()112lim lim 2

x x x x

x o x x e x x x →→++---=== (3)2

1lim[ln(1)]x x x x

→∞-+;

解:原式222111lim[(())]2x x x o x x x →∞=--+12=

(4)21lim (1)x x

x e x

-→+∞+;

解:原式21

1[ln(1)]

2

lim x x x

x e

e +--

→∞

==

此题已换3.设()f x 在0x =处可导,(0)0f ≠,(0)0f '≠.若()(2)(0)af h bf h f +-在

0h →时是比h 高阶的无穷小,试确定,a b 的值.

解:因为 ()(0)(0)()f h f f h o h '=++,(2)(0)2(0)()f h f f h o h '=++ 所以00()(2)2(0)(1)(0)(2)(0)()

0lim

lim

h h af h bf h f a b f a b f o h h h

→→'+-+-+++== 从而 10a b +-= 20a b += 解得:2,1a b ==- 3.设()f x 在0x 处二阶可导,用泰勒公式求0002

()2()()

lim

h f x h f x f x h h →+-+-

解:原式

222

200001000220

''()''()()'()()2()()'()()2!2!

lim

h f x f x f x f x h h o h f x f x f x h h o h h

→++

+-+-++=22201220''()()()

lim h f x h o h o h h

→++=0''()f x = 4. 设()f x 在0x =处可导,且20sin ()lim(

) 2.x x f x x x →+=求(0),(0)f f '和01()

lim x f x x

→+. 解 因为 2200sin ()sin ()

2lim()lim x x x f x x xf x x x x

→→+=+= []

22

()(0)(0)()lim

x x o x x f f x o x x

→'++++=

222

0(1(0))(0)()

lim x f x f x o x x →'+++=

所以 1(0)0,(0)2f f '+==,即(0)1,(0)2f f '=-= 所以 01()

lim

x f x x

→+01(0)(0)()lim x f f x o x x →'+++=02()lim 2x x o x x →+==

习 题 1-5

1. 计算下列极限

(1) n n ++

; ;

解:原式n

=

2n ==

(2)2212lim (1)n

n n a a na a na

+→∞+++???+> 解:原式21lim (1)n n n n na na n a ++→∞=--2lim (1)n n na n a →∞=--21

a a

=

- 2. 设lim n n a a →∞=,求 (1) 1222lim n

n a a na n

→∞+++; 解:原式22lim (1)n n na n n →∞=--lim 212

n n na a

n →∞==

- (2) 12lim 111

n n

n

a a a →∞+++,0,1,2,,.i a i n ≠=

解:由于1211111

lim lim n n n n

a a a n a a →∞→∞+++==,

所以12lim 111

n n

n

a a a a →∞=+++

3.设2lim()0n n n x x -→∞-=,求lim n n x n →∞和1

lim n n n x x n

-→∞-.

解:因为2lim()0n n n x x -→∞

-=,所以222lim()0n n n x x -→∞

-=

且2121lim()0n n n x x +-→∞

-=

从而有stolz 定理2222lim

lim 022

n n n n n x x x

n -→∞→∞-==,

且2121

21

lim lim 0212

n n n n n x x x n ++-→∞→∞-==+ 所以lim 0n n x n →∞=,11

1lim lim lim 01

n

n n n n n n x x x x n n n n n --→∞→∞→∞--=-=-

4.设11

0x q <<

,其中01q <≤,并且1(1)n n n x x qx +=-, 证明:1

lim n n nx q

→∞=.

证明:因11

0x q

<<,所以

211211(1)111

(1)()24qx qx x x qx q q q

+-=-≤=<,所以

210x q <<,用数学归纳法易证,1

0n x q <<。

又111n n n

x

qx x +=-<,从而n x 单调递减,

由单调有界原理,lim n n x →∞

存在,记lim n n x L →∞

=

在1(1)n n n x x qx +=-两边令n →∞,可得lim 0n n x →∞

=

所以11lim lim

lim 111

n n n n n n n

n nx x x x →∞→∞→∞+==-

11(1)lim lim (1)n n n n n n n n n n n n

x x x x qx x x x x qx +→∞→∞+-==---11lim n n qx q q →∞-== 习 题 1-6

1. 设()f x 在(,)a +∞内可导,且()

lim ,x f x A x

→+∞

= lim ()x f x →+∞'存在.

证明:lim ().x f x A →+∞

'=

证明:()()

lim

lim lim ()1

x x x f x f x A f x x →+∞

→+∞→+∞''=== 2. 设()f x 在(,)a +∞上可微, lim ()x f x →+∞

和lim ()x f x →+∞

'存在. 证明:lim ()0x f x →+∞

'=.

证明:记lim ()x f x A →+∞

=(有限),lim ()x f x B →+∞

'=(有限),则

()()()

lim ()lim lim x x x x x x x x e f x e f x e f x A f x A B e e

→+∞→+∞→+∞'+====+ 从而0B = 所以lim ()0x f x →+∞

'=

3. 设()f x 在(,)a +∞上可导,对任意的0α>,

lim[()()]x f x xf x αβ→+∞

'+=,证明:lim ()x f x β

α

→+∞

=

. 证明:因为0α>,所以lim x x α

→+∞

=+∞,由广义罗必达法则得

()lim ()lim x x x f x f x x αα→+∞→+∞=11

()()

lim x x f x x f x x ααααα--→+∞'+= lim[()()]x x

f x f x α

→+∞

'=+

β

α

=

4.设()f x 在(,)a +∞上存在有界的导函数,证明:()

lim

0ln x f x x x

→+∞=.

证明:()()lim lim ln ln 1x x f x f x x x x →+∞→+∞'=+,()f x '有界,1

lim 0ln 1

x x →+∞=+,

所以()()

lim lim 0ln ln 1

x x f x f x x x x →+∞→+∞'==+

习 题 2-1

(此题已换) 1. 若自然数n 是无理数.

1.是无理数

证明:反证法. q

p

=

,,(N q p ∈且q p ,互质), 于是由2

2

3p q =可知,2

q 是2

p 的因子,从而得12

=q 即2

3p =,这与假设矛盾

2. 求下列数集的上、下确界. (1)11 ,n N n ??

-

∈????

解:1,inf 0supE E == (2)1(1),n n N n

??+∈???

?

解:,inf 2supE e E == (3)11(1)(1),n n n N n +?

?

-+

-∈???

?

解:1,inf 1supE E ==-

(4)2

1|, (1, )2y y x x ??

=∈-???

?

. 解:1,inf 0supE E ==

3.设{}

2

|2,E x x x Q =<∈,验证inf E =

证明:,E x ∈?由22

另一方面,设21->α也是E 的下界,由有理数集在实数系中的稠密性,

在),2(1α-区间中必有有理数x ',则E x x ∈'?<'22

且11αα?<'x

不是E 的下界.按下确界定义, inf E = 4.用定义证明上(下)确界的唯一性.

证明:设β为数集E 的上确界,即E sup =β.按定义,

E x ∈?有β≤x .若β'也是E 的上确界且

ββ≠'.不妨设ββ>',则对E x ∈?>-'=0,0ββε

有)(0βββ-'-'>x 即,0β>x 矛盾. 下确界的唯一性类似可证

习 题 2-2

1.用区间套定理证明:有下界的数集必有下确界.

证明:设a 是E 的一个下界,b 不是E 的下界,则b a <.

令)(2

1

1b a c +=

,若1c 是E 的下界,则取b b c a ==111 ,; 若1c 不是E 的下界,则取111 ,c b a a ==. 令)(2

1

112b a c +=

,若2c 是E 的下界,则取1222 ,b b c a ==; 若2c 不是E 的下界,则取2212 ,c b a a ==;……, 按此方式继续作下去,得一区间套]},{[n n b a ,且满足:

n a 是E 的下界,n b 不是E 的下界),2,1( =n .

由区间套定理],[n n b a ∈?ξ ,2,1=n ,且ξ==∞

→∞

→n n n n b a lim lim .

下证E inf =ξ:

E x ∈?)1( 都有),2,1( =≥n a x n ,而ξξ≥?=∞→x a n n lim ,

即ξ是E 的下界.

,)2(ξξ>'?由于ξ=∞

→n n b lim ,从而当n 充分大以后,

《数学分析III》期中考试试题及参考答案

数学分析下册期末试题(模拟) 一、填空题(每小题3分,共24分) 1 、重极限 22(,)lim x y →=___________________ 2、设(,,)x yz u x y z e +=,则全微分du =_______________________ 3、设(sin ,)x z f x y y e =+,则 z x ?=?___________________ 4、设L 是以原点为中心,a 为半径的上半圆周,则 2 2()L x y ds +=?________. 5、曲面222 239x y z ++=和2 2 2 3z x y =+所截出的曲线在点(1,1,2)-处的 法平面方程是___________________________. 6 、已知12??Γ= ???32?? Γ-= ??? _____________. 7、改变累次积分的顺序,2 1 20 (,)x dx f x y dy =?? ______________________. 8、第二型曲面积分 S xdydz ydzdx zdxdy ++=??______________,其中S 为 球面2 2 2 1x y z ++=,取外侧. 二、单项选择题(每小题2分,共16分) 1、下列平面点集,不是区域的是( ) (A )2 2 {(,)14}D x y x y =<+≤ (B ){(,)01,22}D x y x y =<≤-≤≤ (C ){(,)01,1}D x y x y x =≤≤≤+ (D ){(,)0}D x y xy => 2、下列论断,正确的是( ) (A )函数(,)f x y 在点00(,)x y 处的两个累次极限都不存在,则该函数在 00(,)x y 处重极限必定不存在.

数学分析选讲

分析数学教案主讲人姜广浩 淮北师范大学数学科学学院 2010年3月1日

第一章 一元函数的极限 § 利用定义及迫敛性定理求极限 设R 表示实数集合,*R 表示扩张的实数集,即*R {}+∞∞-?=,R . 例1 若*lim R a a n n ∈=+∞ →.证明*21lim R a n a a a n n ∈=++++∞→ (算术平均值收敛公式). 证明 (1)设R a ∈,由a a n n =+∞ →lim ,0>?ε,01>?N ,当1N n >时, 2 ε< -a a n .因此 a n a a a n -+++ 21 n a a a a a a n ) ()()(21-++-+-= n a a a a a a N -++-+-≤121 n a a a a n N -++-+ + 11 21ε?-+≤ n N n n A 2 ε+N ,当2N n >时, 2 ε 时, a n a a a n -+++ 21εε ε=+<22. (2) 设+∞=+∞ →n n a lim ,则0>?M ,01>?N ,当1N n >时,M a n 3>.因此 n a a a n +++ 21 n a a a N 121+++= n a a a n N N ++++ ++ 2111 M n N n n A 31?-+>, 其中121N a a a A +++= .由于0→n A ,11→-n N n )(+∞→n ,所以存在02>N ,当2 N n >时, 2M n A <,211>-n N n .因此n a a a n +++ 21M M M =-?>2 1321. (3) 当-∞=+∞ →n n a lim 时,证明是类似的.(或令n n a b -=转化为(2)). 注 例1的逆命题是不成立的.反例为()n n a 1-=),2,1( =n ,容易看出

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = +=, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存 在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。?解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4 分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 222 2w w w μμν??+=???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

[0088]《数学分析选讲》

[0088]《数学分析选讲》 第一次作业 [论述题]1346658460111.doc 《数学分析选讲》 第一次 主观题 作业 一、判断下列命题的正误 1. 若数集S 存在上、下确界,则inf su p S S ≤. 2. 收敛数列必有界. 3. 设数列{}n a 与{}n b 都发散,则数列{}n n a b +一定发散. 4.若S 为无上界的数集,则S 中存在一递增数列趋于正无穷. 5.若一数列收敛,则该数列的任何子列都收敛. 二、选择题 1.设2,1 ()3,1 x x f x x x -≤?=? ->?, 则 [(1)]f f =( ) . A 3- ; B 1- ; C 0 ; D 2 2.“对任意给定的)1,0(∈ε,总存在正整数N ,当N n ≥时,恒有2||2n x a ε-≤”是数列 }{n x 收敛于a 的( ). A 充分必要条件; B 充分条件但非必要条件; C 必要条件但非充分条件; D 既非充分又非必要条件 3.若数列}{n x 有极限a ,则在a 的(0)ε>邻域之外,数列中的点( ) A 必不存在 ; B 至多只有有限多个; C 必定有无穷多个 ; D 可以有有限个,也可以有无限多个 4.数列}{n x 收敛,数列}{n y 发散,则数列{}n n x y + ( ). A 收敛; B 发散; C 是无穷大; D 可能收敛也可能发散 5.设a x n n =∞ →||lim ,则 ( ) A 数列}{n x 收敛; B a x n n =∞ →lim ; C 数列}{n x 可能收敛,也可能发散; D a x n n -=∞ →lim ; 6.若函数)(x f 在点0x 极限存在,则( ) A )(x f 在0x 的函数值必存在且等于极限值; B )(x f 在0x 的函数值必存在,但不一定等于极限值; C )(x f 在0x 的函数值可以不存在;

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =+在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x ==+ ,因此二重极限为0.……(4 分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(), (,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

《数学分析选讲》课程教学大纲()

《数学分析选讲》课程教学大纲 一、 课程性质、目标、任务 课程的基本特性: 数学分析专题选讲是数学与应用数学专业重要的选修课,它是学生进一步学习分析数学的分支和科学研究必不可少的专业基础知识, 同时也可使其他理科专业学生进一步了解微积分学知识. 课程的教学目标:该课程主要系统拓展和加深学习极限理论, 函数的连续性, 微分中值定理的及其应用,函数积分学,数值级数与无穷积分, 函数级数与含参变量的无穷积分, 多元函数积分学的核心内容. 课程的总体要求:主要要求学生系统拓展和加深极限理论, 函数的连续性, 微分中值定理的极其应用, 函数积分学,数值级数,函数级数与含参变量无穷积分的基本技能、基本思想和方法,主要培养学生分析论证问题的能力、抽象思维能力和科学研究的初步能力. 二、课程学时分配 章次 教学内容 讲课 实践 教学 其他 合计 第一章 函数极限与数列极限 4 4 第二章 函数的连续性与一致连续性 12 12 第三章 微分与微分学基本定理 12 12 第四章 不定积分与定积分 8 8 第五章 无穷、瑕、重、曲线、曲面积分 12 12 第六章 级数 14 14 总计 62 62 课程编码: 课程性质: 学科专业选修课程 教学对象: 数学与应用数学 学时学分: 62学时 4学分 编写单位: 铜仁学院数学与计算机科学系 编 写 人: 审 定 人: 编写时间: 2013年8月

二、教学内容 第一章函数极限与数列极限(4学时) 1、教学目标 掌握:函数极限和数列极限的求法,柯西准则,tolz定理 理解:函数极限和数列极限的概念 了解:柯西准则,tolz定理的应用 2、本章重点 函数极限和数列极限的求法。 3、本章难点 柯西准则,tolz定理的应用 4、讲授内容 第一节数列极限 第二节收敛数列 第三节函数极限 第四节函数极限定理 第二章函数的连续性与一致连续性(12学时) 1、教学目标 掌握:函数连续性和一致连续性的性质和应用 理解:函数连续性和一致连续性的概念 了解:不动点定理,函数方程 2、本章重点 函数连续性和一致连续性的性质和应用及证明 3、本章难点 不动点问题和函数方程 4、讲授内容 第一节连续函数 第二节连续函数的性质 第三节函数的连续性与一致连续性(一) 第四节函数的连续性和一致连续性(二) 第五节不动点问题 第六节函数方程 第三章微分与微分学基本定理(12学时) 1、教学目标 掌握:一元函数的导数和微分;多元函数的偏导和全微分;微分学基本定理

数学分析试卷及答案6套(新)

数学分析-1样题(一) 一. (8分)用数列极限的N ε- 定义证明1n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) 用ε三 (n x n n = ++ ?+四()f x x = 在五六七八九. )b ,使 (f ''数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

三. (10分)设0n a >,且1 lim 1n n n a l a →∞+=>, 证明lim 0n n a →∞ =. 四. (10分)证明函数()f x 在开区间(,)a b 一致连续?()f x 在(,)a b 连续,且 lim ()x a f x + →,lim ()x b f x - →存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理. 六. (12分)证明:若函数在连续,且()0f a ≠,而函数2 [()]f x 在a 可导,则函数()f x 在a 可导. 七. 八. ,都有 f 九. 一.(各1. x ?3. ln 0 ? 二.(10三. (10四. (15分)证明函数级数 (1)n x x =-在不一致收敛, 在[0,](其中)一致收敛. 五. (10分)将函数,0 (),0x x f x x x ππππ + ≤≤?=? - <≤?展成傅立叶级数. 六. (10分)设22 22 0(,)0,0 xy x y f x y x y ? +≠?=?? +=?

[0088]《数学分析选讲》

1、若函数f是奇函数,且在[-a,a]上可积,则 2、任意给定M>0,总存在X>0,当x<-X时,f(x)<-M,则() 3、极限() 1 e -1 1/e 4、设f可导,则 f'(sinx)dx -f'(sinx)cosxdx

f'(sinx)sinxdx f'(sinx)cosxdx 5、. 1 -1 2 6、函数为 ( ) 基本初等函数 初等函数 复合函数 分段函数 7、设,则 1 -1 -3 2 8、若,则

A. 数列{xn}发散 数列{xn}收敛于0 数列{xn}可能收敛,也可能发散 A,B,C都不正确 9、设,则是的() 可去间断点 连续点 第二类间断点 跳跃间断点 10、若为连续函数,则 f(x)+C 1/2 f(2x+1)+C f(2x+1) 2f(2x+1)+C 11、设可导,则 f'(cosx)dx f'(cosx)cosxdx -f'(cosx)sinxdx f'(cosx)sinxdx

12、设,则 1 2 -1 13、设函数在上连续,则 D. f'(x)dx f(x)dx f(x)+c f(x) 14、设5sinx是f(x)的一个原函数,则 5cosx+c -5sinx 5sinx+c -5sinx+c 15、若,则函数在点处() E. 一定有极大值 没有极值 一定有极小值

不一定有极值 16、定义域为[1,2],值域为(-1,1)的连续函数() 存在 存在且唯一 不存在 可能存在 判断题 17、若数列有界,则数列收敛. A.√ B.× 18、若函数在[a,b]上可积,则该函数在[a,b]上有界. A.√ B.× 19、设数列{an} 与{bn}都发散,则数列一定发散. A.√ B.× 20、若实数A是非空数集S的下确界,则A一定是S的下界. A.√ B.×

西南大学数学分析作业答案

三、计算题 1.求极限 90 20 70) 15() 58()63(lim --++∞ →x x x x . 解: 90 20 70 90 20 70 90 20 70 5 8 3 155863lim ) 15() 58() 63(lim ?= ? ?? ? ? -? ?? ? ? -? ?? ? ?+=--++∞ →+∞ →x x x x x x x x 2.求极限 21 1lim ( ) 2 x x x x +→∞ +-. 解:21 1lim ( ) 2 x x x x +→∞ +=-21111lim 22 11x x x x x x →∞ ? ???++ ? ??= ? ? ? ? --? ? ??211lim 21x x x x →∞? ? + ?= ? ?-?? 2 (4) 2 1[(1)] lim 2[(1) ] x x x x x →∞ - -+ - 2 6 4 e e e -= =. 3. 求极限 1 111lim (1)2 3 n n n →∞ + + ++ 解:由于11 1111(1)2 3 n n n n ≤+ + ++ ≤ , 又lim 1n →∞ =, 由迫敛性定理 1 111lim (1)12 3 n n n →∞ + + ++ = 4.考察函数),(, lim )(+∞-∞∈+-=--∞ →x n n n n x f x x x x n 的连续性.若有间断点指出其类型. 解: 当0x <时,有221()lim lim 11 x x x x x x n n n n n f x n n n --→∞ →∞ --===-++;同理当0x >时,有()1f x =.

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 .计算题(共8题,每题9分,共72分)。 因为 lim 3 xsin — 3 ysin —与 lim 3 xsin — 3 ysin -均不存在, x 0 y x y 0 y x 故二次极限均不存在。 4.要做一个容积为1m 3的有盖圆桶,什么样的尺寸才能使用料最省? 解:设圆桶底面半径为r ,高为h,则原问题即为:求目标函数在约束条件下的 最小值,其中 目标函数:S 表2 rh 2 r 2, 1. 解: 1 1 求函数f (x, y) V^sin — 济sin-在点(0,0)处的二次极限与二重极限. y x f (x, y) Vxs in 丄 羽 si n 丄 y x |3X |3y|,因此二重极限为0.……(4分) (9分) 2. 解: 设y y(x),是由方程组z xf(x z z(x) F(x, y,z) 具有连续的导数和偏导数,求空. dx 对两方程分别关于x 求偏导: y 0'所确定的隐函数’其中f 和F 分别 dz 丁 f (x dx F F 矽 x y dx y) xf (x y)(dX 1 ), 解此方程组并整理得竺 dx F z dz 0 dx F y f(x y) xf (x y)(F y F x ) (4分) 3. 取,为新自变量及 2 z x y x y 2 解: 2 z 2 x x y J 2 z 看成是 w z y F y xf (x y)F z w( ,v)为新函数,变换方程 ze y (假设出现的导数皆连续) x, y 的复合函数如下: / 、 x y w w(,), , 2 代人原方程,并将x, y, z 变换为,,w 2 2 w W c 2 2w 。 x y 。 2 整理得: (9分) (4分) (9分)

数学分析选讲刘三阳-部分习题解答

第一讲 习题解答 习题1-1 1 计算下列极限 ① ()1lim 11,0p n n p n →∞ ?? ??+->?? ??????? 解:原式=()1111110lim lim 110 p p p n n n n n n →∞→∞???? +-+-+ ? ?????=-()()0110lim 0p p n x x →+-+=-()() 01p x x p ='=+= ② () sin sin lim sin x a x a x a →-- 解:原式=()()()()sin sin sin sin lim lim sin x a x a x a x a x a x a x a x a →→---?=---=()sin cos x a x a ='= ③ 1x →,,m n 为自然数 解:原式 = 1 1 x x n m →=' == ④ ( ) lim 21,0n n a →∞ > 解:原式( ) () 10 ln 21lim ln 21 1lim ln 1 lim n x n x a e a n n x n e e e →∞ →?? ??- ? ??-→∞ === =()( ) ()()0ln 21ln 21 ln 21lim 2ln 20 x a a x x a a x x e e e a ---→' -==== ⑤ lim ,0x a x a a x a x a →->- 解:原式=lim x a a a x a a a a x x a →-+--lim lim x a a a x a x a a a x a x a x a →→--=---()()x a x a x a a x ==''=-()ln 1a a a =- ⑥ lim ,0x a a x x a x a a a a a x →->-

数学分析三试卷及答案

数学分析三试卷及答案-CAL-FENGHAI.-(YICAI)-Company One1

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = =,因此二重极限为0.……(4分) 因为11x y x →+ 与11 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 5. 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

(汇总)数学分析3试卷及答案.doc

数学分析(3)期末试卷 2005年1月13日 班级_______ 学号_________ 姓名__________ 考试注意事项: 1.考试时间:120分钟。 2.试卷含三大题,共100分。 3.试卷空白页为草稿纸,请勿撕下!散卷作废! 4.遵守考试纪律。

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ? =),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 12 2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关 于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2 _______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1 sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

19春福师《数学分析选讲》在线作业二

(单选题)1: 如图所示A: A B: B C: C D: D 标准解答: (单选题)2: 如题 A: A B: B C: C D: D 标准解答: (单选题)3: 如题 A: A B: B C: C D: D 标准解答: (单选题)4: 题面见图片A: A B: B C: C D: D 标准解答: (单选题)5: 题目如图A: 0 B: 1 C: 2 D: 3 标准解答: (单选题)6: 如题 A: A B: B C: C D: D 标准解答: (单选题)7: 如题 A: A

C: C D: D 标准解答: (单选题)8: 如题 A: A B: B C: C D: D 标准解答: (单选题)9: 如题 A: A B: B C: C D: D 标准解答: (单选题)10: 如题A: A B: B C: C D: D 标准解答: (单选题)11: 如题A: A B: B C: C D: D 标准解答: (单选题)12:   A: A B: B C: C D: D 标准解答: (单选题)13: 如题A: A B: B C: C

标准解答: (单选题)14:   A: A B: B C: C D: D 标准解答: (单选题)15: 如图所示A: A B: B C: C D: D 标准解答: (单选题)16:   A: A B: B C: C D: D 标准解答: (单选题)17:   A: A B: B C: C D: D 标准解答: (单选题)18: 如题 A: A B: B C: C D: D 标准解答: (单选题)19: 如题 A: A B: B C: C D: D 标准解答:

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

《数学分析选讲》教学大纲

《数学分析选讲》课程教学大纲 一、《分析选讲》课程说明 课程代码:0741123110 课程英文名称:Selective Lectures of Mathematic Analysis 开课对象:数学与应用数学本科生 课程的性质:考试 学时:72 数学分析选讲是数学与应用数学专业重要的选修课,它是学生进一步学习分析数学的分支和科学研究必不可少的专业基础知识, 同时也可使其他理科专业学生进一步了解微积分学知识,是报考对数学要求较高的硕士学位研究生同学的必修课程。 本课程的前导课程为数学分析。 教学目的: 通过本课程的教学,使学生系统拓展和加深数学分析中的基本技能、基本思想和方法,主要培养学生分析论证问题的能力、抽象思维能力和科学研究的初步能力. 教学内容: 本课程主要系统拓展和加深学习极限理论, 实数的连续性, 微分中值定理的及其应用, 常数项级数和广义积分,与“一致性”有关的几个概念及判别法, 多元函数微分学,多元函数积分学,两个极限过程的换序这八个核心内容。 教学时数 教学时数:72学时 学分数:学分 教学时数具体分配:

教学方式 课堂讲授,课外习作及批改. 考核方式和成绩记载说明 考核方式为考试。严格考核学生出勤情况,达到学籍管理规定的旷课量则取消考试资格。综合成绩根据平时成绩和期末考试成绩评定,平时成绩占20%,期末考试成绩占80%。 二、讲授大纲与各章的基本要求 第一章 函数与极限 教学要点: 本章主要研究内容为函数性质的确定;通过实例总结求数列与函数极限的方法,以及如何确定极限的存在性等。 教学时数:8学时。 教学内容: 第一节 函数 1.1 求函数的定义域与值域 1.2 由已知函数关系求函数)(x f 的表达式 1.3 确定函数的性质 1.4 函数方程 第二节 极限 2.1 极限的概念 2.2 求极限的方法 2.3 确定极限存在性的方法 考核要求: 通过本章的学习,学生应能理解函数的定义,准确地确定函数的性质;熟练掌握极限的概念及耱极限的各种常用方法;掌握判断极限存在性的常用方法。 第二章 实数的连续性 教学要点: 本章主要研究

数学分析选讲作业

《数学分析选讲》 第一次作业 一、判断下列命题的正误 1. 设S 为非空数集。若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界. 2. 函数()sin =f x x 为(,)-∞+∞上的有界函数. 3.函数()sin cos f x x x =-既不是奇函数,也不是偶函数. 4. 若数列{}n a 收敛,则数列2{}n a 收敛. 5.若数列{}n a 有界,则数列{}n a 一定收敛. 6.若数列{}n a 收敛,则数列{}n a 的任何子列都收敛. 7. 设数列{}n a 与{}n b 都发散,则数列{}n n a b +一定发散. 8.若S 为无上界的数集,则S 中存在一递增数列趋于正无穷. 9.若函数)(x f 在0x 的极限存在,则)(x f 在0x 处一定连续. 二、选择题 1.设2,1 ()3,1 x x f x x x +≤?=? ->?, 则 [(0)]=f f ( ) A 1 ; B 2 ; C 3 ; D 0 2.设函数1,()0,x f x x ?=?? 为有理数 为无理数 , 则 1)=f ( ). A 1- ; B 1 ; C 0 ; D 1 2 3.若数列}{n x 有极限a ,则在a 的(0)ε>邻域之外,数列中的点( ) A 必不存在 ; B 至多只有有限多个; C 必定有无穷多个 ; D 可以有有限个,也可以有无限多个 4.数列}{n x 收敛,数列}{n y 发散,则数列{}n n x y + ( ). A 收敛; B 发散; C 是无穷大; D 可能收敛也可能发散 5.设lim ||2n n x →∞ =,则 ( ) A 数列}{n x 收敛; B lim 2n n x →∞ =; C 数列}{n x 可能收敛,也可能发散; D lim 2n n x →∞ =-; 6.已知 2 lim( )01 x x ax b x →∞--=+,其中b a ,是常数,则( ) A 1,1==b a ; B 1,1-==b a ; C 1,1=-=b a ; D 1,1-=-=b a

数学分析试卷及答案6套

一. (8分)用数列极限的N ε-定义证明1n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使lim )0x ax b →+∞ -=. 八. (14分)求函数32()2912f x x x x =-+在15 [,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --.

一. (10分)设数列{}n a 满足 : 1a = , 1()n a n N +=∈, 其中a 是一给定的 正常数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=. 三. (10分)设0n a >,且1 lim 1n n n a l a →∞+=>, 证明lim 0n n a →∞ =. 四. (10分)证明函数()f x 在开区间(,)a b 一致连续?()f x 在(,)a b 连续,且 lim ()x a f x + →,lim ()x b f x - →存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理. 六. (12分)证明:若函数在连续,且()0f a ≠,而函数2 [()]f x 在a 可导,则函数()f x 在 a 可导. 七. (12分)求函数()1f x x x α αα=-+-在的最大值,其中01α<<. 八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有 12()()f x f x ''≤. 九. (12分)设() ,0()0,0 g x x f x x x ? ≠? =?? =? 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.

最新2003年浙江大学数学分析试题答案汇总

2003年浙江大学数学分析试题答案

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a , a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以 ,0,02>?>?δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连 续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取 },m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所 以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <,

西南大学《数学分析选讲》网上作业题及答案

(0088)《数学分析选讲》网上作业题答案1:第一次作业 2:第二次作业 3:第三次作业 4:第四次作业 5:第五次作业 1:[判断题]两个无穷小量的和一定是无穷小量 参考答案:正确 1、应注意写出要点; 2、注意检查语法和拼写错误; 3、文理通顺,中心突出。 2:[判断题]两个无穷大量的和一定是无穷大量 参考答案:错误 1、应注意写出要点; 2、注意检查语法和拼写错误; 3、文理通顺,中心突出。 3:[单选题]设f,g在(-a,a)上都是奇函数,则g(f(x))与f(g(x)) A:都是奇函数 B:都是偶函数 C:一是奇函数,一是偶函数 D:都是非奇、非偶函数 参考答案:A社会实践是检验认识是否具有真理性的唯一标准,这是由真理的本性和实践的特点所决定的。 第一,真理的本性是主观同客观相符合。要判明认识是否具有真理性的标准,只能通过一种能够把主观同客观联系、沟通起来的桥梁,这就是人们的社会实践,舍此别无它路。它成为“实践是检验真理的唯一标准”的内在根据。 第二,实践的过程是一个主体能动地使自己的目的物化或对象化的过程,因而它具有直接现实性。因此实践可以使主观与客观相对照,从而直接检验出主观认识是否与客观相符合以及符合的程度。

4:[判断题]闭区间上的连续函数是一致连续的 参考答案:正确 1、应注意写出要点; 2、注意检查语法和拼写错误; 3、文理通顺,中心突出。 5:[单选题]设数列{An}收敛,数列{Bn}发散,则数列{AnBn} A:收敛 B:发散 C:是无穷大 D:可能收敛也可能发散 参考答案:D 马克思主义认为,劳动创造了人本身,同时也就创造了人类社会。因此,只有实践,才是社会生活的真正本质。说实践是社会的本质,主要理由是: 首先,实践是社会关系的发祥地。 其次,实践构成了社会生活的基本领域。 最后,实践构成了社会发展的动力。 6:[判断题]最大值若存在必是上确界 参考答案:正确 1、应注意写出要点; 2、注意检查语法和拼写错误; 3、文理通顺,中心突出。 7:[判断题]若f,g在区间I上一致连续,则fg在I上也一致连续。 参考答案:错误 1、应注意写出要点; 2、注意检查语法和拼写错误; 3、文理通顺,中心突出。

相关文档
相关文档 最新文档