文档库 最新最全的文档下载
当前位置:文档库 › 分子克隆常用技术

分子克隆常用技术

分子克隆常用技术
分子克隆常用技术

分子克隆常用技术

一、核酸的纯化

在分子克隆的所有操作中,最基本的操作是核酸的纯化。其关键步骤是去蛋白质,通常只要用酚/氯仿。氯仿抽提核酸的溶液即可。每当需要把克隆有某一些所用的酶灭活或去除以便进行下一步时,可进行这种抽提。然而,如要从细胞裂解液等复杂的分子混合物中纯化核酸,则要先用某些蛋白水解酶消化大部分蛋白质后,再用有机溶剂抽提。这些广谱的蛋白酶包括链霉蛋白酶及蛋白酶K等,它们对多种天然蛋白均有活性,(1)用酚氯仿抽提:这两种有机溶剂合用,比单独用酚抽提的除蛋白效果更佳。继而用氯仿抽提则可除去核酸制品中的痕量酚。①核酸样品置有盖小离心管中,加入等体积的酚/氯仿。②旋涡混匀管内容物,使呈乳状。③12000×g室温离心15秒。④水相移入另一离心管,弃去两相界面和有机相。⑤重复步骤①-④步操作,直至两相界面上见不到蛋白质为止⑦按下述核酸浓缩法沉淀回收核酸。

二、核酸的浓缩

应用最广的核酸浓缩法是乙醇沉淀法。在中等浓度单价阳离子存在下,加入一定量的乙醇后,所形成有核酸沉淀可经离心而回收,甚至对低至pg量的DNA 或RNA,也可定量回收。回收的核酸可按所需浓度,再溶于适当的缓冲液中。

具体操作时,可向含样品的小离心管中加入V/10单价阳离子盐贮存液2V

无水乙醇,混匀,放冰水浴中15-30min,取出目测平衡,0-4度,12000g,离心10min。吸弃上清,再另70%乙醇0.5-1ml,12000g,0-4度洗涤离心2min。吸弃上清,沉淀用油泵抽干或打开盖子晾干后,溶于适当体积的缓冲液中。

单价阳离子盐溶液

*:当加醋酸铵时,需加入DNA液的V/2。

单价阳离子盐的选择,主要基于下述考虑:用醋酸铵可减少dNTP的共沉淀,但在以后要作核酸的磷酸化时应避免用醋酸铵,因铵离子是T,多核苷酸激酶的强烈抑制剂。当用较高浓度的乙醇沉淀RNA时,常用LiCl,因LiCl在乙醇中溶解度很高,不随核酸共沉淀。含有SDS的核酸样品,应使用NaCl,这时该去垢剂

要70%乙醇中仍保持可溶。DNA和RNA沉淀,大多使用醋酸钠(pH5.2 )。

三、DNA、RNA的定量

准确的方法是紫外分光光度法。但本法要求核酸样品是纯净的(即无显著的蛋白质、酚、琼脂糖或其它核酸、核苷酸等污染物的制品)。用紫外分光光度计测定260nm和280nm两个波长处的光吸收,然后,按IA260相当于50μg/ml

双链DNA。40μg/ml单链DNA或RNA及20μg/ml单链寡核苷酸。计算你的样品含量。260nm和280nm两处读数的比值(A260/A280),可反映核酸的纯度。DNA 和RNA纯品的A260/A280的值分别为1.8和2.0如果样品中有蛋白质或酚的污染,则A260/A280将明显低于此值,此时就无法对样品中的核酸进行精确定量。可将样品纯化后再作定量测定。有丰富实验室经验的人,仅凭样品电泳后溴化乙锭染色萤光带的强度,即可大致判断出样品中的核酸含量,故他们常不作核酸的紫外分光光度法定量。

四、核酸的凝胶电泳和分子量参照物

(一)琼脂糖凝胶电泳

可用于分离、鉴定和提纯DNA片段。本法操作简单、迅速,能分辨其它方法不能分开的DNA片段混合物,分开的DNA可用低浓度的萤光染料(0.5μg/ml溴化乙锭)染色,在紫外灯下直接观察检测少至1ng的DNA。

DNA通过琼脂糖凝胶的迁移率取决于以下参数:①DNA分子的大小:线奖双链DNA 分子通过凝胶的速率与其分子量的常用对数成反比。据此用已知分子量的标准物质和待测分子量的DNA片段同时电泳,比较其电泳速率,即可求出待测片段的分子大小。②琼脂糖浓度:给定大小的DNA片段,以不同速度通过不同浓度的琼脂扩凝胶。因此利用不同浓度的凝胶,可分辨范围广泛,大小不同的DNA片段

不同浓度琼脂糖凝胶的分离范围

③DNA构型:相同分子量的闭环(Ⅰ型),开环(Ⅱ型)和线状(Ⅲ型)DNA,以不同速率通过凝胶,一般情况下,迁移率Ⅰ型>Ⅲ型>Ⅱ型。④应用的电压:在低电压时,线状DNA片段的迁移率与所用电压成正比。但是压增高时,大分子

量DNA片段迁移率的增大是不同的,因此琼脂糖凝胶的有效分离范围随电压增大而减小。为了获得DNA片段的最大分辨力,凝胶电泳时电压不应超过5V/cm。

(二)聚丙烯酰胺凝胶电泳

可用于分析和制备小于1Kb长度的DNA片段

DNA在聚丙烯酰胺凝胶中的有效分离范围

聚丙烯胺凝胶多用垂直平板电泳,准备凝胶时,先配制30%单体母液(29克丙烯酰胺,1克双丙烯酰胺,加水溶解,定容至100ml),再用它来配制所需浓度的凝胶。每100ml上述液体加30μl四甲基乙胺(TEMED),混匀后即可灌注于予先准备好的洁净不渗漏的凝胶玻板,待凝胶灌至近顶端时,立即插入合适的“梳子”,放室温聚合60分钟,若冬天室温太低,则可放37度温温箱内,以促进聚合。聚合完成后,拔出“梳子”,将凝胶板固定于电泳槽中,向电泳槽倾入

1×TBE,用滴管冲洗加样孔和凝胶底部以除去气泡,即可加样电泳。一般所用电压1-8v/cm,随时观察标记染米的迁移。在溶于1×TBE的聚丙烯酰胺中,标记染料迁移速率与下述DNA片段的速率相同

标记染料在PAG中的迁移*

*这些数字是与染料共同迁移的DNA片段的近似大小(以bp计)。电泳结束,从电槽中取出玻板并小心地撬开,凝胶浸于溴化乙锭液(0.5μg/ml1×TBE)染色,45min后放紫外灯下观察电泳结果。

(三)分子量参照物

为了判断目的DNA片段的大小,常在同一凝胶的目的DNA旁加一分子量参照物,同时电泳并染色后,就能在紫外灯下很快知道目的片段的大小。最常用的分

子量参照物是 H indⅢ消化物,各片段的大小以bp表示,分别为:23130,9416,6557,4361,2322,2027,564,125

在微型离心管中乙醇沉淀的标准方法

(1)估计DNA溶液的体积。

(2)调整单价阳离子的浓度。若DNA溶液中含有高浓度的盐,可用TE(pH8.0)

稀释,否则加入表A8-1列出的一种盐。

如果DNA溶液的体积不超过400ul可在单个微型离心管中进行沉淀,体积较大时可分成数管,或者在适宜于中速离心或超离心的离心管中进行离心。

(3)充分混匀溶液,准确加入2倍体积的冰冷乙醇,再充分混匀溶液。将此

含乙醇的溶液置冰上使DNA沉淀形成。

一般放置15-30min就足够了。但如果DNA分子太小(小于100个核苷酸)或者DNA的含量太低(低于0.1ug/ml)则需把在冰上放置的时间延长到1h以上并加入MgCl2至终浓度0.01mol/L。DNA可在含乙醇的溶液中于0℃或-20℃无限期地

保存。

(4)于0℃离心回收DNA。

在多数情况下于最大转速离心10min就足够了。然而如以上所述,在沉淀低浓度DNA(低于20ng/ml)或非常小的片段时则需要延长离心的时间。

图A8-2 吸出上清液

手持打开盖子的微型离心管成一定角度,使沉淀物在上侧,将一个一次性吸头连至真空管道,从管内抽吸液体。把吸头置于离心管下侧,恰好在液体的凹面以下。随着液体的吸出,可将吸头移向管底。抽吸要温和,以免沉淀吸入吸头,并应使吸头的尖部离开沉淀。最后吸尽附着于管壁的液滴。

(5)用自动微量移液器或连于真空管道的一次性吸头(见图A8-2)小心移出上清液,注意不要扰动沉淀(有时沉淀是看不见的)。用吸头吸尽附于管壁的所有液滴。在沉淀比较珍贵的DNA样品时,最好暂时留存上清液,直至确定已回收

到沉淀的DNA后再废弃。

(6)加半管70%乙醇,于4℃以最高转速离心2min。

(7)重复第5步。

(8)将离心管于室温下敞口放置在实验台上,直至残留的液体挥干。过去常用冻干机干燥沉淀,这一步不仅没有必要,而且也不适当,因为这样会引起小片段DNA(小于 400个核苷酸)的变性(Svaren et al,1987),还大大降低大

片段DNA的收率。

(9)将DNA沉淀(沉淀常常是看不见的)重新溶解于适当体积的缓冲液(一般为

pH 7.6-8.0的TE),用缓冲液充分漂洗管壁。

[注]i在微型离心管中离心之后,并非所有DNA沉淀都沉积在管底,沉积在管壁的DNA最多可达50%。为了回收到所有DNA,应使液滴在管壁的适当部位来回滚动,可用微量加液器上的一次性吸头推动液滴。

ii可用1倍体积的异丙醇代替2倍体积的乙醇沉淀DNA。异丙醇沉淀的优点是离心液体的体积较小,但异丙醇挥发性较乙醇差而难于去除,另外有些溶质如蔗糖和氯化钠等在用异丙醇时更容易共沉淀。总之,除非必须降低液体的体

积,一般最好用乙醇沉淀。

iii一般用乙醇从溶液中沉淀出来的DNA重溶于低离子强度的缓冲液如TE(p H8.0)中比较容易,偶尔在用含MgCl2或浓度高于0.1mol/L Nacl的缓冲液直接溶解DNA沉淀时可能要遇到一点困难。因此最好是先用少量低离子强度的缓冲液将DNA溶解后再调节缓冲液的成分。若样品不易溶于较小体积的缓冲液,可用多一些缓冲液溶解,再重新用乙醇沉淀。第二次沉淀有助于去除多余的盐及可能妨

碍DNA溶解的其他成分。

用乙醇沉淀RNA

RNA可以用含2.5-3.0倍体积的乙醇从含有0.8mol/L LiCl、5mol/L醋酸铵或0.3mol/L醋酸钠的溶液中有效地沉淀下来。选择上述哪一种盐要取决于其后RNA的用途。由于十二烷基硫酸钾盐的极难溶,若要将沉淀得到的RNA溶于含S DS的缓冲液(如用寡聚dT-纤维素层析时就使用这种缓冲液)则应避免使用醋酸钾。同样,如果RNA已溶于含有SDS的缓冲液中,沉淀时也不要用醋酸钾。

[注]用于沉淀RNA的溶液应是无RNA酶的(见第7章)。

用氯化锂沉淀大分子RNA

小分子RNA(如tRNA和5SrRNA)在离子强度高的溶液中可溶,而大分子RNA(如rRNA和mRNA)则不溶,可通过离心沉淀下来。

(1)测量样品的体积,加0.2倍体积无RNA酶的8mol/L LiCl,充分混匀,置

冰浴中至少2h。

(2)于0℃以15000g离心20min,弃上清,将沉淀下来的大分子RNA重溶于0.

2倍体积水中。

(3)重复1和2步。

(4)用2倍体积乙醇沉淀,从重悬的沉淀物中回收大分子RNA。

用微量浓缩器进行核酸的浓缩及脱盐

除乙醇沉淀外,超滤也是核酸溶液浓缩和脱盐的一种可供选择的方法。这种方法不需要相的变化,在处理低浓度核酸时特别有用。Millipore公司供有一种称为Microcon滤筒的离心超滤装置,可以有效地进行核酸的脱盐和浓缩。下述方案及加注采自Millipore公司的网站(https://www.wendangku.net/doc/9b1667993.html,),详细说明可从该

网站上查找。

(1)选择一种型号的Microcon,其核苷酸截留值等于或小于待分离核酸的大

小(见表 A8-3)。

(2)如图A8-3所示,从提供的两只小管中取出一只,将Microcon滤筒插入

其中。

(3)浓缩时(不影响盐的浓度),可移取最多达500ul的样品(DNA或RNA)加到样品池中,按说明书推荐的时间离心,转速不要超过表A8-3列出的离心力。

(4)若进行盐的交换,加适量适当的稀释液,使浓缩样品的体积至500ul。按说明书推荐的时间离心,转速不要超过表A8-3列出的离心力。欲使盐的浓度更低,必要时可重复整个步骤。见表A8-3的脚注。

重要:样品池不要加得太满。

(5)从小管上取下样品池,倒置插入另一只小管中(在分析样品之前要留存滤

液)。

(6)在一只微型离心管中于500—1000g离心2min回收小管中的核酸。

(7)取下样品池,盖紧管盖保藏样品。

图A8-3 用Microcon超离心进行核酸溶液的浓缩及脱盐

表A8-3 微型浓缩gSMic忱on的核苷酸截留值

注:注意单纯超滤是不会改变缓冲液组成的。在Micrpcon中离心浓缩样品的盐浓度与原始样品的盐

浓度相同。

脱盐时可在浓缩的样品中加水或缓冲液至原先体积,再重新离心(称作不连续渗滤)。这种脱盐的方式与超滤的浓缩系数有关。举例来说,一份含100mmol/L盐的500ul样品浓缩至25ul时(浓缩系数为20),则样品中95%的盐被去除,而样品中的盐浓度仍为100mmol/L。再将样品用水稀释至500ul时盐的浓度降至5mmol/ml,再将此稀释的样品浓缩至25弘1可去除原先总量的99%的盐,这时浓缩样品盐浓度为0.25mmo l/L(译者注:原文有误,0.25mmol/L是再将此浓缩样品用水稀释至500ul后的浓度)。若欲脱盐更彻底一些,可再进行一次溶解和离心的循环,即可脱去原先99.9%的盐量。

*ss表示单链,ds表示双链。

用丁醇抽提法浓缩核酸

在用仲丁醇(异丁醇)或正丁醇抽提水溶液时,一些水分子会分配到有机相中,抽提数轮之后能够显著降低核酸溶液的体积。这个方法可降低稀核酸溶液的体积,以致容易通过乙醇沉淀加以回收。

(1)测量核酸溶液的体积,加等体积异丁醇,用旋涡混合器混匀。

加入过多异丁醇会除去溶液中的全部水分而导致核酸沉淀。如果发生这种情况,可在有机相中加水,

直到重新出现水相(其中含有核酸)。

(2)在微型离心管中以最高转速室温离心20s,或用台式离心机1600g离心1

min。用自动微量移液器移出并弃掉上层(异丁醇层)。

(3)重复1和2步直至水相达到所需体积。

由于异丁醇抽提并不能除盐,水溶液中的盐浓度会随溶液体积减小而成比例地增高。可通过离心柱层析或乙醇沉淀将核酸转换到所需的缓冲液中。

分子克隆全过程

本文以大肠杆菌DH10B为例介绍外源基因在大肠杆菌中表达全过程 克隆步骤包括:模板制备(基因组DNA提取)-感受态细胞的制备-PCR-纯化回收-酶切-连接-转化-挑菌摇菌-质粒抽提-酶切鉴定-测序 1) 基因组DNA提取(以家蚕为例) 1. 取家蚕五龄后部丝腺约0.5g,于10ml匀浆器内,加2mlDNA抽提缓冲液,在 冰上充分研磨,转入5ml的离心管; 2. 加入RnaseA(10ul)至终浓度20ug/ml,37℃水浴1h; 3. 加入ProteinaseK(25ul)至终浓度100ug/ml,55℃水浴2h; 4. 分装到1.5ml eppendorff管,0.6ml/管; 5. 加入等体积的平衡酚(pH8.0),充分混匀,5000g,15min,取上清; 6. 重复5,再抽提1次; 7. 用等体积的酚/氯仿(1/1,v/v),氯仿各抽提1次 8. 将上清移入新离心管,加入1/10体积的3mol/L NaAc(pH 5.2),2倍体积的 无水乙醇,充分混匀,4℃过夜 9. 用牙签将絮状沉淀物挑出。用75%冰酒精洗涤3次,37℃控干; 10. 200μl 0.1 TE(pH8.0)溶解DNA; 11. 检测OD值; 12. 做好标记,以供进一步实验之用。 2) 感受态细胞的制备 1. -20℃冻藏的DH10B甘油菌在LB平板上复苏(划板),37℃,8-12小时; 2. 用灭菌牙签挑取单菌落,放入3ml LB培养基中,37℃振荡培养过夜; 3. 取100μl过夜培养物接种到另一3 ml LB培养基中,37℃振荡培养2~2.5 h, 使OD值在0.6左右(把握好浓度,OD值可以不用测);将菌液分装到1.5ml EP 管中(在超净台完成) 4. 5000 g离心4 min收集菌体,将菌体重悬于800 μl 75 mmol/L冷CaCl2中, 冰浴30 min;(CaCl2要用高纯度的,切记!) 5. 4℃,5 000 g离心4 min,弃上清; 6. 加入200μl 75 mmol/L冷CaCl2,轻轻敲打管壁,使混合均匀,冰上放4 h 后用于转化,或加0.1倍体积甘油混匀,-70℃保存备用。可以保存至少6个月。 3) PCR 1、PCR反应体系: ddH2O 37.7 μL 10×PCR buffer 5 μL (25mM) dNTP 4 μL 引物1/2 1μL/1μL Taq酶 0.3μL 模板 1μL PCR反应体系总体积 50 μL 充分混匀,稍离心。 2、PCR反应条件

分子克隆技术试卷

分子克隆技术 一、填空题 1.PCR反应中加入矿物油的作用是___________________________。 2.分子克隆实验中外源DNA和载体片段连接之前,要对载体进行去磷酸化处理,我 们在本次试验中去磷酸化使用的碱性磷酸酶是___________________________。它 的目的是___________________________。 3.用α互补筛选转化子是,带有外源片段的菌落显___________________________色。 4.Southern杂交中进行与杂交的目的是___________________________。 5.凝胶糖凝胶电泳时加入loading buffer作用是___________________________和 ___________________________。 6.影响琼脂糖凝胶电泳的因素主要有___________________________、 ___________________________、___________________________、 ___________________________、___________________________。 二、简答题 1.简述PCR反应体系中都有哪些成分及各成分的作用。 2.为得到质量较好的水稻RNA,抽提前应做如何准备?RNA抽提过程中、RNA的 保存及以后对RNA的操作过程中应特别注意什么? 3.简述为防止放射性同位素外照射及内照射对人体造成伤害,在操作放射性同位素 时,我们可以采取哪些措施进行防护? 4.简述影响电转化感受态细胞转化效率的因素有哪些? 5.质粒抽提时用到的SolutionI,SolutionII,SolutionIII及异丙醇分别起什么作用?操 作时应注意什么? 三、分析问答题 1.描述并图示pUC19载体DNA及其在HindIII位点克隆了外源DNA片段的质粒DNA 和水稻总DNA及它们的HindIII和BamH1酶切产物在琼脂糖凝胶电泳时的带型。 2.利用质粒载体克隆外源DNA片段主要包括哪些步骤?涉及到哪些工具酶?要获得 理想的结果,各步骤操作中应主要注意哪些事项? 3.在Southern杂交实验中,同一根杂交管内的膜曝光的····(原卷此处不清晰)冲 洗后,有些组X光片信号很强,有些组信号很弱,有的样品点样孔附近有较强的 信号,但是有的地方信号较弱,请分析造成这种结果的可能原因。 4.下面是本次课生物技术班某组β-active基因RT-PCR(反转录前没有对总RNA进 行去除DNA 的处理)试验的琼脂糖凝胶电泳图,凝胶上共点了6个样,PCR使用 的模板从左至右分别是:该组提取的水稻总DNA,该组提取的水稻总RNA,该组 的4个反转录产物。(原卷本题图不清晰) 请问: 提取的RNA的质量如何? RT-PCR是否成功?为什么会出现这样的结果? 有哪些地方需要改进?

分子克隆——主要步骤

笔记3(分子克隆2——主要步骤) 分子克隆可以分为以下几个步骤: 分离制备待克隆的DNA片段————将靶DNA片段与载体在体外进行连接————重组DNA分子转入宿主细胞————筛选、鉴定阳性重组子————重组子的扩增。 1.带有目的基因的DNA片段的获得: 可以用限制内切酶降解基因组DNA,再配合使用其他实验手段得到待定的DNA片段,可以用超速离心的方法分离出具有特定核苷酸组成的DNA片段,可以用mRNA做模板,用反转录酶合成互补DNA,即cDNA,也可以用化学合成的方法直接合成一段DNA。 2.重组DNA分子的构建: 重组DNA分子中包括两部分,一部分是外源DNA,即目的DNA片段,另一部分是载体DNA。用作载体的,有质粒、噬菌体或病毒DNA。它们的基本特征是能够独立复制。如果用同一种限制性内切酶切割这两种DNA,则它们的末端完全相同,由于有互补的单链末端序列存在,在连接酶的作用下,就可以形成重组DNA 分子。在没有互补单链末端的情况下,也可以用酶学方法造成一个互补单链末端之后再进行连接。

3.重组DNA分子的转化和重组克隆的筛选: 重组DNA分子必须进入宿主细胞中,才能得到扩增和表达.这个过程叫做转化。大肠杆菌是目前使用最广泛的宿主细胞。除此以外.其他细菌、酵母、哺乳动物细胞等也可作为宿主细胞,可以根据实验的需要加以选择。在被转化的宿主细胞中,不同的单个细胞(在平板上表现为单个菌落,亦称克隆)中可能含有不同的重组质粒或非重组质粒,因此必须进行筛选,以便确定哪些是重组克隆。筛选可以使用抗菌素抗性或其他方法,依载体的性质而定。 4.特定重组克隆的鉴别: 由于重组克隆往往是较多的,而在某一克隆实验中,我们感兴趣的目的克隆只有一个或几个,所以需要进一步鉴别。使用的方法主要有核酸杂交法和免疫化学法。 此外,找出了目的克隆之后,还需要根据实验的目的,进一步弄清目的克隆中外源DNA片段上的基因的结构和功能。主要有酶切图谱的制定,基因在DNA 片段上的精确定位,确定是否有内含子,DNA序列分析,离体翻译实验,外源基因在某些宿主细胞中的表达及产物的提纯等。

常用分子克隆实验方法

常用分子克隆实验方法I 一、植物总DNA的小量提取 方法1:提取吸附法。无须巯基乙醇、氯仿等有毒物质,产物无须Rnase处理。 (1)充分研磨。称取约0.2克植物组织,加入液氮充分研磨3-5min,稍后加约1ml溶液 A,继续研磨至略粘稠的组织匀浆,用大口1ml吸头将所有溶液移至1.5ml离心管 中,55℃水浴30min; (2) 高速离心去杂质。10,000rpm离心5min,取约600ul上清至新1.5ml离心管; (3) 核酸吸附。往上清液中加入1倍的异丙醇,轻轻混匀,再加入总体积1/4已混匀的 溶液B,静置3min; (4) 低速离心沉淀。5000rpm离心1min,轻轻倒掉上清,并用吸水纸轻吸离心管口, 再用移液枪吸走大部分残余液体; (5) 75%乙醇清洗。加入1ml75%乙醇,5000rpm离心30s,轻轻倒掉上清,用吸水纸稍 吸离心管口。重复该步骤一次,再5000rpm离心30s,然后用移液枪吸走管底的残 液,晾干5min; (6) 核酸洗脱。加入约55ul TE(PH8.0)至管底,轻轻重悬硅土,静置3min,10,000rpm 离心1min,用小枪头轻轻吸取出50ul管底溶液,冷藏。 方法2:CTAB法,此为在经典方法基础上,经过摸索改进,提高了得率,减少了污染。 (1)充分研磨。称取约0.2克植物组织,加入液氮充分研磨3-5min,稍后加约1ml CTAB 提取液,继续研磨至略粘稠的组织匀浆,用大口1ml吸头移至1.5ml离心管,65℃ 水浴30-60min。 (2) 氯仿抽提。10,000rpm离心3min,取约600ul上清。加入1倍的氯仿,轻轻混匀, 10,000rpm离心3min,取上清再抽提1遍。 (3) 核酸沉淀。加入预冷的1倍异丙醇或2倍乙醇,轻混匀,6000rpm离心3min,弃 上清。 (4) 清洗沉淀。轻加入1ml 75%乙醇,再吸掉上清,重复一次,倒置于吸水纸或横放于 离心管架上晾干5min。 (5) 溶解DNA。加50ul含Rnase A(约10ug/ml)的TE,常温下放置30min。取约3-5ul 电泳检测后,低温冷藏。

三四章分子克隆载体---答案_完_

第三章分子克隆载体(Molecular cloning vectors) 一、名词解析 1.质粒:质粒是染色体外的遗传因子,能进行自我复制(但依赖于宿主编码的 酶和蛋白质);大多数为超螺旋的双链共价闭合环状DNA分子(covalently closed circle , cccDNA),少数为线性;大小一般为1~200Kb,有的更大。2.质粒拷贝数:质粒拷贝数(plasmid copy numbers)是指细胞中单一质粒的份数 同染色体数之比值,常用质粒数/每染色体来表示。不同的质粒在宿主细胞中的拷贝数不同。 3.质粒的不相容性:两个质粒在同一宿主中不能共存的现象称质粒的不相容 性,它是指在第二个质粒导入后,在不涉及DNA 限制系统时出现的现象。 不相容的质粒一般都利用同一复制系统,从而导致不能共存于同一宿主中。 4.质粒的转移性:质粒具转移性。它是指在自然条件下,很多质粒可以通过称 为细菌接合的作用转移到新宿主内。它需要移动基因 mob ,转移基因 tra ,顺式因子 bom 及其内部的转移缺口位点 nic。 5.穿梭质粒:既能在真核细胞中繁殖又能在原核细胞中繁殖的载体。这类载体 必须既有细菌的复制原点或质粒的复制原点,又含有真核生物的复制原点,还具备酶切位点和合适的筛选指标。它用来转化细菌,又可以用于转化真核细胞。 6.α-互补:α-互补是指 lacZ 基因上缺失近操纵基因区段的突变体与带有完 整的近操纵基因区段的β-半乳糖苷酶(β -galactosidase ,由 1024 个氨基酸组成)阴性的突变体之间实现互补。α-互补是基于在两个不同的缺陷β-半乳糖苷酶之间可实现功能互补而建立的 7.温和噬菌体:既能进入溶菌生命周期又能进入溶源生命周期的噬菌体。 8.溶源性细菌:具有一套完整的噬菌体基因组的细菌叫溶源性细菌。 9.整合:如果噬菌体的DNA是被包容在寄主细菌染色体DNA中,便叫做已整合 的噬菌体DNA。这中细菌提DNA组入细菌染色体DNA的过程,叫做噬菌体DNA 的整合或插入。 10.溶源化:用温和的噬菌体感染细菌培养物使之形成溶源性细菌的过程叫做溶 源化。

分子克隆技术步骤

分子克隆技术步骤 在分子水平上提供一种纯化和扩增特定DNA 片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA 的许多拷贝,从而获得目的基因的扩增。 克隆在生物学中其名词含义系指一个细胞或个体以无性繁殖的方式产生一群细胞或一群个体,在不发生突变的情况下,具有完全相同的遗传性状,常称无性繁殖( 细胞)系;其动词(clone,cloned,cloning) 含义指在生物体 外用重组技术将特定基因插入载体分子中,即分子克隆技术。 将DNA 片段( 或基因)与载体DNA 分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA 和cDNA 克隆两类。 cDNA 克隆是以mRNA 为原材料,经体外反转录合成互补的DNA(cDNA) ,再与载体DNA 分子连接引入寄主细胞。每一cDNA 反映一种mRNA 的结构,cDNA 克隆的分布也反映了mRNA 的分布。特点是:①有些生物,如RNA 病毒没有DNA ,只能用cDNA 克隆; ②cDNA 克隆易筛选,因为cDNA 库中不包含非结构基因的克隆,而且每一cDNA 克隆只含一个mRNA 的信息; ③cDNA 能在细菌中表达。cDNA 仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息。 1. 方法: (1) DNA 片段的制备:常用以下方法获得DNA 片段:①用限制性核酸内切酶将高分子量DNA 切成一定大小的DNA 片段; ②用物理方法( 如超声波) 取得DNA 随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA 反转录产生cDNA 。 (2) 载体DNA 的选择: ①质粒:质粒是细菌染色体外遗传因子,DNA 呈环状,大小为1-200 千碱基对(kb) 。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA 可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松驰型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb 以下的DNA 片段,适用于构建原核生物基因文库,cDNA 库和次级克隆。 ②噬菌体DNA :常用的λ噬菌体的DNA 是双链,长约49kb,约含50 个基因,其中50% 的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA 两端。中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。λ载体系统最适用于构建真核生物基因文库和cDNA 库。 M13 噬菌体是一种独特的载体系统,它只能侵袭具有 F 基因的大肠杆菌,但不裂解寄主菌。M13DNA(RF) 在 寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒。寄主菌可分泌含单链DNA 的M13 噬菌体,又能方便地制备单链DNA ,用于DNA 顺序分析、定点突变和核酸杂交。 ③拷斯(Cos) 质粒:是一类带有噬菌体DNA 粘性末端顺序的质粒DNA 分子。是噬菌体-质粒混合物。此类载体分子容量大,可携带45kb 的外源DNA 片段。也能象一般质粒一样携带小片段DNA ,直接转化寄主菌。这类载体常被用来构建高等生物基因文库。 (3) DNA 片段与载体连接:DNA 分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA 片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA 可产生相同的粘性末端。在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端。②平头末端连接,用物理方法制备的DNA 往往是平头末端,有些酶也可产生平头末端。平头DNA 片段可在某些DNA 连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接。④人工接头分子连接,在平头DNA 片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。 连接反应需注意载体DNA 与DNA 片段的比率。以λ或Cos 质粒为载体时,形成线性多连体DNA 分子,载体与DNA 片段的比率高些为佳。以质粒为载体时,形成环状分子,比率常为1∶1。 (4) 引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA 或噬菌体DNA(M13) 与氯化钙处 理过的宿主细胞混合置于冰上,待DNA 被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重

分子克隆及细胞培养基本实验方法

分子克隆及细胞培养基本实验方法 1.载体构建实用操作技术 1.1菌种的保存—20%甘油菌 2体积菌液与1体积70%的甘油混合后,储存于-20℃或-70℃备用。(甘油菌中甘油的浓度为20-30%均可) 1.2甘油菌复苏、培养 方法一、挑取甘油菌一环,接种在含100ug/ml Amp的LB固体培养基上(活化菌种),37℃培养过夜(约16小时);挑取一个菌落转接在含100ug/ml Amp 的LB液体培养基中,37℃振荡过夜(约12~16小时)。 方法二、直接吸取10~20ul甘油菌,接种在含100ug/ml Amp的LB液体培养基中,37℃振荡过夜(约12~16小时)。 1.3小规模制备质粒DNA(QIA miniprep kit ) 适于从1~5ml 菌液中制备20ug高拷贝质粒 ⑴收集菌液,离心1000rpm,1分,弃上清 ⑵以250ul P1重悬细菌(P1中已加RNase) ⑶加入250ul P2,颠倒4~6次轻混,约2~3分(轻混以免剪切基因组DNA,并免 长时间消化) ⑷加入350ul N3,迅速颠倒4~6次轻混;离心10分,13 000rpm ⑸上清入QIAprep柱,离心30~60秒,滤液弃之 ⑹加入0.5ml PB洗,离心30~60秒 ⑺加入0.75ml PE洗,离心30~60秒,弃滤液,再离心1分 ⑻换新管,加入50ul EB,静置1分(EB 37℃预热),离心1分。 1.4酶切反应 ⑴体系构成(反应体系尽可能小!) pGEM3ZF-huCTLA4-Ig(ul)pAdTrack-CMV(ul)

①dd.H2O 17 17 ②10×NEbuff 2 3 3 ③10×BSA 3 3 ④底物DNA 5 5 ⑤内切酶HindⅢ 1 1 XbaⅠ 1 1 Total : 30 ul 30ul ⑵37℃水浴1~2小时,必要时延长酶切时间至12小时 ⑶酶切2小时后,取5-10ul 电泳观察酶解是否完全 ⑷65℃灭活内切酶 ⑸-20℃保存备用 1.5回收目的片段(QIAquick Gel extraction Protocol) ⑴胶,尽可能去除多余的胶,称重; ⑵加入适量buff QG(300ul QG /100mg胶);>2%的胶,应加大QG用量(600ul QG /100mg); ⑶水浴50℃,10min,每2-3min混匀一次,使胶完全溶解!必要时延长水浴时间, 胶完全溶解后混合物颜色应为黄色,与buff QG 相似; ⑷当DNA片段在<500bp或>4kb时,应加入异戊醇100ul/100mg胶,以提高产物 量。此步不离心。DNA片段在500bp~4kb时,加入异戊醇并不能提高产量; ⑸结合:将混合物转入QIAquick柱,离心13000rpm,1min;(柱容量800ul/次); ⑹洗:0.75ml buff PE,离心13000rpm,1min;(DNA用于盐敏感操作时,如平 端连接、直接测序,加入PE后静置2-5min);弃离心液,再离心13000rpm, 1min,以去除剩余的乙醇; ⑺将QIAquick柱置于一清洁的1.5ml Ep管,加入30~50ul buff EB或H2O (滴 于QIAquick 膜上!),静置1min,离心15000rpm,1min; ⑻-20℃保存备用。 1.6连接反应

分子克隆技术实验讲义2016.3(最终版)

分子克隆技术实验讲义 黑龙江大学生命科学学院 2016年3月 甜菜M14品系BvM14-glyI基因的克隆与鉴定 一、实验目的 1、熟悉和了解目的基因克隆与鉴定的过程和方法。 2、学习和掌握质粒、T载体的特点。 3、学习和掌握TA克隆的连接体系及操作要点。 4、学习和掌握XcmⅠ酶切制备T载体的过程及方法。 5、学习和掌握CaCl2法制备大肠杆菌感受态细胞的原理和方法。 6、学习并掌握热激法转化技术的原理和操作步骤。 7、学习并掌握重组子鉴定和筛选的原理及蓝白筛选的原理和方法。 8、学习并掌握碱法小量制备质粒DNA的原理及操作步骤。

二、相关知识 (一)T载体的制备 pMD18-T Vector是一种高效克隆PCR产物(T-A Cloning)的商业化专用载体,由pΜC 18载体改建而成。在pΜC 18多克隆位点处的XbaⅠ和SalⅠ识别位点之间插入了Eco RⅤ识别位点,用Eco RⅤ进行酶切反应后,再左两侧的3′端添加“T”而成,可以大大提高PCR产物的连接、克隆效率。 相关知识点:(1)质粒的提取;(2)酶切;(3)PCR等。 (二)DNA的重组与连接(PCR产物的克隆) 把DNA片段从某一类型的载体无性繁殖到另一类型载体中,例如从某种质粒克隆到另一种质粒,这个过程称为亚克隆。所谓重组,就是把外源目的基因“装进”载体的过程,即DNA的重新组合。为了将目的基因重组于载体分子中,需要将载体DNA和目的基因分别进行适当处理,一般采用内切酶法将载体DNA分子切割成可与外源基因连接的线性分子,使其与相同酶切过的载体分子相互连接,彼此成为配伍末端(compatible end),以产生末端连接。现在一些生物公司也开发了针对不同插入DNA片段的专用载体,如专门用于克隆PCR产物的载体,大大方便了实验操作。 相关知识点:(1)克隆与亚克隆;(2)DNA重组;(3)内切酶;(4)粘性末端与平末端;(5)连接酶;(6)连接酶的分类及功能等。 (三)大肠杆菌感受态细胞的制备 外源基因与载体在体外连接成重组体DNA分子后,需将其导入受体细胞进行扩增和筛选,得到大量、单一的重组体分子,这就是外源基因的无性繁殖,或称为克隆。受体细胞也叫宿主细胞,大肠杆菌宿主菌是目前基因工程最常用的受体细胞。感受态细胞(competent cell)是经过一定方法处理后,具有接受外源DNA能力的大肠杆菌,只有发展了感受态的细胞才能稳定地摄取外来的DNA分子。 相关知识点:(1)克隆;(2)宿主细胞的定义及分类;(3)感受态细胞定义及其功能;(4)转化定义及方法(DMSO、MnCl2、TB aq、PEG)等。 (四)重组DNA的转化及重组子的鉴定 将外源DNA分子导入某一宿主细胞的过程称为转化。把重组DNA分子导入到细菌中产生克隆有两个目的,一是大量产生重组DNA分子,在完成连接反应后,重组DNA分子往往只有纳克级的量,不易操作和进行下一步的分析,若把重组DNA分子导入到细菌细胞中,细菌细胞可分裂多次产生克隆,克隆中每一个细胞都含有很多个拷贝的重组DNA分子,这样重组DNA分子的量就多了;二是对重组DNA 分子进行纯化,在构建重组DNA分子的过程中很难保证体系中不污染其他的DNA分子,连接过程完成以后体系中有多种分子存在,除了需要的重组DNA分子以外,还含有没有连接上的载体分子、没有连接上的DNA片段、自身环化的DNA分子和连接上污染DNA片段的重组DNA分子,未连接上的载体和DNA片段对实验影响不大,因为它们即使导入细菌细胞,因为不能复制,很快就要被细菌细胞中的酶降

分子克隆实验标准步骤

分子克隆实验标准步骤 一、 常规分子克隆实验流程: 二、 分子克隆实验标准步骤(含实验编号): 1. PCR 扩增目的基因(编号Clone SOP-1) 以本实验室常用酶KOD-Plus-Neo (TOYOBO )为例 体系(50ul ): 10×KOD buf 5ul dNTP(2mM) 5ul Mg 2+ 3ul Primer1 1ul Primer2 1ul Template50-200ng KOD0.5ul ddH 2O up to 50ul 程序: 95℃2min 98℃10s 58℃30s 35cycle 68℃2kb/min 68℃7min 12℃∞

2.PCR产物的琼脂糖凝胶电泳琼脂糖凝胶的制备(编号Clone SOP-2) 琼脂糖溶液的制备:称取琼脂糖,置于三角瓶中,按1%-1.5%的浓度加入相应体积的TBE或TAE缓液,将该三角瓶置于微波炉加热至琼脂糖溶解。 胶板的制备:①取有机玻璃内槽,洗净、晾干;②将有机玻璃内槽置于一水平位置模具上,安好挡板,放好梳子。在距离底板上放置梳子,以便加入琼脂糖后可以形成完好的加样孔。 ③将温热琼脂糖溶液倒入胶膜中,使胶液缓慢地展开,直到在整个有机玻璃板表面形成均匀 的胶层。④室温下静置30min左右,待凝固完全后,轻轻拔出梳子,在胶板上即形成相互隔开的上样孔。制好胶后将铺胶的有机玻璃内槽放在含有0.5~1×TAE(Tris-乙酸)或TBE(Tris-硼酸)工作液的电泳槽中使用,没过胶面1mm以上。 3.试剂盒回收DNA片段(编号Clone SOP-3) 以本实验室常用DNA凝胶回收试剂盒(天根)为例 使用前请先在漂洗液PW中加入无水乙醇,加入体积请参照瓶上的标签。 ①柱平衡步骤:向吸附柱CA2中(吸附柱放入收集管中)加入500μl平衡液BL, 12,000rpm(~13,400×g)离心1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。(请使用当天处理过的柱子) ②将单一的目的DNA条带从琼脂糖凝胶中切下(尽量切除多余部分)放入干净的离心管中, 称取重量。 ③向胶块中加入等倍体积溶液PN(如果凝胶重为0.1g,其体积可视为100μl,则加入100μlPN 溶液),60℃水浴放置,其间不断温和地上下翻转离心管,以确保胶块充分溶解。如果还有未溶的胶块,可继续放置几分钟或再补加一些溶胶液,直至胶块完全溶解(若胶块的体积过大,可事先将胶块切成碎块)。 注意:对于回收<300bp的小片段可在加入PN完全溶胶后再加入1/2胶块体积的异丙醇以提高回收率;胶块完全溶解后最好将溶液温度降至室温再上柱,因为吸附柱在室温时结合DNA 的能力较强。 ④将上一步所得溶液加入一个吸附柱CA2中(吸附柱放入收集管中),室温放置2min, 12,000rpm(~13,400×g)离心30-60sec,倒掉收集管中的废液,将吸附柱CA2放入收集管中。 ⑤向吸附柱CA2中加入600μl漂洗液PW(使用前请先检查是否已加入无水乙醇), 12,000rpm(~13,400×g)离心30-60sec,倒掉收集管中的废液,将吸附柱CA2放入收集管中。 ⑥重复操作步骤⑤。 ⑦将吸附柱CA2放回收集管中,12,000rpm(~13,400×g)离心2min,尽量除尽漂洗液。将吸附 柱CA2置于室温放置数分钟,彻底地晾干,以防止残留的漂洗液影响下一步的实验。 ⑧将吸附柱CA2放到一个干净离心管中,向吸附膜中间位置悬空滴加适量洗脱缓冲液EB或 ddH2O,室温放置2min。12,000rpm(~13,400×g)离心2min收集DNA溶液。 4.酶切反应(编号Clone SOP-4) 以本实验室常用酶FastDigest restriction enzymes(Thermo)为例 双酶切体系(若是单酶切则只用加一种酶): 10×FastDigest? buffer or 10×FastDigest? Green buffer 5ul FastDigest restriction enzyme 1 0.5-1ul FastDigest restriction enzyme 2 0.5-1ul DNAN ddH2Oupto50ul 酶切体系混合均匀后置于37℃条件下反应,反应时间应大于30min,若是载体(2-3ug)至少酶切2小时。 5.酶切产物的回收(编号Clone SOP-5) 以本实验室常用Axygen?AxyPrep?PCRClean-UpKit(Axygen)为例 ①在PCR、酶切、酶标、或测序反应液中,加入3个体积的BufferPCR-A(若BufferPCR-A

分子克隆(亚克隆)实验总体流程详解

一、扩增 1、LB培养基5ml; 2、抗生素:1000X,即1:1000比例。种类根据细菌抗性决定; 3、菌体:看浑浊度,1%-5%,取500ul于其中; 4、37℃摇床220转,过夜,12-16h。 二、纯化质粒DNA 1、1.5ml离心管,编号一定要写清楚; 2、加满离心管,离心12000xg. 1min,弃上清。取三次; 3、加Buffer S1 200ul,溶解沉淀,5min; 4、加S2(用完立刻盖紧瓶盖,以免CO2中和Buffer中的NaOH)200ul,不能剧烈(以免基因组DNA的污染),上下翻转4-6次,直至形成透亮的溶液,时间少于5min。目的是使蛋白包裹基因组DNA,游离质粒; 5、加S3 280ul,温和充分翻转混合6-8次,12000xg,10min(此步呈白色絮状); *备注:S1:S2:S3=5:5:7 6、取上清加入制备管(置于2ml离心管),12000xg,1min,去滤液; 7、加Buffer W1 500ul,12000xg,1min,弃滤液; 8、加Buffer W2 700ul,12000xg,1min,弃滤液。重复一遍; 9、空管离心12000xg,1min; 10、制备管移入新的1.5ml离心管,管膜中加60-80ul去离子水,静置1min,12000xg,1min。(将去离子水加热至65度,将提高洗脱效率) 四、跑胶回收:sost回收失败 1、2%浓度胶,Loading Buffer如是6X,则加10ul到样品,全部加样到胶孔中。 插入:配胶方法 大块胶60ml;小块胶25ml; 需要配置大块胶、大孔胶; Agarose 0.6g,TAE60ml,微波中火2min; 趁热但不烫手时加入gold view 0.5ul/25ml; 倒入槽里。 2、跑胶:单位厘米/5-10v。所以大槽25cm,150v即可。小槽100v即可。 3、紫外灯下切胶,纸巾吸进液体,计算凝胶重量(1mg=1ul); 4、加3个凝胶体积的凝胶结合液DB(0.1ul视为100ul;如凝胶浓度大于2%,则加入6倍体积溶胶液;凝胶块最大不能超过400ul,超过可多个离心柱);

分子克隆基本流程及技术原理

分子克隆主要技术: (1)限制性内切酶酶切与连接 基因克隆也叫DNA分子克隆,即在体外重组DNA分子,而实现该技术的关键是一种被称作限制性核酸内切酶的工具酶。每一种限制性核酸内切酶可以识别DNA分子上特定的碱基序列,切断DNA分子。依据碱基互补的原理,在DNA连接酶的作用下可以把切开的DNA片段连接起来,因此可以把目的片段连接到合适的载体上形成重组子。 (2)转化与转染 作为表达载体,必须具有复制起始序列、多克隆位点及选择标记,可以在宿主细胞中进行自我复制或整合到宿主基因组中进行复制。作为宿主的工程菌或细胞在某些化学条件或物理刺激下会改变其细胞膜的通透性,从而易于将细胞表面附着的外源基因吸收到胞内,这一过程即转化(工程菌)或转染(细胞)。 利用选择标记可以很容易鉴别成功导入目的基因的工程菌或细胞,比如抗生素抗性筛选—凡是成功导入重组载体的工程菌或细胞均获得某种抗生素抗性,而未导入的工程菌或细胞则不能在含该抗生素的培养基中生长。 (3)聚合酶链式反应 聚合酶链式反应,即PCR。PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃(具体退火温度根据引物的Tm值确定)左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链,重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。

分子克隆载体

分子克隆载体(vector) 载体(vector)是指运载外源DNA有效进入受体细胞内的工具。载体同外源DNA在体外重组成DNA 重组分子,在进入受体后形成一个复制子,即形成在细胞内能独自进行自我复制的遗传因子。重组DNA 技术中最常用的载体有质粒、噬菌体λ,柯斯质粒(cosmid)和噬菌体M13。 载体(vector)是指运载外源DNA有效进入受体细胞内的工具。载体同外源DNA在体外重组成DNA重组分子,在进入受体后形成一个复制子,即形成在细胞内能独自进行自我复制的遗传因子。因此,作为载体应该满足以下几方面的要求:①有某种限制酶的一个切点,最好是有许多种限制酶的切点,而且每种酶的切点只有一个;②外源DNA插入后不影响载体在受体细胞中进行自我复制,载体应对受体细胞无害,以及载体能接纳尽可能大的外源DNA片段;③有利于选择的标记基因,可以很方便地知道外源DNA已经插入,以及把接受了载体的受体细胞选出;④具有促进外源DNA表达的调控区。 重组DNA技术中最常用的载体有质粒、噬菌体λ,柯斯质粒(cosmid)和噬菌体M13。它们的受体细胞都是大肠杆菌。这四种载体的大小和结构尽管各不相同,但它们的共同特点是:①都能在大肠杆菌中自主复制,而且能连同所带的外源DNA一起复制;②都很容易同细菌DNA分开并加以纯化;③都有一段DNA对于它们自身在细菌中的增殖不是必需的。因此,外源DNA可以插入这一段DNA中,或是置换这一段DNA而不影响载体的复制。根据这一特点,载体又可分成插入型和置换型两大类。 质粒能通过细菌间的接合由一个细菌向另一个细菌转移,可以独立复制,也可整合到细菌染色体DNA中,随着染色体DNA的复制而复制。 载体可以分为:克隆载体、表达载体及穿梭载体。 1.克隆载体(cloning vector):通常采用从病毒、质粒或高等生物细胞中获取的DNA作为克隆载体,在载体上插入合适大小的外源DNA片段,并注意不能破坏载体的自我复制性质。将重组后的载体引入到宿主细胞中,并在宿主细胞中大量繁殖。常见的载体有质粒,噬菌粒,酵母人工染色体。 对载体的要求一种用作克隆载体的理想质粒一般具备下述特点:①具有松驰型复制子(如ColE1),复制子(replicon)是质粒自我增殖所必不可少的基本条件,并可协助维持使每个细胞含有一定数量的质粒拷贝。②在复制子外存在几个单一的酶切位点(或多克隆位点),以便目的DNA片段插入。③具有插入失活的筛选标记,理想的质粒载体应具有两种抗菌素抗性标志,如氨苄青霉素抗性基因(Amp r)和四环素抗性基因(Tet r)等,以便从

分子克隆技术实验指导

分子克隆技术 DNA重组技术是在分子水平对基因进行体外操作,因而也称为分子克隆(Molecular Cloning)或基因克隆,是在体外对DNA分子按照既定的目的进行人工重组,并导入到合适的受体细胞中,使其在细胞中扩增和繁殖,以获得DNA 分子大量复制,并使受体细胞获得新的遗传特征的过程。 其基本原理是:将编码某一多肽或蛋白质的基因(外源基因)经过特定限制性酶切割以及与目标载体连接,组装到细菌质粒(质粒是细菌染色体外的双链环状DNA分子)中,再将这种质粒(重组质粒)转入大肠杆菌体内,这样重组质粒就随大肠杆菌的增殖而复制,从而表达出外源基因编码的相应多肽或蛋白质,并且来源于一个菌株的质粒是一个分子克隆,而随质粒复制出的外源基因也就是一个分子克隆。 分子克隆技术的成就对于工业、农牧业和医学产生深远影响,并将为解决世界面临的能源、食品和环保三大危机开拓一条新的出路。 实验前准备 实验开始前,需准备好所需的试剂,如PCR扩增及酶切,连接所需酶类试剂及相应的buffer,均为TaKaRa产品分装,Buffer、dNTP、引物试剂等需要从-20℃取出至室温融化、涡旋震荡混匀离心后使用,酶类试剂从-20℃取出瞬时离心(小于4000 rpm)放置冰浴中备用。 还有各项实验所需的药品(如琼脂糖),以及配置好培养基,抽提质粒用的溶液一、二、三等试剂。 本次实验所涉及的常规仪器及耗材有:Thermo Scientific Arktik PCR仪,水平电泳槽,超净工作台,恒温水浴锅,紫外照胶仪,赛默飞公司提供的F1,F2和F3一系列量程的单道移液器等仪器,1.5ml离心管,玻璃试管,赛默飞公司提供的QSP盒装吸头及15ml离心管等。 接下来进入实验部分,本实验操作流程为:首先在GenBank中查询目的基因序列,然后根据得到的序列进行酶切位点分析及引物的设计,通过RT-PCR获取目的基因,酶切以及与载体连接,转化进入宿主菌中,针对得到的菌落进行菌落PCR快速筛选,得到初步的阳性克隆,最后通过质粒提取及鉴定,得到的阳

第三章原核生物分子克隆载体

第三章分子克隆载体 §3.1 质粒载体 质粒是独立于寄主染色体以外的自主复制的共价、闭合、环形的双链DNA分子(covalently closed circular DNA, cccDNA)。除了酵母的杀伤质粒(Killer plasmid)是RNA质粒外,所有的质粒都是DNA。但是质粒DNA的复制又必须依赖于寄主提供核酸酶及蛋白质。 质粒DNA分子大小:小的仅有103KD,仅能编码2-3种蛋白质;大的可达105KD,两者相差上百倍。 质粒DNA与寄主染色体DNA间的关系:一般情况下,质粒DNA可持续地处于寄主染色体外的游离状态,但在一定条件下又可以可逆地整合到寄主染色体上,并随之一道复制和细胞分裂而传到后代。 一、质粒的一般特征 1.质粒DNA编码的表型 质粒DNA的分子量较小,仅占细胞染色体的一小部分,一般约为3%,但却编码着重要的遗传性状: a.抗性特征:抗菌素抗性、重金属抗性、毒性阴离子抗性,以及其它抗性。 b.代谢特征:抗菌素及细菌素合成;简单的碳水化合物(例如乳糖、蔗糖等)的新陈代谢;复杂碳水化合物(甲苯、苯胺)及卤代化合物的新陈代谢;蛋白质新陈代谢;…… c.修饰寄主生活方式的因子:大肠杆菌肠毒素的合成;金黄色葡萄球菌剥脱性毒素的合成; 2.质粒DNA的转移 ①接合型质粒和非接合型质粒 *接合型质粒(conjugative plasmid):又叫自我转移质粒,具有自我复制基因。控制细菌配对和质粒接合转移的基因; *非接合型质粒(non- conjugative plasmid):亦叫不能自我转移的质粒,具有自我复制基因,但失去了控制细胞配对和接合转移的基因,因此不能够从一个细胞转移到另一个细胞。 ②质粒DNA的转移过程 质粒自主转移 质粒的辅助转移 质粒的重组转移 3.质粒DNA的复制类型 根据寄主细胞中所含拷贝数的多少,讲质粒分为:

分子克隆技术第三章

2017/2/21 第三章载体 第一节基因克隆技术概述 一、基因克隆技术 基因克隆技术包括把来自不同生物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组的DNA,然后送入受体生物中去表达,从而产生遗传物质和状态的转移和重新组合。 二、目的基因的取得 1、直接 2、反转录酶 3、化学合成 4、基因文库 5、PCR ?首先利物理方法(如剪切力、超声波等)或酶化学方法(如限制性 内切核酸酶)将生物细胞染色体DNA切割成为基因水平的许多片段,继而将这些片段与适当的载体结合。将重组DNA转入受体菌扩增,获得无性繁殖的基因文库,再结合筛选方法,从众多的转化子菌株中选出含有某一基因的菌株,从中将重组的DNA分离、回收。这种方法也就是应用基因工程技术术分离目的基因,其特点是绕过直接分离基因的难关,在基因组DNA文库中筛选出目的基因。可以说这是利用“溜散弹射击”原理去“命中”某个基因。由于目的基因在整个基因组太小,在像当程度上还得靠“碰运气”,所以人们称这个方法为“鸟 枪法”或“散弹枪”实验法。 三、重组体的构建 1、载体 要把一个有用的基因通过基因工程手段送进生物细胞中,需要运载工具,携带外源基因进入受体细胞的这种工具叫载体(Vector)。 (1)质粒(plasmid) (2)噬菌体λ的衍生物 (3)科斯质粒(cosmid) (4)单链DNA噬菌体 M13(5)病毒?面包酵母吲哚甘油磷酸脱氢酶基因的制取,先 用Eco RI把面包酵母DNA切成许多片段,使这些片段与λ载体连成重组DNA,可把这些重组DNA导入“吲哚甘油磷酸脱氢酶型组氨酸缺陷型”大肠杆菌,在基本培养基中培养。只有引入了该基因的细菌才能生长。进一步分离这种菌株,可以得到目的基因。 2、载体的性质 1)它必须具有能够在某些宿主细胞中独立地自我复制和表达的能力。 2)载体DNA的分子量应该较小。 3)载体上最好应具有两个以上的容易检测的遗传标记(如抗药性基因等),以赋予宿主细胞以不同的表型。 4)载体应该具有多个限制性内切酶的单一切点;载体上的单一酶切位点最好是位于检测表型的遗传标记基因之内,这样目的基因是否已连接载体就可以通过这一表型的改变与否而得知,利于筛选重组体。 3、酶系的选用

分子克隆实验步骤总结

分子克隆实验步骤 1.对目的片段进行pcr扩增: Pcr体系:(50μL) DNA Template:10-100ng 10×PCR buffer:5μL 50mM dNTPs:0.5μL Primers:1μM each Water:add to 49μL Taq Polymerase:1μL 2.琼脂糖电泳,看有无目的条带 3.对目的条带进行切胶回收 4.对pcr产物加尾: 72℃,20min(如用高保真酶,则需加尾;Taq酶,则无需加尾) 加尾体系:(10μL) 胶回收DNA: 8μL Buffer: 1μL dNTPmix: 0.5μL Taq Polymerase:0.5μL 5.T载体连接:室温,30min 体系:(6μL) 加尾后产物:4μL T载体:1μL

Salt solution 1μL 6.30-40μL感受态加入重组后的质粒。 7.放冰上30min。 8.42℃热击90s(放冰上冷:1-2min) 9. 加SOC(200-250μL) 10.37℃,300rpm,1h 11.平板涂布:加氨苄的培养基,37℃培养箱倒置培养过夜 12.挑单菌落:用牙签挑单菌落,放到含6mL液体培养基的试管中, 37℃摇床培养过夜 13.试剂盒提质粒 14.酶切:37℃,2h 体系:(20μL) Buffer2: 2μL 酶:0.5μL 模板:1μL BSA:0.2μL H2O:16.31μL 15.琼脂糖凝胶电泳分析是否正确导入目的片段 鉴定阳性克隆的另一个方法----菌落PCR 从平板挑单菌落到含1ml LB(Amp+)的1.5drof管中,37℃摇床培养8小时左右,进行菌落PCR鉴定,引物可选用载体的通用引物,如T载体用M13F/R。

分子克隆实验流程

分子克隆实验流程 一、引物的稀释 1、引物干粉冻存于-20℃,用前12000rpm离心1min; 2、按引物管上的nmol数稀释,nmol=4.92,加49.2μL ddH2O至100μM; 3、稀释至10μM(5μL引物F+5μL引物R+40μL ddH2O) 二、目的基因的扩增 实验前准备:生物安全柜紫外照射30min,模板DNA、水、引物、buffer,dNTP提前10min拿出解冻,用75%酒精擦拭移液器及台面。 扩增体系: Reagent 25μL 50μL 10xbuffer (含Mg2+) 2.5μL 5μL dNTP (10mM) 0.5μL 1μL rT aq酶0.25μL0.5μL primer (10μM) 1.25μL 2.5μL Template DNA 2μL4μL ddH2O 18.5μL 37μL 反应程序:(延伸时间按目的片段大小进行调整) 95℃预变性3min (95℃变性30 s,60℃退火30s,72℃延伸45s)x35 72℃后延伸7min 4℃保持 电泳:120V,加2μLloading buffer,上样5μL,1000bp marker 5μL 小胶:2%,0.6g琼脂糖,30ml 1xTAE 中胶:2%,1g琼脂糖,50ml 1xTAE 大胶:2%,2g琼脂糖,100ml 1xTAE 三、目的产物切胶回收(试剂盒)

四、连接 实验前准备:SolutionI在冰上融化 连接体系: Reagent 10μL 胶回收DNA(50ng/μL)4μL PDM-18T载体1μL Solution I 5μL 反应条件:16℃,4h(PCR仪,热盖105℃)/ 4℃过夜 五、转化 实验前准备:开启42℃水浴锅 实验步骤:样品+阴性对照(无质粒)+阳性对照(感受态带的质粒) 1、把感受态细胞TOP10从-80℃冰箱拿出并放置于冰上解冻; 2、每管分装30 - 50μL感受态细胞(冰浴); 3、向感受态细胞中加入5μL连接产物,冰浴30min。 4、42℃热激90S(时间不能太长,也不能太短)后静置于冰浴3min,加入750μL无抗生素的LB液体培养基,37℃ 200rpm恒温震荡培养1h。 5、4000 rpm离心2min,弃上清同时保留50μL混匀菌体沉淀后均匀涂布于抗性平板上。 6、37℃恒温培养过夜。(16小时以上) LB(amp)抗性平板的制备 配方: 胰蛋白胨3g 5g 酵母提取物 1.5g 2.5g 氯化钠3g 5g 琼脂 4.5g 7.5g ddH2O 300mL 500mL 121℃高压灭菌20min,降温加入氨苄(amp)抗生素(amp:LB=1:1000)

相关文档