文档库 最新最全的文档下载
当前位置:文档库 › TWIK相关性酸敏感钾离子通道与疾病研究进展

TWIK相关性酸敏感钾离子通道与疾病研究进展

TWIK相关性酸敏感钾离子通道与疾病研究进展
TWIK相关性酸敏感钾离子通道与疾病研究进展

?综述m迅展?J Med Res,Apr2019,Vol.48No.4

TWIK相关性酸敏感钾离子通道与疾病研究进展

闻璐姚晓光李南方

摘要TASK-1利TASK-3是广泛表达于全身各组织,产生外向钾离子电流,受细胞外酸浓度抑制而不受经典钾离子阻滞剂影响的TWIK相关性酸敏感钾离子通道;TASK-1和TASK-3参与中枢神经系统、呼吸系统、心房颤动、肾上腺皮质激素、炎症免疫及肿瘤的发生等-系列牛?理病理过程,有望为相关疾病药物治疗研究提供靶点

关键词TASK-1和TASK-3中枢神经系统呼吸系统心房颤动肾上腺皮质炎症和肿瘤

中图分类号R4文献标识码A1)01

双孔钾通道(K2P)是背景钾通道或漏钾通道,即改变钾背景电流可以调节细胞膜电位和电阻,从而调节细胞的兴奋性和反应性,可由不同类型的G蛋白偶联受体的调节。双孔钾通道是由两个亚单位组成的双聚体结构,每个亚单位含有4个跨膜区(TM1-TM4),其中TM1与TM2、TM3与TM4之间形成2个孔道(P1和P2),组成4T M/2P的结构。随着研究不断深入,根据结构和功能性质可被划分为6个亚类'o从人类肾脏中克隆到对生理范围内细胞外pH 值变化具有极高敏感性的双孔钾通道,命名为TWIK 相关性酸敏感钾离子通道,包括TWIK相关性酸敏感钾离子通道1(TWIK-related acid-sensitive K*chan-nel-1,TASK-1,KCNK3,K2p3.1)、TW1K相关性酸敏感钾离子通道3(TWIK-related acid-sensitive K+channel-3,TASK-3,KCNK9,K2p9.1)和TWIK相关性酸敏感钾离子通道5(TWIK-related acid-sensitive K+channel-5,TASK-5,KCNK15, K2pl5.1)。TASK-3是从大鼠小脑克隆并且发现与TASK-1具有55%~60%的序列同一性。其中TASK-1和TASK-3构成了大部分pH值敏感的钾电导,这些通道在结构上与酸中毒有关并受到抑制,在许多生理病理过程均有参与TASK-5进入TASK亚家族主要是基于结构相似性。与TASK-1和TASK-3通道相反,TASK-5不能在功能上表达,尽管其mRNA在个别组织中大量表达,但是可能需

基金项目:新驰维吾尔|'1治区庆学联合基金资助项H(2016D0IC127)作者单位:830001乌伶木齐,新船维吾尔白治区人民医院高血压中心、新僵髙血用研究所

通讯作者:李南方.教授.博士生导师.电子信箱:l.>anfang2016@https://www.wendangku.net/doc/8f5455565.html, 10.11969/j.issn.1673-548X.2019.04.039

要一些其他未确定的伙伴亚基在质膜或细胞器中形成功能通道,其相关研究报道也很少。因此.本文就TASK-1.TASK-3及其表达产物与疾病的相关研究进展做一综述。

-.TASK-1.TASK-3的分布与调节

TASK-1、TASK-3广泛表达于各个组织,例如大脑皮质、脑干前包氏复合体、视网膜神经节细胞、颈动脉体、舌下神经核、肾上腺皮质、心房、棕色脂肪及癌症中等⑵。TASK-1和TASK-3蛋白约有60%的氨基酸同源性,在钾传导、成孔、膜结合结构域的相

似性最高。TASK-1、TASK-3通道能被体内外的许

多生理和病理因素所调节,TASK通道几乎不依赖电压,对各种神经递质、药物化合物(即挥发性麻醉药)和物理化学因素(温度、pH值、氧分压、CO:分压、渗透圧、Zn"等)都很敏感,而经典的钾离子通道阻滞剂对其无影响。TASK钾通道电导受细胞外酸性pH 值的抑制,是由两个TASK-1亚基、两个TASK-3亚基或一个TASK-1和一个TASK-3亚基组成的同源或异二聚体通道,它们有不同的pH值敏感性,

其酸敏感性主要是由大胞外环/螺旋盖区域的组氨酸残基的质子化引起,缺乏一个或两个TASK通道

的敲除小鼠表现出多种表型,包括颈动脉体化学感受受损,睡眠破碎、抗抑郁行为、原发性醛固酮增多症、低肾素原发性高血压、心脏传导和复极异常、癫痫及肺动脉高压等"。另外.TASK通道在基因研究中也有报道。在一项全基因组关联研究中,人类TASK-1的失活突变与家族性肺动脉高压相关和房性心律失常有关":。TASK-3基因770G>A 突变使通道活性降低进而改变神经元发育,产生以

智力迟钝、低肌张力和面部畸形为特征的Birk Barel 综合征⑹。

?160?

遗传性心脏离子通道病与心肌病基因检测中国专家共识(最全版)

遗传性心脏离子通道病与心肌病基因检测中国专家共识(最全版) 前言 自1990年和1995年分别发现心肌病和离子通道病第一个致病基因以来,对疑有遗传性心脏疾病的基因检测经历了从基础研究到临床应用的发展过程。目前,离子通道病或心肌病的基因检测在国外临床上主要用于辅助诊断,国内尚未用于临床。其发展成熟需要临床医生对遗传知识的理解或与遗传学专家的联合攻关。对临床医生来说,目前首先要回答的问题是:心脏离子通道病与心肌病基因检测的临床意义是什么?基因分析在这类疾病危险分层中的价值如何?何时需要进行家族成员基因筛查?如何根据基因筛查结果进行干预和治疗?就这些学术问题,目前观点尚不统一。 2011年,美国心律学会/欧洲心脏节律学会组织国际上遗传性心律失常和心肌病遗传学研究的著名专家,根据自身经验和文献回顾,发表了《心脏离子通道病与心肌病基因检测专家共识》[1],阐述基因检测在遗传性心脏离子通道病与心肌病中的作用,重点评估基因检测对13种心脏疾病的价值及基因检测结果对诊断、预后和治疗的影响。基于基因检测结果所产生的影响程度不同,该共识主要对长QT综合征(LQTS)、肥厚型心肌病(HCM)、扩张型心肌病(DCM)、限制型心肌病(RCM)等进行了探讨,对体外受精胚胎种植前基因检测的可行性未给出明确建议,有待于将来进一步探索。 先证者致病基因突变的发现,为判断其亲属是否存在致病基因提供了金标准。因此,对家族成员进行特定突变检测,具有诊断、治疗及预后判

断的意义。基因检测阴性的家族成员可以排外该疾病,基因检测阳性可以早期诊断尚无临床表现的家族成员,对预防与治疗更有价值。对于无临床表现的家庭成员,进行基因检测的年龄和意义需根据不同疾病而定。但是,不管基因检测结果如何,对疾病的治疗不能仅依赖于基因检测结果,而更应该基于全面综合的临床评估。 本中国专家共识(简称专家共识)是在中华医学会心血管病学分会和中华心血管病杂志编委会的倡议下,由国内从事该领域研究的专家们参照国际指南并结合我国在该领域的研究成果共同撰写而成。共识中的国内资料主要来自国内文献或相关注册研究的随访结果。 基因检测推荐原则参照美国心脏协会/美国心脏病学学会/欧洲心脏节律学会指南标准,标识了本专家共识的推荐类别和证据水平。推荐类别:Ⅰ类(推荐)为已发现遗传性心脏离子通道病及心肌病先证者基因突变,且发现基因检测结果能够影响其治疗策略、预防措施及生活方式的选择;Ⅱa类(可能有益)为基因检测结果对治疗或预防措施选择无影响,但对于生育咨询有益或者患者要求了解自身遗传基因状况;Ⅱb类(可以考虑)为基因检测结果对治疗或预防措施选择无意义,或者检测基因的范围太广而难以获得阳性结果;Ⅲ类(不推荐)指对可疑遗传性心脏离子通道病与心肌病的诊断与评估,其基因检测结果不能够提供任何益处甚至可能有害。所有推荐为C级证据。 专家共识一般建议如下。 1.建议所有遗传性心脏离子通道病与心肌病患者及亲属进行遗传咨询,包括临床和(或)基因检测的风险、获益和可行性。

植物钾离子通道的分子生物学研究进展

植物钾离子通道的分子生物学研究进展 闵水珠 (浙江大学生命科学学院,浙江杭州,310029) 摘 要:钾离子通道是植物钾离子吸收的重要途径之一。近年来,已从多种植物或同种植物的不同组织器官 中分离到多种钾离子通道基因,包括内向整流型钾离子通道基因( 如OsAKT1,DKT1,Ktrrl ,KIl l ,KZM1,ZMK2 等) 和外向整流型钾离子通道基因(如CORK ,PTOR K ,STOR K 等) 。文章分别从结构、功能以及相关基因等三 方面综述了关于植物钾离子通道的分子生物学研究进展,并对应用生物工程技术改良植物的钾营养性状进 行了讨论。 关键词:钾离子通道;结构;基因 中图分类号:Q945;Q735 文献标识码:A 文章编号:1 004 —1 524(2005)03—01 63—07 T he progress on the m olecular biology of t h e K channels in plants M G Shui— zhu ( Co/e ge o f Li fe Science , 慨 Un ive rsity ,Ha.~ hou 310029 ,China ) A bstract :Tif s review summar i zed recent progresses on molecular biology of K channels in plants ,including structure and their elevant genes in specialty.The latter is d i v i ded into inward-rectifying K channel(K in) genes(OsAKT 1,DKT1, KFrl ,KDC1,KZM1,ZMK2,etc.) and o utward-~ tifyin g K channel(K out) gene s (C O R K ,FIDR K ,STOR K ,etc.) .The possibilit y of impr o v i n g potassium nutr i tion of pla n t by bioengineerin g is also d i scussed in this paper. K ey words :K channel;structure ;gene 离子通道(ion channe1) 是跨膜蛋白,每个蛋 白分子能以高达l08个/秒的速度进行离子的被 动跨膜运输,离子在跨膜电化学势梯度的作用下 进行的运输,不需要加入任何的自由能。一般来 讲,离子通道具有两个显著特征:一是离子通道 是门控的,即离子通道的活性由通道开或关两种 构象所调节,并通过开关应答相应的信号。根据 门控机制,离子通道可分为电压门控、配体门控、

离子通道病

离子通道病 定义:离子通道结构的缺陷所引起的疾病.又称离子通道缺陷性疾病。 与信号传导相关的离子通道获得性或遗传性的结构和功能改变,均可能导致响应的信号传导异常,引起某种疾病或参与疾病的发病过程。如;肌肉型nAch受体自身免疫性损害-----重症肌无力;CI-通道CIC1基因缺陷-----先天性肌强直:Ryarodine受体缺陷------恶性高热易感性。 细胞膜上电压调控性钠、钙、钾和氯离子通道功能改变与先天性和后天性疾病发生之间的关系,对于离子通道基因缺陷、功能改变与某些疾病关系的研究,将可更新在离子通道生理学、病理学和分子遗传学等方面的知识,有助于开辟离子通道病治疗新途径。 90年代以来发现的主要离子通道病: 第一节钠通道病 钠通道基因突变所引起的心律失常,其原因可分为:基于通道活动的失活异常(不完全失活);基于通道激活异常(Ina降低);基于细胞膜上通道的数量减少(合成、运输及表达障碍)。钠通道分子结构上的有关部门位点发生突变时,就会严重影响钠通道的正常活动,而出现致命性心律失常。 所有钠通道基因突变所引起的疾病主要与α-亚单位的基因改变有关。在心肌细胞,位于染色体3p21-24上的SCN5A基因与钠通道(hH1)的组成有关。该基因突变是造成人类第3型长Q-T综合症(LQT3)的根本原因。先天性长Q-T综合症是一种罕见且致死的心脏电复极化过程异常延长性心律失常,心电图上QT间期延长,出现室性心律失常、晕厥和瘁死的一种综合症。与正常结构相比,在由突变SCN5A形成的钠通道α亚单位上,位于Ⅲ和Ⅳ结构域之间的4和5号片段有脯氨酸、赖氨酸和谷氨酰胺缺失现象。破坏了通到连接攀与通道的相互作用,使部分通道变为非失活的形式,通道失活的延迟导致持续的Na+内流,延长心肌复极时间,导致QT间期延长。 LQT与一些基因的突变或缺失有关,这些基因分别命名为LQT1---LQT4。 LQT1,LQT2是主要的心脏钾通道病。

离子通道研究进展

离子通道研究进展 陆亚宇(江苏教育学院生物系) 指导老师:戴谷(江苏教育学院生物系) 摘要:随着对离子通道研究的逐步深入, 各种研究方法都暴露出一定的局限性. 目前, 对于离子通道的研究工作进入了一个新阶段,即对不同方法的综合应用阶段,这不仅有助于人们在分子水平上认识离子通道的结构和功能的关系,也为不同领域的科学家提供了更多的合作机会.首先介绍了离子通道理论及实验研究方法, 并分析了各种研究方法综合应用的必要性,展望了这一领域的发展前景及其所面临的挑战性问题.并介绍最新的全自动膜片钳技术及其最新进展,它具有直接性、高信息量及高精确性的特点。近来在多个方面作出新的突破,如高的实验通量表现,较高的自动化程度、良好的封接质量、微量加样等。目前,该技术在以离子通道为靶标的药物研发,药物毒理测试以及虚拟药筛等方面有广阔的应用前景。全文对全自动膜片钳仪器的原理和技术细节作简单介绍。并简单介绍最新的关于K+通道在烟草中的发现,并对利用现代生物技术手段提高烟叶含钾量进行了展望。 关键字:离子通道; 实验方法; 全自动膜片钳;钾离子通道 前言: 细胞是通过细胞膜与外界隔离的,在细胞膜上 有很多种离子通道(如右图),细胞通过这些 通道与外界进行离子交换。离子通道在许多细 胞活动中都起关键作用,它是生物电活动的基 础,在细胞内和细胞间信号传递中起着重要作 用。随着基因组测序工作的完成,更多的离子 通道基因被鉴定出来,离子通道基因约占 1 . 5% ,至少有400个基因编码离子通道。相应的 由于离子通道功能改变所引起的中枢及外周疾 病也越来越受到重视。 离子通道的实验研究最初主要来源于生理学实 验。1949~1952年, Hodgkin等发展的“电压钳 技术” 为离子通透性的研究提供技术条件。60 年代中期,一些特异性通道抑制剂的发现为离 子通道的研究提供有力武器。1976年Neher和 Sakmann发展的膜片钳技术直接记录离子单通 道电流,为从分子水平上研究离子通道提供直 接手段。80年代中期,生化技术的进步,分子生物学以及基因重组技术的发展,使人们能够分离纯化许多不同的通道蛋白,直接研究离子通道的结构与功能关系。 通道结构和功能的研究日益成为电生理学、分子生物学、生物化学、物理学等多学科交叉的热点问题.对离子通道进行研究,传统的实验方法是电压钳技术、膜片钳技术等电生理学研究方法[; 传统的理论方法主要包括PNP模型和布朗动力学模型, 伴随计算机技术的迅猛发展和X 射线晶体衍射图谱技术在离子通道研究中的应用, 以及Mackinnon 等用X 射线晶体衍射技术成功解析出多个高分辨率离子通道三维空间结构,使得人们得以使用分子动力学模拟和量子化学计算等模拟在分子水平认识离子通道结构和功能的关系;随着分子生物学快速发展,又出现了定点突变技术、人工膜离子通道重建技术等实验技术手段本文中,笔者将

最新心脏的离子通道疾病

心脏的离子通道疾病

心脏离子通道病的研究进展 发布时间: 2009-9-24 12:00:52 编辑: cqlihua 字体:大中小我要投稿 摘要心脏离子通道病是离子通道病的重要组成部分,在心血管疾病中扮演着重要角色,几乎所有的心律失常都有离子通道病变参与,是心脏性猝死的主要原因。本文对遗传性心脏离子通道病、获得性心脏离子通道病及心脏离子通道病的治疗作一简要介绍。 1995 年Keating 研究组确定了长QT间期综合征(long QT syndrome ,LQTS) 与心脏离子通道基因突变有关,从此揭开了心律失常基因机制研究的新时代。2002 年1 月,Nature 杂志刊登了“心脏离子通道病”一文,较系统地介绍了心脏离子通道分子缺陷在心律失常发生发展中的作用和地位[1 ]。2004 年5 月,Nature Medicine 杂志发表了“心脏离子通道病:基因的缺陷”一文,对心脏离子通道病的分子机制进行了详细阐述[2 ]。随着研究的深入,越来越多的心律失常被证实与基因缺陷有关,其中多数为心脏离子通道基因异常,少数为非离子通道基因异常。目前心脏离子通道病正日益受到国际心脏病学界的高度关注,对心肌离子通道病的全面认识,可以从分子水平更好的解释心肌电生理及病理机制,为心律失常的防治奠定基础。 1 心脏离子通道病及细胞分子机制 近年来分子生物学及分子电生理的迅速发展,开创了心律失常机制研究新纪元。心律失常与离子通道基因表达异常明确相关,多个离子通道基因的突变可引起各种心律失常。目前,已知绝大多数的原发性心电异常都是由编

码各主要离子通道亚单位的基因突变引起的,因此,这类病可通称为“离子通道病”[3 ] 。如LQTS、Brugada 综合征(Brugada syndrome , BRS) 、儿茶酚胺敏感的多形性室速(catecholaminergic polymorphic ventricular tachycardia , CPVT) 、短QT 综合征( short QT syndrome ,SQTS ) 等,可能还包括遗传性心脏传导阻滞、不可预测的夜间猝死综合征、婴儿猝死综合征等。按病因可分为获得性和遗传性。获得性心脏离子通道病通常与心肌局部缺血、药物、电解质或代谢异常及中毒等因素有关。 1. 1 遗传性心脏离子通道病 1. 1. 1 LQTS LQTS 是第一个被发现的离子通道病,指具有心电图上QT间期延长,T 波异常,易产生室性心律失常,尤其是尖端扭转性室速、晕厥和猝死的一组综合征。遗传性LQTS 有两种形式:Romano-Ward 综合征(RWS) 和Jervell and LangeNielsen 综合征(JLNS) [4 ]。已发现8 个基因与RWS综合征有关(表1) ,分别是KCNQ1 (LQT1) 、KC-NH2 (LQT2) 、SCN5A(LQT3) 、Ankyrin B(LQT4) 、KC-NE1 (LQT5) 、KCNE2 (LQT6) 、KCNJ2 (LQT7) 、Cav 1.2 (LQT8) 。LQT1 的相关基因KCNQ1 位于染色体11p15. 5 ,为编码缓慢延迟整流钾通道( Iks ) α亚基,其突变使Ikr电流减弱。LQT2 相关基因HERG(KCNH2) 位于染色体 7q35 - 36 ,为编码快速延迟整流钾通道( Ikr ) α亚基,其突变使Ikr 电流减弱。LQT3 相关基因SCN5A 位于染色体3q21 - 24 ,为编码钠通道α亚基,其突变使INa电流增强。LQT4相关基因定位在染色体4q25 - 27 , 为编码Ankyrin2B 蛋白,相关基因突变导致锚蛋白AnkyrinB 功能异常,引起Ca2 +

离子通道与疾病

摘要 细胞离子通道的结构和功能正常是维持生命过程的基础,其基因变异和功能障碍与许多疾病的发生和发展有关.离子通道的主要类型有钾、钠、钙、氯和非选择性阳离子通道,各型又分若干亚型.离子通道的主要功能是:提高细胞内钙浓度,触发生理效应;决定细胞的兴奋性、不应性和传导性;调节血管平滑肌的舒缩活动;参与突触传递;维持细胞的正常体积.离子通道的主要研究方法为膜片钳技术、分子生物学技术、荧光探针钙图像分析技术.离子通道病是指离子通道的结构或功能异常所引起的疾病.疾病中的离子通道改变是指由于某一疾病或药物引起某一种或几种离子通道的数目、功能甚至结构变化,导致机体发生或纠正某些病理改变.从离子通道与疾病的关系角度,加强分子生物学、生物物理学、遗传学、药理学等多学科交叉深入研究,对于深入探讨某些疾病的病理生理机制、早期诊断及发现特异性治疗药物或措施等均具有十分重要的理论和实际意义. 0 引言 离子通道(ion channel)是细胞膜上的一类特殊亲水性蛋白质微孔道,是神经、肌肉细胞电活动的物质基础.随着分子生物学、膜片钳技术的发展,人们对离子通道的分子结构及特性有了更加深入的认识,并发现离子通道的功能、结构异常与许多疾病的发生和发展有关[1].近年来,对于离子通道与疾病关系的研究取得了重大进展,不仅阐明了离子通道的分子结构突变可导致某种疾病,而且还明确了某些疾病可影响某种离子通道功能甚至结构.本文论述离子通道的主要类型、功能、研究方法及其与疾病的关系. 1 离子通道的主要类型 离子通道的开放和关闭,称为门控(gating).根据门控机制的不同,将离子通道分为三大类:(1)电压门控性(voltage gated),又称电压依赖性(voltage dependent)或电压敏感性(voltage sensitive)离子通道:因膜电位变化而开启和关闭,以最容易通过的离子命名,如K+、Na+、Ca2+、Cl-通道4种主要类型,各型又分若干亚型.(2)配体门控性(ligand gated),又称化学门控性(chemical gated)离子通道:由递质与通道蛋白质受体分子上的结合位点结合而开启,以递质受体命名,如乙酰胆碱受体通道、谷氨酸受体通道、门冬氨酸受体通道等.非选择性阳离子通道(non-selective cation channels)系由配体作用于相应受体而开放,同时允许Na+、Ca2+ 或K+ 通过,属于该类.(3)机械门控性(mechanogated),又称机械敏感性(mechanosensitive)离子通道:是一类感受细胞膜表面应力变化,实现胞外机械信号向胞内转导的通道,根据通透性分为离子选择性和非离子选择性通道,根据功能作用分为张力激活型和张力失活型离子通道.此外,还有细胞器离子通道,如广泛分布于哺乳动物细胞线粒体外膜上的电压依赖性阴离子通道(voltage dependent anion channel,VDAC),位于细胞器肌质网(sarcoplasmic reticulum,SR)或内质网(endoplasmic reticulum,ER)膜上的Ryanodine受体通道、IP3受体通道. 2 离子通道的主要功能 离子通道的主要功能有:(1)提高细胞内钙浓度,从而触发肌肉收缩、细胞兴奋、腺体分泌、Ca2+依赖性离子通道开放和关闭、蛋白激酶的激活和基因表达的调节等一系列生理效应;(2)在神经、肌肉等兴奋性细胞,Na+ 和Ca2+通道主要调控去极化,K+主要调控复极化和维持静息电位,从而决定细胞的兴奋性、不应性和传导性;(3)调节血管平滑肌舒缩活动,其中有K+、Ca2+、Cl-通道和某些非选择性阳离子通道参与;(4)参与突触传递,其中有K+、Na+、Ca2+、Cl-通道和某些非选择性阳离子通道参与;(5)维持细胞正常体积,在高渗环境中,离子通道和转运系统激活使Na+、Cl-、有机溶液和水分进入细胞内而调节细胞体积增大;在低渗环境中,Na+、Cl-、有机溶液和水分流出细胞而调节细胞体积减少. 3 离子通道的主要研究方法 研究离子通道功能的最直接方法是用膜片钳技术直接测定通过离子通道的电流或测量细胞膜电位的变化.膜片钳技术是利用一个玻璃微吸管电极完成膜片或全细胞电位的监测、钳制和膜电流的记录,通过观测膜电流的变化来分析通道个体或群体的分子活动、探讨离子通道特性.分子生物学技术为离子通道的分子结构分析、基因克隆、功能表达研究提供了有力工具,对于编码离子通道亚单位的基因结构可采用基因定位克隆确定其在染色体上的定位,用逆转录-聚合酶链反应、Northern杂交等明确其在器官组织中的分布,用Western杂交检测基因表达产物等.荧光探针钙图像分析技术为检测细胞内游离钙离子浓度提供了有效

钾离子通道

钾离子通道 所有活细胞都被一层膜包围着,它把细胞内的液态世界与外部环境隔离开.膜质可以有效的阻止小离子通过(而且像蛋白质和核酸这样的大分子也一样),因此为细胞提供了新的机遇:可以根据离子浓度的差异进行快速的信号传导.首先,细胞可提高其内部的钾离子浓度;而后,由于瞬时刺激膜上的某些通道迅即被打开,钾离子被释放,使得整个细胞的钾离子浓度发生巨大变化,由此产生信号传导.此过程在各种细胞形式中都存在,如细菌细胞,植物细胞和动物细胞.有两个关于离子通道作用的例子:肌肉收缩(由钙离子释放起始的)和神经细胞信号传导(包含一个复杂的那钾离子交换). 离子通道是神经系统中信号传导的基本元件 当你闻过一朵花,你会知道这是一枝玫瑰;或者当你的手要触及炙热的东西时,你会立即把手缩回来.这都是由于人的鼻腔和手部的感觉器官通过离子释放把信号由神经传递给大脑,在由大脑做出适当的反应而完成的.其中,神经细胞摄入了大量钾离子并选择性地泵出钠离子从而进行了信号的传递,并因此在膜内外产生了一个电势差.为了传递信号,神经细胞首先打开钠离子通道,摄入钠离子,降低膜内外的电势差.然后打开钾离子通道,排出钾离子,使膜电位重新恢复到静息水平.此后通过其他通道和泵使钠钾离子在细胞内外得到重新分布.由于这种巧妙设计,这些通道对膜电位都非常灵敏,稍有变化通道就会打开.所以,神经细胞一段的通道被打开时产生的离子流会瞬时引发质膜下游通道的打开.结果导致信号通过通道开启传播波沿着质膜迅速传播直至末端. 钾离子通道 钾离子通道的通透特异性允许钾离子通过质膜,而阻碍其他离子通透-特别是钠离子.这些通道一般由两部分组成:一部分是通道区,他选择并允许钾离子通过,而阻碍钠离子;另一部分是门控开关,根据环境中的信号而开关通道,结构展示在蛋白库编号1bl8,展示的是一种细菌的钾离子通道的通道区部分,它由四个同源的跨膜蛋白质组成,在中心部分形成一个选择性的孔洞.钾离子(绿色)以每秒一亿个的速度自由通过.由于特异的选择性,每一万个钾离子通过才允许一个钠离子通过.在下一页的晶体图中可以看到,通道结构是如何完成特异性选择的. 通道的开启与关闭 活细胞中有数百种不同的离子通道,它们行使着各种不同的功能.这些通道有相似的通道区(两图例中的顶部),与专门的门控结构域相连(图例的底部).为了在图解中清楚的展示孔道,灰色条纹代表质膜,而在选择性的通道区指显示了四个同源亚单位中的两个.门控区对通道的开关是有不同信号决定的,如电位差或重要的信号分子的出现.还有一些结构上的设计被用来开关通道,正如这里展示的

TWIK相关性酸敏感钾离子通道与疾病研究进展

?综述m迅展?J Med Res,Apr2019,Vol.48No.4 TWIK相关性酸敏感钾离子通道与疾病研究进展 闻璐姚晓光李南方 摘要TASK-1利TASK-3是广泛表达于全身各组织,产生外向钾离子电流,受细胞外酸浓度抑制而不受经典钾离子阻滞剂影响的TWIK相关性酸敏感钾离子通道;TASK-1和TASK-3参与中枢神经系统、呼吸系统、心房颤动、肾上腺皮质激素、炎症免疫及肿瘤的发生等-系列牛?理病理过程,有望为相关疾病药物治疗研究提供靶点 关键词TASK-1和TASK-3中枢神经系统呼吸系统心房颤动肾上腺皮质炎症和肿瘤 中图分类号R4文献标识码A1)01 双孔钾通道(K2P)是背景钾通道或漏钾通道,即改变钾背景电流可以调节细胞膜电位和电阻,从而调节细胞的兴奋性和反应性,可由不同类型的G蛋白偶联受体的调节。双孔钾通道是由两个亚单位组成的双聚体结构,每个亚单位含有4个跨膜区(TM1-TM4),其中TM1与TM2、TM3与TM4之间形成2个孔道(P1和P2),组成4T M/2P的结构。随着研究不断深入,根据结构和功能性质可被划分为6个亚类'o从人类肾脏中克隆到对生理范围内细胞外pH 值变化具有极高敏感性的双孔钾通道,命名为TWIK 相关性酸敏感钾离子通道,包括TWIK相关性酸敏感钾离子通道1(TWIK-related acid-sensitive K*chan-nel-1,TASK-1,KCNK3,K2p3.1)、TW1K相关性酸敏感钾离子通道3(TWIK-related acid-sensitive K+channel-3,TASK-3,KCNK9,K2p9.1)和TWIK相关性酸敏感钾离子通道5(TWIK-related acid-sensitive K+channel-5,TASK-5,KCNK15, K2pl5.1)。TASK-3是从大鼠小脑克隆并且发现与TASK-1具有55%~60%的序列同一性。其中TASK-1和TASK-3构成了大部分pH值敏感的钾电导,这些通道在结构上与酸中毒有关并受到抑制,在许多生理病理过程均有参与TASK-5进入TASK亚家族主要是基于结构相似性。与TASK-1和TASK-3通道相反,TASK-5不能在功能上表达,尽管其mRNA在个别组织中大量表达,但是可能需 基金项目:新驰维吾尔|'1治区庆学联合基金资助项H(2016D0IC127)作者单位:830001乌伶木齐,新船维吾尔白治区人民医院高血压中心、新僵髙血用研究所 通讯作者:李南方.教授.博士生导师.电子信箱:l.>anfang2016@https://www.wendangku.net/doc/8f5455565.html, 10.11969/j.issn.1673-548X.2019.04.039 要一些其他未确定的伙伴亚基在质膜或细胞器中形成功能通道,其相关研究报道也很少。因此.本文就TASK-1.TASK-3及其表达产物与疾病的相关研究进展做一综述。 -.TASK-1.TASK-3的分布与调节 TASK-1、TASK-3广泛表达于各个组织,例如大脑皮质、脑干前包氏复合体、视网膜神经节细胞、颈动脉体、舌下神经核、肾上腺皮质、心房、棕色脂肪及癌症中等⑵。TASK-1和TASK-3蛋白约有60%的氨基酸同源性,在钾传导、成孔、膜结合结构域的相 似性最高。TASK-1、TASK-3通道能被体内外的许 多生理和病理因素所调节,TASK通道几乎不依赖电压,对各种神经递质、药物化合物(即挥发性麻醉药)和物理化学因素(温度、pH值、氧分压、CO:分压、渗透圧、Zn"等)都很敏感,而经典的钾离子通道阻滞剂对其无影响。TASK钾通道电导受细胞外酸性pH 值的抑制,是由两个TASK-1亚基、两个TASK-3亚基或一个TASK-1和一个TASK-3亚基组成的同源或异二聚体通道,它们有不同的pH值敏感性, 其酸敏感性主要是由大胞外环/螺旋盖区域的组氨酸残基的质子化引起,缺乏一个或两个TASK通道 的敲除小鼠表现出多种表型,包括颈动脉体化学感受受损,睡眠破碎、抗抑郁行为、原发性醛固酮增多症、低肾素原发性高血压、心脏传导和复极异常、癫痫及肺动脉高压等"。另外.TASK通道在基因研究中也有报道。在一项全基因组关联研究中,人类TASK-1的失活突变与家族性肺动脉高压相关和房性心律失常有关":。TASK-3基因770G>A 突变使通道活性降低进而改变神经元发育,产生以 智力迟钝、低肌张力和面部畸形为特征的Birk Barel 综合征⑹。 ?160?

心脏的离子通道疾病

心脏离子通道病的研究进展 发布时间: 2009-9-24 12:00:52 编辑: cqlihua 字体:大中小我 要投稿 摘要心脏离子通道病是离子通道病的重要组成部分,在心血管疾病中扮演 着重要角色,几乎所有的心律失常都有离子通道病变参与,是心脏性猝死的主要原因。本文对遗传性心脏离子通道病、获得性心脏离子通道病及心脏离子通道病的治疗作一简要介绍。 1995 年Keating 研究组确定了长QT间期综合征(long QT syndrome ,LQTS) 与心脏离子通道基因突变有关,从此揭开了心律失常基因机制研究的新时代。2002 年1 月,Nature 杂志刊登了“心脏离子通道病”一文,较系统地介绍了心脏离子通道分子缺陷在心律失常发生发展中的作用和地位[1 ]。2004 年5 月,Nature Medicine 杂志发表了“心脏离子通道病:基因的缺陷”一文,对心脏离子通道病 的分子机制进行了详细阐述[2 ]。随着研究的深入,越来越多的心律失常被证实与基因缺陷有关,其中多数为心脏离子通道基因异常,少数为非离子通道基因异常。目前心脏离子通道病正日益受到国际心脏病学界的高度关注,对心肌离子通道病 的全面认识,可以从分子水平更好的解释心肌电生理及病理机制,为心律失常的防治奠定基础。 1 心脏离子通道病及细胞分子机制 近年来分子生物学及分子电生理的迅速发展,开创了心律失常机制研究新纪元。心律失常与离子通道基因表达异常明确相关,多个离子通道基因的突变可引起各种心律失常。目前,已知绝大多数的原发性心电异常都是由编码各主要离子通道亚单位的基因突变引起的,因此,这类病可通称为“离子通道病”[3 ] 。如LQTS、Brugada 综合征(Brugada syndrome , BRS) 、儿茶酚胺敏感的多形性室速(catecholaminergic polymorphic ventricular tachycardia , CPVT) 、短QT 综

离子通道与癫痫

离子通道与癫痫 发稿时间:2010-3-14 摘要:离子通道在调解神经元的兴奋性方面有十分重要的作用。离子通道与癫痫关系的研究日益受到重视。本文在这里着重阐述了几种目前研究较多的离子通道与癫痫的关系、离子通道基因突变与癫痫方面的研究。随着对离子通道与癫痫关系的研究,开发出许多专门针对离子通道的药物,在这里也简要介绍了这些药物的研究进展。离子通道是所有真核生物细胞维持正常生理功能必须的一大类跨膜蛋白,是大脑思维、心脏跳动以及肌肉收缩等细胞电兴奋产生和传导的基础。对于兴奋的细胞,离子通道负责其膜电位的静息和兴奋。近年来随着分子生物学和膜电钳电生理技术的发展,许多编码离子通道蛋白的基因己被克隆、表达和定性。过去几年来的研究也不断证实和发现离子通道的遗传缺陷和许多神经系统遗传性疾病和遗传易感性疾病之间有着密切的关系。癫痫是其中的疾病之一,癫痫的特征是中枢神经元兴奋性升高,其中最主要的特征是一些中枢神经元会作爆发式放电。近年来研究较多的有钠、钾、钙、氯、氢等离子通道。其与癫痫的关系现分别讨论如下。 1.钾离子通道良性新生儿家族性惊厥(Benign Familial)是一种常染色体显性遗传病,与KCNQ2和KCNQ3通道基因突变有关。KCNQ2和KCNQ3钾离子通道分别由位于染色体20q13?3的EBN1和位于8q24的EBN2表达[1]。通过对家系的研究表明,KCNQ2上的基因缺陷包括两个错义突变,两个框移突变,一个剪切位点突变。这些突变有的在碳氮末端,有的在膜孔域。而KCNQ3上的基因缺陷仅有一个在膜孔域第177位点上由甘氨酸取代缬氨酸的错义突变。这些突变会影响钾离子通道的功能,导致膜复极化时程变长,神经兴奋性增强。另外,有研究表明,KCNQ2和KCNQ3通道亚基可形成异四聚体共同参与M电流的形成[2]。M电流是一种慢激活/失活的钾电流,它在决定电活性阈值及突触传入的反应中起重要的作用。KCNQ2或KCNQ3的基因突变导致M通道的功能下降,钾离子流减少或消失,受累神经元因此可兴奋性增强,引起癫痫。KCNA1基因编码电压门控Kv1?1通道的α亚单位,它位于染色体12P13上。其突变可导致发作性共济失调Ⅰ(EAⅠ)。EAⅠ为一种遗传性小脑及周围神经电压门控性钾离子通道病。有数据表明:EAⅠ的患者患癫痫的比例高出正常人10倍[3]。说明Kv1?1为癫痫的侯选基因之一。其致病机制可能为突变亚单位对钾离子通道有负性作用,延迟了神经元的复极化,因此易化了动作电位的产生和传导,降低了癫痫的发作阈值。GIRK2突变与癫痫发作有关。在GIRK2亚单位膜孔域上的突变导致蛋白质分子构型改变,使通道失去了对钾离子的选择性,也失去了对G 蛋白βγ二聚体的敏感性,这种突变通道还可导致wv小鼠脑颗粒细胞的死亡。死亡原因为失去GIRK2介导的钾离子电流而不是非选择性的其他正电流的表达。KCNAB2基因定位在1p36上,它编码电压门控钾离子通道β亚单位蛋白Kvβ2。它与1p36缺失综合征中的癫痫表型有关。1p36缺失综合征主要表现为智力障碍并发癫痫发作、听力丧失、发育迟缓、口唇裂等。Kvβ亚单位在钾离子通道早期的生物合成、稳定及Kv1α亚单位的表达中起一定的作用。Kvβ亚单位由至少三个基因表达KC-NAB1,KCNAB2,KCNAB3。在哺乳动物的大脑中,KC-NAB2表达的Kvβ2占主导地位。所以Kvβ2表达水平的下降会减少膜的功能性钾离子通道,进而减少钾离子流,这可能会增加动作电位的时程,导致钙离子内流增多,神经递质释放增加,进一步导致神经元的过度兴奋,癫痫发作的阈值降低。[4]2钠通道和癫痫1997年,Sheaffer等发现了一个遗传性癫痫家族。这个家族的5代人共60个体中有23人患有癫痫。表现为伴有高热惊厥的癫痫综合征(general-ized epilepsywith febrile seizures plus)。Mulley等研究发现此家族的染色体19上的基因突变导致了癫痫,并且认为这个突变的基因是电压依赖性钠通道β1辅基的基因SCN1B。哺乳动物脑组织钠通道含有α和β1辅基。β1辅基是一种膜蛋白,有一个小的胞内域、一个穿膜结构和一个大的胞外域,可以调节通道开关的速率。突变导致了辅基上的一个氨基酸发生改变,使钠通道的开关速率变慢[5]。体外实验发现,人类

心肌细胞膜钾离子通道研究进展

中国医药报/2005年/7月/16日/第006版 医疗卫生 心肌细胞膜钾离子通道研究进展 聂松义 细胞膜在维持细胞稳态方面起着主要作用。心肌细胞膜中含有各种离子转运蛋白,包括多种钾离子通道。这些钾离子通道依靠和其他蛋白质的相互作用发挥正常功能和生理作用。Kv4.2钾离子通道(编码瞬时外向钾通道)和蛋白质KCHiP2具有相互作用。由加拿大McGill大学A.Shrier 教授第一次发现的KCHiP2增强Kv4.2表达需要和Kv4.2的羧基端直接作用的机制,引起与会专家的高度关注。Shrier教授介绍了他在心肌细胞膜钾离子通道方面的研究成果。 Shrier教授等研究人员采用膜片钳技术,免疫共沉淀、免疫组化和GST折叠式分析发现Kv4.2电流增加可能是Kv4.2表达加强及Kv4.2和KCHiP2相互作用增加通道稳定的结果。他们还发现一个新的心肌细胞膜蛋白组学特性和另一钾离子通道HERG通道(编码Ikr钾电流)。 心肌细胞膜富含蛋白质和离子通道,他们通过亚细胞分段分离技术,包括差异和密度梯度离心法及免疫分离法,纯化介于中层的成分,并采用十二烷基硫酸钠聚丙烯酰胺凝胶电泳和凝胶胰岛素消化液分离;使用串连的MS-MS光谱测定法鉴定多肽。在有或没有免疫提纯的情况下,他们发现600多种蛋白质有40%与细胞膜和伴随的细胞支架有关;大约65%和细胞信号,运输和细胞之间粘附相关。此外,他们还发现30种蛋白质尚无确定的功能。 据介绍,他们研究的第一阶段是进一步分析心肌细胞膜在病理情况下蛋白质的改变,包括局部缺血,心衰和糖尿病。在最近的研究中,他们用蛋白组学方法研究Kv4.2和HERG通道相互作用的配偶体。其方法是转染HA标记的HERG和Kv4.2到HL-1心肌细胞系。随后,他们用HA 抗体通过十二烷基硫酸钠聚丙烯酰胺凝胶电泳,胰岛素消化和MS-MS光谱测定法使离子通道和伴随的蛋白质免疫沉淀。 如今他们在HERG分析方面获得了很大成功,已确定了50多种有可能的HERG相互作用的蛋白质,并发现是这种相互作用在通道运输、定位和调节中具有重要作用。这项研究最有启迪意义的是发现新的配偶体HERG通道,它可提供有关通道生成和调节方式的信息。 第1页共1页

心脏离子通道病的治疗与预后

心脏离子通道病的治疗与预后 发表时间:2012-12-05T10:20:19.000Z 来源:《中外健康文摘》2012年第31期供稿作者:李焱鑫[导读] 近年来,分子生物学和遗传学研究已发现离子通道缺陷与某些心脏、肾脏和神经系统疾患密切相关。李焱鑫(黑龙江省大兴安岭地区加格达奇区人民医院红旗社区医疗服务站 165000)【中图分类号】R322.1+1【文献标识码】A【文章编号】1672-5085(2012)31-0166-02 【关键词】离子通道病治疗预后近年来,分子生物学和遗传学研究已发现离子通道缺陷与某些心脏、肾脏和神经系统疾患密切相关。离子通道病(ion channelopathy,ICP or ion channel disease,ICD)是指由于细胞膜离子通道的结构和/或功能异常所引起的疾病,亦称为离子通道缺陷性疾病。心肌细胞离子通道(ion channels)是一种跨细胞膜蛋白质分子组成的特殊通道,选择性允许一些离子通过。通道的开放和关闭受电压门控或化学门控。心肌细胞的主要离子通道有钠通道、钾通道、钙通道和氯通道等,当离子通过开放的通道即形成离子电流,电流的方向是以阳离子通过细胞膜的方向来命名。阳离子内流和/或阴离子外流时形成的电流为内向电流,与细胞膜的除极化相关;而阳离子外流和/或阴离子内流时形成的电流为外向电流,与细胞膜的复极化或超极化相关。 1.分型 心脏离子通道病分为原发性和继发性两类,前者为先天性离子通道缺陷性疾病;后者为某些疾病(如缺血性心脏病、充血性心力衰竭等)引起的离子通道数目、功能和/或结构异常。原发性离子通道病包括原发性长QT综合征(1 2 4~6型为钾通道编码异常、Ikr和Ikx降低;3型为钠通道编码异常、INa增强)Brugade综合征(钠通道编码异常、INa降低)原发性短 QT综合征(钾通道编码异常、Ikr增强)特发性J波综合征、特发性心室颤动、家族性阵发性心室颤动、家族性猝死综合征等。“离子通道病”或“SCN5A病”最重要的特征是:同一基因上的突变可引起很多表型,而几种疾病表型间具有相似性(男性患者多发、高度致命性、心脏事件常发生于睡眠时和对β阻滞剂抵抗等)。有学者将遗传性心律失常和遗传性心肌病统称为遗传性心脏猝死综合征(inherited SCD syndroMe)。 2.基因突变与心律失常 越来越多的心律失常被证实与基因异常有关,其中多数为心脏离子通道异常,少数为非离子通道异常;一部分属于单基因异常,另一部分属于群体多基因遗传。致病基因(病变基因)可通过2种方式引起心律失常相关性疾病:(1)致病基因可通过胚胎发育而使病人患伴有心律失常的家族遗传性心血管病;(2)致病基因使病人对外源性致病因素有遗传易感性,最终患冠心病、高血压病等遗传相关性心血管病,而后者又有较高的心律失常发生率。基因突变改变离子通道功能的机制包括:(1)负显性效应:突变蛋白抑制野生型蛋白,使其具有功能的通道数不足50%;(2)单倍体不足:突变蛋白与野生型蛋白质之间不发生相互作用,从而使有功能的通道数目减半;(3)转运缺陷:突变蛋白阻滞在细胞内某个部位,不能到达细胞膜;(4)通道动力学改变:如突变蛋白电流灭活加速等;(5)内含子突变导致拼接异常:改变氨基酸序列或形成终止密码。 1995年Keating研究组划时代地确定了长QT综合征(LQTS)与心脏离子通道基因突变相关,开始了心律失常基因机制研究的新纪元。至今至少确定了12个单基因突变引起的心律失常。研究最多的是LQTS、Brugada综合征、儿茶酚胺依赖型多形性室速心动过速(CPVT)的相关基因,其次是短QT综合征(SQTS)致心律失常性右室心肌病(ARVC)的致病基因,另外还发现病窦综合征(SSS)家族性心脏传导阻滞、家族性心房颤动发病的可能基因。 3.离子通道病与心律失常 心肌细胞离子通道与心律失常(下表)的主要关系为:(1)离子通道功能异常时,可引起冲动发生异常和/或冲动传导异常性心律失常;(2)离子通道病常伴发严重心律失常;(3)抗心律失常药物常通过离子通道纠治心律失常或致心律失常。 冲动发生异常性心律失常包括自律性异常性心律失常和触发活动性心律失常。心肌细胞离子通道与冲动发生异常性心律失常的关系包括: (1)心肌细胞自律性正常与自律性异常性心律失常:与心肌细胞自律性相关的离子通道有外向衰减钾离子通道、内向起搏钠离子通道、钠/钙交换离子通道、内向T型和L型钙离子通道,以及慢钙内流钙离子通道等。在正常生理情况下,上述离子通道功能正常,心肌细胞自律性正常而形成窦性心律。当各种病因或诱因侵袭上述离子通道并引起其功能异常时,即可引起心肌细胞自律性异常,产生窦房结自律性异常和异位自律性异常性心律失常。 (2)触发活动性心律失常:由早期后除极和/或延迟后除极引起,前者与L型钙离子通道及钠离子通道相关,后者与非选择性阳离子通道和钠/钙交换离子通道相关。当上述离子通道在各种病因或诱因侵袭时发生功能异常,过多的钙离子进入细胞内,即可引起早期后除极、延迟后除极和触发活动性心律失常。 心肌细胞的传导性取决于多种因素,而离子通道是影响传导速度的重要因素。如浦肯野氏纤维的钠离子通道密度最高,兴奋后形成O 相除极速度快、幅度高,形成的局部生物电流大,故传导速度最快(2~5M/s);而心房肌和心室肌细胞的钠离子通道密度较低,因而兴奋后的传导速度较慢(0.2~0.5M/s);决定窦房结和房室结细胞兴奋和传导的主要是钙离子通道,传导速度最慢(0.2~0.05M/s)。当各种生理或病理因素引起上述离子通道的密度和功能降低时,即会发生各种传导阻滞;如若发生单相传导阻滞时,又可促发折返性心律失常等快速性传导异常性心律失常。 4.表型与基因型的关系 表型与基因型之间并非一定是一一对应的。有相当一部分突变基因携带者心电图表现正常,如32%的LQTS突变基因携带者QTc在正常范围内,但他们较正常人群更易于发生心律失常;同样的表型可由多种基因突变引起,如LQTS有多个致病基因;同一种基因的不同突变或同一突变又可导致不同的临床表型,如心脏钠通道基因SCN5A突变可导致3种疾病:LQTS、Brugada综合征和家族性进行性心脏传导系统疾病,由此可见同样的单基因突变,由于突变位点的微小差异和/或微环境的改变,临床表现型复杂多变。目前发现的只有一种基因突变引起Brugada综合征,只占临床表型的20%。此外,同一基因型可引起表型的重叠,临床心律失常间歇性发作的机制尚不清楚。目前认为修饰基因、环境因素、心脏结构改变均参与基因型与表型间的表达,而离子通道表达自身稳定性调节(正、负反馈机制)也在维持心肌细胞稳定电生理表型中起重要作用。 5.治疗进展

烟草钾离子通道研究进展

74 中国烟草科学2009,30(2):74-80 烟草钾离子通道研究进展 曲平治1,刘贯山1,刘好宝1*,司丛丛1,刘朝科2,胡晓明2,冯祥国2,张守厚3,赵静4 (1.农业部烟草类作物质量控制重点开放实验室,中国农业科学院烟草研究所,青岛266101;2.川渝中烟工业公司,成都 610000;3.山东日照烟草有限公司,山东日照276800;4.山东中烟工业公司青州卷烟厂,山东青州262500) 摘要:K+通道是烟草吸收K+的重要途径之一。近年来,已从多种植物或同种植物的不同组织器官中分离到多种K+通道 基因。笔者从K+通道基因类型、K+通道基因的克隆与功能、K+吸收机制和K+通道分子调控技术等方面综述了烟草K+通道 研究现状与进展。对应用生物工程技术改良烟草的钾营养性状进行了讨论,并对利用现代生物技术手段提高烟叶含钾量进行 了展望。 关键词:烟草;钾离子通道;克隆;吸收机制 中图分类号:TS413 文献标志码:A 文章编号:1007-5119(2009)02-0074-07 Research Advances in Tobacco Potassium Ion Channel QU Pingzhi1, LIU Guanshan1, LIU Haobao1*, SI Congcong1, LIU Chaoke2, HU Xiaoming2, FENG Xiangguo2, ZHANG Shouhou3, ZHAO Jing4 (1.Key Laboratory of Tobacco Quality Control, MOA, Tobacco Research Institute of CAAS, Qingdao 266101, China; 2.China Tobacco Chuanyu Industrial Corporation, Chengdu 610000, China; 3.Rizhao Tobacco Corp. Ltd., Rizhao, Shangdong 276800, China; 4.Qingzhou Cigaret Factory, China Shongdong Industrial Tobacco Corpoaration, Qingzhou, Shangdong 262500, China ) Abstract: K+ channel is one of the important pathway for tobacco absorbing K+. In recent years, Many K+ channel genes have been cloned from various plants or different organization of same plant. In this paper, the type of K+ channel gene, cloning and function of K+ channel, K+ absorption mechanism and molecular regulation technology of K+ channel are summarized. Applying biotechnology to improve tobacco potassium nutrition character is discussed, and utilizing the modern biotechniques to improve the potassium content of tobacco leaves is proposed. Keywords: tobacco; potassium channel; cloning; absorption mechanism 植物吸收K+涉及到质膜上的钾转运蛋白,钾转 运蛋白分为两类:K+通道和高亲和K+转运体,其 中K+通道是主要的K+吸收途径。K+通道是一种跨 膜蛋白,广泛存在于各种细胞膜上,它的结构与功 能研究是生命科学交叉领域中研究最活跃的分支 之一。K+通道(potassium channel)是允许K+特异 性通透质膜的离子通道,该通道由两部分组成:一部 分是通道区,选择并允许K+通过;另一部分是门控

相关文档