文档库 最新最全的文档下载
当前位置:文档库 › 风功率预测系统基础知识(精华版)

风功率预测系统基础知识(精华版)

风功率预测系统基础知识(精华版)
风功率预测系统基础知识(精华版)

风功率预测系统

一、风功率预测的目的和意义

1. 通过风电功率预测系统的预测结果,电网调度部门可以合理安排发电计

划,减少系统的旋转备用容量,提高电网运行的经济性。

2. 提前预测风电功率的波动,合理安排运行方式和应对措施,提高电网的

安全性和可靠性。

3. 对风电进行有效调度和科学管理,提高电网接纳风电的能力。

4. 指导风电场的消缺和计划检修,提高风电场运行的经济性。

5.应相关政策要求。

二、设备要求

提供的设备应满足《风电功率预测系统功能规范》中所提出的各项要求。

陆丰宝丽华新能源电力有限公司

四、设备介绍

可能涉及到的设备:

以下出自北京中科伏瑞电气技术有限公司的FR3000F系统

数据采集服务器:

运行数据采集软件,与风电场侧风电综合通信管理终端通信采集风机、测风塔、风电场功率、数值天气预报、风电场本地风电功率预测结果等数据。

数据库服务器:

用于数据的处理、统计分析和存储,为保证数据可靠存储,配置了磁盘阵列。应用工作站完成系统的建模、图形生成显示、报表制作打印等应用功能。

风电功率预测服务器:

运行风电功率预测模块,根据建立的预测模型,基于采集的数值天气预报,采用物理和统计相结合的预测方法,并结合目前风电场风机的实时运行工况对单台风机及整个风电场的出力情况进行短期预测和超短期预测。

数据接口服务器:

负责从气象局获得数值天气预报,为保证网络安全在网络边界处配置反向物理隔离设备。同时向SCADA/EMS系统传送风电功率预测的结果。

测风塔:

测风塔测量数据(实时气象数据)是用来进行超短期功率预测的。测风塔有两种类型,一是实体测风塔,一是虚拟测风塔。一个风塔造价占系统的的20~30%左右。

实体测风塔:变化频繁的自然条件和复杂的地形地貌给预测系统增加了困难,实体测风塔的安装台数应根据风场的实际地理条件等情况进行安装,以保障预测的准确性。实体测风塔应安装在风场5km范围内,通过GPRS或者光纤采集风塔的实时气象数据。

虚拟测风塔:是加装一些装置,直接采集风场风机上预测的风速、风向数据进行预测,它不需要在户外安装实体风塔,没有户外的维护工作。

气象数据:

数值天气预报,短期预测时需要用到。一般需要和气象局合作,可能存在两种情况:我方去找气象局,购买他们(一家)的数据;设备厂家已直接和相关的气象局(多家)合作,我方购买他们的服务。我方都需要提供互联网服务。

五、风功率预测系统设备

以下所列为普遍用到的设备,各个厂家会有不能

1、预测系统硬件设备

1)系统服务器2)数据库服务器3)PC工作站

4)网络交换机及网络通讯附件5)物理隔离装置6)机柜与附件等

2、预测系统软件部分

1)预测系统软件平台2)短期预测软件3)超短期预测软件4)通信接口开发软件等

3、自动遥测站(即测风塔,包括其数据采集、传输)

1)数据采集器2)数字适配器3)模拟适配器4)电源稳压器

5)GPRS通信终端6)机箱7)蓄电池8)太阳能板

9)超声波测风计10)气压计11)温湿度计12)防辐射通气罩13)安装配件14)中心站接收软件15)数据存储

风电场侧典型应用方案

电网调度侧典型应用方案

六、风功率预测厂家

1、中国电科院推出《风电功率预测系统WPFS Ver1.0》

2、华北电大研发成功风电功率预测系统

3、龙源电力研发的风电场功率预测系统稳定运行满一年中国气象局

4、东润环能公司。目前风电预测系统市场占有率最大的是国家电网下属的东润环能公司

5、国电南瑞科技股份有限公司

6、国能日新

7、北京中科伏瑞电气技术有限公司( FR3000F)

8、兆方美迪风能工程(上海)有限公司等。

注:一家之言,东润环能公司,该公司曾表示,自己出售的系统采用的所有参数获得了电网公司的认可,如果用国内其他企业的产品,会存在参数不兼容的后果。据该公司销售人员介绍,一套设备售价100万元。

七、风功率预测系统规范

见《风电功率预测系统功能规范》

附:系统能够按照风机的运行工况(有时因某种原因会调整风机出力或单台风机故障停机),实时调整对应单台风机的输出功率预测。

注:个人意见

尽量能够建立不需要建立风塔的系统,因为一个风塔的造价不低,后期的维护成本增加,且根据我场运行的情况来看,我场可能至少需要建立两个及以上的风塔才能达到误差不大于20%的要求。

能够不需要自己去找气象局的最好,不过很多公司都是已购买了相关的服务。

风电功率预测系统功能要求规范

风电功率预测系统功能规范 (试行) 国家电网公司调度通信中心

目次 前言...................................................................... III 1范围. (1) 2术语和定义 (1) 3数据准备 (2) 4数据采集与处理 (3) 5风电功率预测 (5) 6统计分析 (6) 7界面要求 (7) 8安全防护要求 (8) 9系统输出接口 (8) 10性能要求 (9) 附录A 误差计算方法 (10)

前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。 本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。 本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 本规范由国家电网公司国家电力调度通信中心提出并负责解释; 本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。 本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。

风电功率预测系统功能规范 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。 本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1 风电场 Wind Farm 由一批风电机组或风电机组群组成的发电站。 2.2 数值天气预报 Numerical Weather Prediction 根据大气实际情况,在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3 风电功率预测 Wind Power Forecasting 以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4 短期风电功率预测 Short term Wind Power Forecasting 未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5 超短期风电功率预测 ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。

风电功率预测的发展成就与展望

风电功率预测的发展现状与展望 范高锋,裴哲义,辛耀中 (国家电力调度通信中心,北京100031) 摘要:风电场输出功率预测对接入大量风电的电力系统运行有重要意义。本文从电力调度运行的角度,在风电功率预测技术的发展现状、系统建设情况、预测误差、预测评价指标和预测的主体等方面展开了论述,对目前存在的基础数据不完善、预测精度不高、预测的时间尺度较短和风电场普遍没有开展预测的问题进行了分析,提出了加强电网侧和风电场侧风电功率预测系统建设、加快超短期预测功能建设、继续深化预测技术研究、加强标准体系建设和开展跨行业合作等发展建议。 关键词:风电场;功率;预测;系统 中图分类号:TM614 文献标志码:A 文章编号: Wind power prediction achievement and prospect FAN Gao-feng , PEI Zhe-yi , XIN Yao-zhong (National Power Dispatching& Communication Center,Beijing 100031) Abstract: Wind power prediction is important to the operation of power system with comparatively large mount of wind power. This paper summarized the current situation of wind power prediction technology, wind power prediction system construction, prediction error, assessment index, and main market body of prediction from the power dispatch perspective. The main problems includes basic data incomplete, prediction precision relatively low, prediction time scale short and wind farm no wind power system are analyzed. Suggestions of enforcing grid side and wind farm side wind power prediction system construction, speeding up ultra-short term wind power prediction system construction, deepening wind power prediction technology study, strengthening prediction technical standard system and cooperation of different industry are proposed. Keywords: wind farm; power; prediction; system 0引言 电力系统是一个复杂的动态系统。维持发电、输电、用电之间的功率平衡是电网的责任。在没有风电的电力系统,电网调度机构根据日负荷曲线可以制定发电计划,以满足次日的电力需求。风电场输出功率具有波动性和间歇性,风电的大规模接入导致发电计划制定难度大大增加,风电对电力系统的调度运行带来巨大挑战。 目前风电对全网的电力平衡已经带来很大的影响[1-3]。对风电场输出功率进行预测是缓解电力系统调峰、调频压力,提高风电接纳能力的有效手段之一。同时,风电功率预测还可以指导风电场的检修计划,提高风能利用率,提高风电场的经济效益。经过多年的科研攻关与技术创新,我国具有自主知识产权的风电功率预测系统已在电力调度机构获得了广泛应用,12个网省调建立了预测系统,覆盖容量超过12GW,在电网调度运行中发挥了一定作用。本文对近年来风电功率预测方面完成的工作进行了总结,对存在的问题进行了论述,并提出了下一步的发展建议。 1 风电功率预测发展现状 1.1 风电功率预测技术的发展情况 电网调度部门对风电功率预测的基本要求有2个:一是短期预测,即当天预测次日0时起72h的风电场输出功率,时间分辨率为15 min,用于系统发电计划安排;另一个是超短期预测,即实现提前量为0~4h的滚动预测,用于电力系统实时调度[4]。 风电功率预测方法主要分为统计方法、物理方法[5-6]。统计方法是指不考虑风速变化的物理过程,而根据历史统计数据找出天气状况与风电场出力的关系,然后根据实测数据和数值天气预报数据对风电场输出功率进行预测,常用的预测模型有时间序列、神经网络、支持向量机等。物理方法是指风电功率预测的物理方法根据数值天气预报模式的风速、风向、气压、气温等气象要素预报值以及风电场周围等高线、粗糙度、障碍物等信息,采用微观气象学理论或计算流体力学的方法,计算得到风电

【CN109934402A】一种风电场集控中心集中风功率预测系统及其设计方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910180757.6 (22)申请日 2019.03.11 (71)申请人 北京天润新能投资有限公司西北分 公司 地址 830026 新疆维吾尔自治区乌鲁木齐 市经济技术开发区上海路107号 (72)发明人 景志林 张宁 马辉 梁志平  (74)专利代理机构 北京华仲龙腾专利代理事务 所(普通合伙) 11548 代理人 李静 (51)Int.Cl. G06Q 10/04(2012.01) G06Q 10/06(2012.01) G06Q 50/06(2012.01) (54)发明名称一种风电场集控中心集中风功率预测系统及其设计方法(57)摘要本发明提供一种风电场集控中心集中风功率预测系统,包括:(1)数据源;(2)数据平台层;(3)应用展示层;集中风功率预测系统采用微服务软件设计模式,系统中的每一个模块都是可以独立分拆、独立部署的微服务,底层使用的Docker容器技术和容器云平台,基于容器云平台上的持续集成、持续部署技术实现系统的快速迭代更新,分为生产控制大区的架构及信息管理大区的架构。还公开了一种风电场集控中心集中风功率预测系统的设计方法,包括步骤:1)设计集中风功率预测系统网络拓扑及电力监控系统安全防护模块;2)设计集中风功率预测系统的预测结果获取与展示模块;3)设计人为干预功率预测 结果的实施策略。权利要求书3页 说明书12页 附图11页CN 109934402 A 2019.06.25 C N 109934402 A

权 利 要 求 书1/3页CN 109934402 A 1.一种风电场集控中心集中风功率预测系统,其特征在于包括: (1)数据源:作为集中功率预测系统的基础数据来源,基础数据按照电场类别分为风电场数据、光伏电场数据,按照设备类型分为风机数据、逆变器数据、测量设备数据、升压站数据,展示以设备分类列出的数据源,测量设备数据包括风速、辐照度两种电场的实时监测数据,基础数据是通过客户端通过大数据平台的统一数据接口上传到中心端系统中,功率预测厂商的气象和功率预测数据为所述风电场集控中心集中风功率预测系统气象预报预警数据和预测功率数据的数据源,这部分数据通过互联网直接上传到所述风电场集控中心集中风功率预测系统中心端; (2)数据平台层:用于为统一的所述风电场集控中心集中风功率预测系统中心端提供统一存储和计算资源,所述风电场集控中心集中风功率预测系统的各业务子系统均部署在数据平台层; (3)应用展示层:是集中功率预测系统的界面,新能源用户通过所述界面实现所有风电场功率预测业务的查询、监控、报表工作。 2.根据权利要求1所述的一种风电场集控中心集中风功率预测系统,其特征在于:所述数据平台层包括统一数据接入服务、统一数据存储池、统一计算资源池、数据仓库、统一数据发布服务,所述数据接入服务基于大数据的采集技术,包括流数据和批数据采集技术Apache Kafka、日志等非结构化数据采集技术Logstash;所述应用展示层包括气象预报预警业务、功率预测业务和业务管理业务,所述气象预报预警业务分为天气数据展示、气象灾害预警、气象数据对比查询,所述功率预测业务分为预测指标展示、预测实测数据对比、上报状态查询与手动补报等功能,所述业务管理业务包括基础信息查询与管理、用户权限设置与管理、综合查询系统、数据归档管理、自由报表系统、测量设备管理系统。 3.根据权利要求1所述的一种风电场集控中心集中风功率预测系统,其特征在于:所述集中功率预测系统采用微服务软件设计模式,系统中的每一个模块都是可以独立分拆、独立部署的微服务,底层使用的Docker容器技术和容器云平台,基于容器云平台上的持续集成、持续部署技术实现系统的快速迭代更新。 4.根据权利要求1所述的一种风电场集控中心集中风功率预测系统,其特征在于:所述集中功率预测系统分为生产控制大区的架构以及信息管理大区的架构,所述生产控制大区分为安全Ⅰ区(控制区)和安全Ⅱ区(非控制区),所述安全Ⅰ区直接实现对电力一次系统的实时监控,纵向使用电力调度数据网络或专用通道,所述安全Ⅱ区在线运行但不具备控制功能,使用电力调度数据网络,与控制区中的业务系统或其功能模块电连接,所述集中功率预测系统在生产控制大区设置防火墙、功率预测服务器、内代理服务器、正向隔离、反向隔离,用于设备数据采集、协议适配、实时监控、告警管理、数据转发,所述集中功率预测系统的服务器把通过反向隔离传输过来的集中功率预测的结果按照电网要求的报文格式,上报给电网;内代理服务器将安全区数据通过正向隔离传输给外代理;所述信息管理大区采集存储服务器集群接受内代理转发的数据,对数据进行反向的解密、解压、数据拆箱匹配信息模型、流计算、数据持久化;获取其他管理信息系统数据,进行数据清洗、转换、加载、持久化,形成跨多数据引擎的清洁能源大数据湖;提供多副本集存储,保证数据的高可用性,查询分析服务集群提供海量异构数据的即席查询服务、多维数据聚合服务、并行化分析引擎、离线分析服务、数据审计核查、质量评估修复、使用痕迹记录等,为上层应用提供RESTful原则的 2

风电功率预测系统功能规范

风电功率预测系统功能规范(试行) 前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。本规范由国家电网公司国家电力调度通信中心提出并负责解释;本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1风电场Wind Farm由一批风电机组或风电机组群组成的发电站。 2.2数值天气预报Numerical Weather Prediction根据大气实际情况,

在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3风电功率预测Wind Power Forecasting以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4短期风电功率预测Short term Wind Power Forecasting未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5超短期风电功率预测ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。 3数据准备 风电功率预测系统建模使用的数据应包括风电场历史功率数据、历史测风塔数据、历史数值天气预报、风电机组信息、风电机组及风电场运行状态、地形地貌等数据。 3.1风电场历史功率数据风电场的历史功率数据应不少于1a,时间分辨率应不小于5min。 3.2历史测风塔数据a)测风塔位置应在风电场5km范围内;b)应至少包括10m、70m及以上高程的风速和风向以及气温、气压等信息;c)数据的时间分辨率应不小于10min。 3.3历史数值天气预报历史数值天气预报数据应与历史功率数据相

国家能源局关于印发风电功率预报与电网协调运行实施细则

国家能源局关于印发风电功率预报与电网协调运行实施细则(试行)的 通知 国能新能[2012]-12文件 各省(区、市)发展改革委、能源局、中国气象局,国家电网公司、南方电网公司、华能集团公司、大唐集团公司、华电集团公司、国电集团公司、中电投集团公司、神华集团公司、中广核集团公司、三峡集团公司、中国节能环保集团公司、水电水利规划设计总院、各相关协会: 为促进风电功率预测预报与电网调度运行的协调,根据《风电场功率预测预报管理暂行办法》的有关要求,现将〈风电功率预报与电网协调运行实施细则~(试行)印发你们,请参照执行。 附:风电功率预报与电网协调运行实施细则(试行) 风电功率预报与电网协调运行实施细则(试行) 第-章总则 第一条根据《中华人民共和国可再生能源法》和《节能调度管理办法},为贯彻落实国家能源局《风电场功率预测预报管理暂行办法}C国能新能(2011 ) 177号),制定本实施细则。 第二条中国气象局负责建立风能数值天气预报服务平台和业务运行保障体系,为风电功率预测提供数值天气预报公共服务产品和相关技术支持系统。 第三条风电开发企业负责风电场发电功率预报工作,按照要求上报风电场发电功率预报曲线,并执行电网调度机构下发的发电功率计划曲线。 第四条电网调度机构负责电力系统风电发电功率预测工作,建立以风电功率预测预报为辅助手段的电力调度运行机制,保障风电优先调度,落实风电全额保障性收购措施。 风电功率预测预报和并网运行的有关考核办法另行制定。 第五条各有关单位应保证安全接收、传送、应用气象和电力运行等信息,确保涉密信息的获取和使用符合国家相关保密规定。 第二章气象数据服务及功率预测

风电功率预测系统设计方案

风功率预测系统设计方案 随着社会的发展,传统能源出现面临枯竭的危险,发展新能源经济是当今世界的历史潮流和必然选择。而二次能源开发中利用风力发电是最有潜力最为环保的方式之一,但这也引出了分布式发电并网难的问题。由于风能发电的间歇性、不稳定性,并网后对电网冲击巨大,因此,做好风能发电的预测和调控是风力发电并网稳定运行和有效消纳的重要条件。 国外的经验证明,对风力发电进行有效预测,可以帮助电网调度部门做好各类电源的调度计划,减少风电限电,由此大大提高了电网消纳风电的能力,进而减少了由于限电给风电业主带来的经济损失,增加了风电场投资回报率。为此,国能日新自主研发的风电功率预测系统,为国家的风电事业发展贡献自己的一份力量。 风就是水平运动的空气,空气产生运动,主要是由于地球上各纬度所接受的太阳辐射强度不同而形成的。在赤道和低纬度地区,太阳高度角大,日照时间长,太阳辐射强度强,地面和大气接受的热量多、温度较高;在高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量小,温度低。这种高纬度与低纬度之间的温度差异,形成了南北之间的气压梯度,使空气作水平运动,风沿水平气压梯度方向吹,即垂直与等压线从高压向低压吹。

地球在自转时,使空气水平运动发生偏向的力,称为地转偏向力,这种力使北半球南方吹向北方的风向东偏转,北方吹向南方的风向西偏转,南半球则相反。所以地球大气运动除受气压梯度力外,还要受地转偏向力的影响,大气真实运动是这两种力综合影响的结果。 国能日新开发的风电功率预测系统SPWF-3000,具备高精度数值气象预报功能、风电信号数值净化、高性能物理模型、网络化实时通信、通用风电信息数据接口等高科技模块;可以准确预报风电场未来168小时功率变化曲线。在即使没有测风塔的情况下,采用国能日新的虚拟测风塔技术,风功率系统短期预测精度超过80%,超短期预测精度超过90%。

风功率预测系统使用手册(v2.0)资料

风功率预测系统使用手册(v2.0)

精品文档 风电场风能预报智能管理系统 使用手册 北京国能日新系统控制技术有限公司 2011 年11 月16 日

目录 目录................................................................................................................................................. I 第一章系统操作 (1) 1.1 主界面 (1) 1.2 用户管理 (2) 1.2.1 用户登录 (2) 1.2.2 用户设置 (3) 1.2.3 用户注销 (5) 1.3 系统设置 (5) 1.3.1 风场设置 (6) 1.3.2 机组型号设置 (7) 1.3.3 测风塔设置 (9) 1.3.4 预测设置 (11) 1.4 状态监测 (13) 1.4.1 系统状态 (13) 1.4.2 风机状态 (14) 1.5 预测曲线 (14) 1.5.1 短期预测曲线 (14) 1.5.2 超短期预测曲线 (16) 1.5.3 风速预测 (17) 1.6 气象信息 (19) 1.6.1 风速曲线 (19) 1.6.2 风廓线 (20) 1.6.3 直方图 (20) 1.6.4 玫瑰图 (21) 1.7 统计分析 (22) 1.7.1 完整性统计 (22) 1.7.2.频率分布统计 (23) 1.7.3 误差统计 (24) 1.7.4 事件查询 (26) 1.7.5 综合查询 (27) 1.8 报表 (28) 第二章系统维护 (30) 2.1 数据库连接不上 (30) 2.2 短期预测数据不显示 (30) 2.3 超短期预测数据不显示 (30) 2.4 接收实发功率异常 (30)

风功率预测系统局部架构

风功率预测系统局部架构 风功率预测涉及的其他产品 1、实时测风数据采集与传输系统 风电场风资源实时采集及传输系统,是根据国家电网对风电场测风塔相关标准及国内外风电场运行状况所开发的系统。本系统主要包括测风塔数据的实时采集、存储、转发、分析管理、以及与远动装置进行实时数据交互,实现向网调EMS系统的测风塔数据实时上传。 2、测风数据使用光纤传输方式的建设方案 风电场测风塔示意图如下图所示:测风塔部分主要包括测风塔、测风塔上的测量设备、数据记录仪、串口联网设备等硬件设施。其中测量仪器包括风速仪、风向标(在10米、30米、70米、风力发电机组的轮毂中心高层各一个),和温度传感器、湿度传感器、压力传感器(放在10米高层各一个)。这些测量设备通过传感器屏蔽电缆连接到数据记录仪。数据记录仪有专门的保护箱,其电源由太阳能供电系统提供,实现数据的采集及存储。数据采集器通过光端机把串口信号转换光信号,经过最近风机的备用光纤传送到电子设备间。 拓扑图

经过光纤交换机和光电转换器的处理,重新将光信号转换为电信号,然后数据通过ModBus协议(RS232/R485串口)实时传送到功率预测服务器上,并按照网调要求的格式进行上传,实现测风塔数据的本地采集、存储、显示、管理以及对网调的数据上送。风电场主控室,测风设备网络示意图如下所示: 升压站监控房网络图 说明:国能日新的实时测风数据采集及上传系统除了通过光纤方式传输外,还可实现GPRS无线方式、无线电台方式等多种传输方式。

测风塔 3、虚拟测风塔建设方案 虚拟测风塔是一套软件模块,无需建设测风塔,即可完全满足测风数据及其他气象数据的采集和主站上传要求,且无论是数据精度还是测量范围完全满足电网对风电场测风塔实时数据上传的技术要求。国能日新的虚拟测风塔可以位于场内及附近的任意位置,不受风电场区域限制;时间采集精度可以任意选取;同时没有任何工况限制,即使出现了极限天气,依然能够正常工作。这样不仅为业主节约了实体测风塔的硬件投资,而且还为用户节约了大量的维护费用。基于我们的虚拟测风塔,短期功率预测精度超过90%,目前甘肃桥东第一风场,桥东第三风电场以及甘肃鑫汇瓜州干河口第六风电场等风电场正在使用该技术,系统运行 稳定,得到用户的高度认可。

CSC-800W 风功率优化控制子站后台操作说明

CSC-800W功率优化控制子站后台操作说明 目录 CSC-800W功率优化控制子站后台操作说明 (1) 1 系统运行 (2) 2 系统介绍 (2) 2.1标题栏 (2) 2.2有功监控 (3) 2.3 主接线图................................................................................ 错误!未定义书签。 2.4 历史曲线 (6) 2.5 定值管理 (10) 2.6 报表统计 (13) 2.7 历史事件 (14) 2.8 系统日志 (14) 2.9 系统状态 (15) 2.10 实时报警 (15)

1 系统运行 在桌面上双击图标,进入工程管理器 点击运行工程,进入运行态。 点击标题栏右侧图标,弹出用户登录窗口 选择用户名,输入密码登录,密码为空 2 系统介绍 2.1标题栏

用鼠标停留在标题栏中的图标上,会显示图标名称,点击图标可以打开相应的画面,其中有功显示、无功显示、历史曲线画面为覆盖式窗口,定值管理、曲线管理、报表统计、历史事件、操作日志、系统状态为弹出式窗口。当前用户显示当前登录的用户。 2.2有功监控 参数监视:显示有功控制功能的工作模式和风电场相关数据。 状态监视:显示系统的运行的状态和报警。 控制方式设置:有功调节压板、工作模式、指令方式、一次调频和联合动力AGC状态的显示及对其进行操作。 风场功率曲线:显示风电场的实际有功、目标有功和理论有功实时曲线。 机群功率曲线:显示风机机群的实际有功、目标有功和理论有功实时曲线。 2.2.1 参数监视 工作模式:对有功调节功能处于调试还是运行模式的显示。在调试方式下,只是运行逻辑,不向风机下发有功控令;在运行模式下,既运行逻辑,也向风机下发有功控令。 指令方式:对控制方式设置中相应状态的显示。 在人工指令方式下,可点击参数监视区的人工设定,人工手动输入目标有功; 在计划指令方式下,目标有功为有功计划中96个有功计划值的相应时段的数值; 在遥控指令方式下,调度对风场进行功率控制,目标有功为调度实时下发的有功功率值。 在自由指令方式下,调度不对风场功率做限制,目标有功为风场装机容量的1.2倍。 目标有功:显示当前指令方式下设定的想让风电场调节到的有功功率值。 人工设定:在人工指令方式下对目标有功进行设置,有权限限制,满足权限时才可操作。 风场实际有功:风电场实际上网有功功率。 风场理论有功:华锐风机上送点,代表风场当前气候条件下可发有功功率。 有功死区:有功调节死区设定值的显示,如图显示有功死区是0.1MW,表示目标有功功率与风机实际有功功率的差值在0.1 MW之内,不对风机有功出力进行调节,当目标有功功率与风机实际有功功率的差值超过0.1 MW时,对风机出力进行调节。

风电功率预测系统简介

风电功率预测系统简介

目录 1目的和意义 (3) 2国内外技术现状 (3) 2.1国外现状 (3) 2.2国内现状 (4) 3风电功率预测系统技术特点 (5) 3.1气象信息实时监测系统 (5) 3.2超短期风电功率预测 (5) 3.3短期风电功率预测 (6) 3.4风电功率预测系统软件平台 (8)

1目的和意义 风能是一种清洁的可再生能源,由于其资源丰富、转化效率高、产业化基础好、经济优势明显、环境影响小等优点,具备大规模开发的条件,在可以预见的将来,风能的开发利用将成为最重要的可再生能源发展方向。但由于风电等可再生能源发电具有间歇性、随机性、可调度性低的特点,大规模接入后对电网运行会产生较大的影响,以至于有些地方不得不采取限制风电场发电功率的措施来保证电网的安全稳定运行。 对风电输出功率进行预测被认为是提高电网调峰能力、增强电网接纳风电的能力、改善电力系统运行安全性与经济性的最有效、经济的手段之一。首先,对风电场出力进行短期预报,将使电力调度部门能够提前为风电出力变化及时调整调度计划,从而减少系统的备用容量、降低电力系统运行成本。这是减轻风电对电网造成不利影响、提高系统中风电装机比例的一种有效途径。其次,从发电企业(风电场)的角度来考虑,将来风电一旦参与市场竞争,与其他可控的发电方式相比,风电的间歇性将大大削弱风电的竞争力,而且还会由于供电的不可靠性受到经济惩罚。提前对风电场出力进行预报,将在很大程度上提高风力发电的市场竞争力。 2国内外技术现状 2.1 国外现状 在风电功率预测技术研究方面,经过近20年的发展,风电功率预测已获得了广泛的应用,风电发达国家,如丹麦、德国、西班牙等均有运行中的风电功率预测系统。 德国太阳能技术研究所开发的风电管理系统(WPMS)是目前商业化运行最为成熟的系统。德国、意大利、奥地利以及埃及等多个国家的电网调度中心均安装了该系统,目前该系统对于单个风电场的日前预报精度约为85%左右。丹麦Ris?国家可再生能源实验室与丹麦技术大学联合开发了风电功率预测系统Zephyr,

风电场有功功率控制综述

风电场有功功率控制综述 发表时间:2019-03-29T16:00:29.617Z 来源:《电力设备》2018年第29期作者:龙玮[导读] 摘要:经济的发展,促进人们对能源需求的增大。 (上海上电电力工程有限公司上海 200090)摘要:经济的发展,促进人们对能源需求的增大。风能作为一种清洁的可再生能源具有取之不尽、用之不竭、环境污染小、投资灵活等诸多优点。风电场的有功功率控制是风电场可控运行的一项关键技术,控制策略的优劣直接影响到风场输出功率的稳定性、快速性、跟随性等各项性能指标,所以发展风电场的有功功率控制技术能够保证更有效地利用风能,也对电力系统的安全、稳定运行起着重要作用。 本文就风电场有功功率控制展开探讨。 关键词:风电场;风电机组;有功功率控制引言 由于风电具有随机性、波动性和反调峰特性,高比例的风电并入电网会对电力系统的稳定性和安全性造成很大的冲击,因此有必要对风电场有功功率输出进行控制,减少风电功率的波动性,提高输出功率的平滑性。 1.风电场有功功率控制原理风电场有功功率控制系统一般主要由风电场功率控制层、机组群控制层、机组控制层组成图,各层功能及控制周期见表1。 表1风电场分层控制 风电场有功控制系统的目的是为了使风电场能够根据调度指令调整其有功功率的输出,在一定程度上表现出与常规电源相似的特性,从而参与系统的有功控制。然而,风电场有功控制能力不等同于风力发电机组控制能力的简单叠加。为此,利用风力发电机群的统计特性,可以采用两种方式实现此目的:一是将风电场有功控制系统分为风电场控制层、各类机群控制层和机组控制层,依次下达调度指令,完成风电场有功功率控制的任务;二是电网调度中心将指令直接下达给风电机组,各机组调节有功出力,实现有功功率的控制。 2.风电场有功功率的控制 2.1最大出力模式 最大出力模式是指当风电场的预测功率小于电网对风电场的调度功率时,风电场处于最大出力状态向电网注入有功功率。最大出力控制模式就是在保证电网安全稳定的前提下,根据电网风电接纳能力计算各风场最大出力上限值,风电场输出功率变化率在满足电网要求的情况下处于自由发电状态。若超出本风电场的上限值时,可根据其他风场空闲程度占用其他风电场的系统资源,以达到出力最大化和风电场之间风资源优化利用的目的。在最大出力模式投入运行时,风电场内的各台达到切入风速但在额定风速以下的风机处于最大功率跟踪(MaximumPowerPointTracking,MPPT)状态;风电场内处于额定风速以上的各台风电机组运行在满功率发电状态,从而保证风电场的输出功率达到最大值,尽可能提高风能资源的利用效率。 2.2 基于目标函数优化的功率控制 基于目标函数优化的有功功率控制策略,通常先确定目标函数以及约束条件,在此基础上建立多目标优化的风电场模型。在基于目标函数优化的场站级有功功率控制策略中,基于小扰动分析方法分析了限功率运行下风电机组非线性模型的稳定特性,并综合了3个目标,分别是限功率运行状态均衡度、风电场功率目标偏差、总机组启停次数最少,建立了多目标优化模型。以减少风电机组控制系统的动作次数和平滑风电机组的功率输出为目标,通过超短期风功率预测数据确定风电机组出力趋势,来确定风电机组的出力加权系数,从而来优化风电场内有功调度指令,并与传统的固定比例分配算法以及变比例分配算法作比较,说明其控制策略的有效性。 2.3 功率增率控制模式 功率增率控制模式是对风电场输出有功功率的变化率进行限制,使风电场输出的有功功率能够保持一定的稳定性,并且能满足国家电网公司颁布的关于有功功率变化率的相关规定。在功率增率控制模式投入运行时,风电场的输出功率在每个控制周期的变化必须在给定的斜率范围之内,且风电场的整体输出功率应该在满足斜率的前提下尽量跟随风电场的预测功率。风电场的功率增率控制模式可以避免风电场的输出功率变化过于频繁、变化率过大,从而保证功率输出的稳定性。该模式通常与风电场的其他控制模式组合使用,在保证输出功率斜率满足条件下,对风电场的其他方面进行控制。 2.4 分层控制策略 分层控制策略一般将风电场内的控制系统分为若干层,从场站级控制层面到单机控制层面,逐层优化调度指令,从而实现风电场有功功率控制的准确度。在基于风电场场站级的分层控制策略中,综合运用分层递阶控制和模型预测控制方法,提出了一种含大规模风电场的电网有功调度控制方法。以风电场场站级有功控制为研究对象,将控制策略分为群间和群内优化调度2个层面,并提出一种基于遗传算法改进的模糊C均值聚类算法,用于风电场内的机组分群,根据风电机组分群结果和分群调度思想,来实现风电场输出功率可控的目标,但本策略是在假设风电场预测功率准确的情况下进行控制的,并未深入研究风电场预测功率的准确性对调度的影响。风电场内有功调度分为3个层次,分别是场站优化分配层、分群控制层、单机管理层,在分群控制层面,根据风电机组未来有功功率变化趋势以及负荷状态进行机组分类,值得借鉴的是,该系统加入了反馈校正环节,根据风电场实时有功功率的数据反馈,对功率组合预测模型系统进行误差反馈校正,整体提高了有功功率预测的精度。随着装机容量的不断增加,造成风电场存在大量的弃风现象,由此风电场的控制模式发生变化,从传统的MPPT模式向限功率控制模式转变,这对风电场以及风电机组的控制策略提出了更高的设计要求。考虑变速恒频风电机组在不同风速下的功率调节和机械特性,从电气性能,机械性能,运行维护状态3个准则层出发,提出风电场功率调节综合评价指标体系,在此评价体系中,各指标的权重使用熵值法修正的层次分析法来确定,并通过模糊综合评价对机组调节性能进行评分,进而确定调控序列,建立风电场降功率优化分配模型。

国标风电功率预测系统功能规范送审参考模板

风电功率预测系统功能规范 1 范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。 本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2 术语和定义 2.1风电场 Wind Farm 由一批风电机组或风电机组群组成的发电站。 2.2数值天气预报 Numerical Weather Prediction 根据大气实际情况,在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预算未来一定时间的大气运动状态和天气现象的方法。 2.3风电功率预测 Wind power Forecasting 以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率,预测时间尺度包括短期预测和超短期预测。 2.4短期风电功率预测 Short term Wind Power Forecasting 未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5超短期风电功率预测 ultra-short term Wind Power Forecasting 0h-4hd的风电输出功率预测,时间分辨率不小于15min。 3.数据准备 风电功率预测系统建模使用的数据应包括风电场历史功率数据、历史测风塔数据、历史数值天气预报、风电机组信息、风电机组及风电场运行状态、地形地貌等数据。 3.1风电场历史功率数据 风电场的历史功率数据应不少于1a,时间分辨率应不小于5min 3.2历史测风塔数据 a)测风塔位置应在风电场5km范围内; b)应至少包括10m、70m及以上搞成的风速和风向以及气温、气压等信息; C)数据的时间分辨率不小于10min。 3.3历史数值天气预报

风功率预测系统基础知识(精华版)

风功率预测系统

一、风功率预测的目的和意义 1. 通过风电功率预测系统的预测结果,电网调度部门可以合理安排发电计 划,减少系统的旋转备用容量,提高电网运行的经济性。 2. 提前预测风电功率的波动,合理安排运行方式和应对措施,提高电网的 安全性和可靠性。 3. 对风电进行有效调度和科学管理,提高电网接纳风电的能力。 4. 指导风电场的消缺和计划检修,提高风电场运行的经济性。 5.应相关政策要求。 二、设备要求 提供的设备应满足《风电功率预测系统功能规范》中所提出的各项要求。

陆丰宝丽华新能源电力有限公司

四、设备介绍 可能涉及到的设备: 以下出自北京中科伏瑞电气技术有限公司的FR3000F系统 数据采集服务器: 运行数据采集软件,与风电场侧风电综合通信管理终端通信采集风机、测风塔、风电场功率、数值天气预报、风电场本地风电功率预测结果等数据。 数据库服务器: 用于数据的处理、统计分析和存储,为保证数据可靠存储,配置了磁盘阵列。应用工作站完成系统的建模、图形生成显示、报表制作打印等应用功能。 风电功率预测服务器: 运行风电功率预测模块,根据建立的预测模型,基于采集的数值天气预报,采用物理和统计相结合的预测方法,并结合目前风电场风机的实时运行工况对单台风机及整个风电场的出力情况进行短期预测和超短期预测。 数据接口服务器: 负责从气象局获得数值天气预报,为保证网络安全在网络边界处配置反向物理隔离设备。同时向SCADA/EMS系统传送风电功率预测的结果。 测风塔: 测风塔测量数据(实时气象数据)是用来进行超短期功率预测的。测风塔有两种类型,一是实体测风塔,一是虚拟测风塔。一个风塔造价占系统的的20~30%左右。 实体测风塔:变化频繁的自然条件和复杂的地形地貌给预测系统增加了困难,实体测风塔的安装台数应根据风场的实际地理条件等情况进行安装,以保障预测的准确性。实体测风塔应安装在风场5km范围内,通过GPRS或者光纤采集风塔的实时气象数据。

风电场有功功率控制系统的研究

风电场有功功率控制系统的研究 作者:孔朝志 摘要:在分析风力发电机组有功功率控制的基础上,提出风电场的有功功率控制策略。利用MATLAB/Simulink环境,建立风电场功率控制系统的仿真模型。以电网调度给定功率波动为例,对风电场的有功功率调节过程进行仿真研究。通过理论研究和仿真分析,验证了风电场有功功率控制策略的可行性和有效性。 关键词:风力发电,风电场,有功功率控制,功率分配 0. 引言 风电是一种具有间歇性、波动性的电源,大规模风电场的建设给电网调度和运行都带来了挑战。国家电网公司制定的Q/GDW 392-2009《风电场接入电网技术规定》中指出,风电场应具备有功功率调节能力,能根据电网调度部门指令控制其有功功率输出。因此,为了实现对有功功率的控制,风电场需配置有功功率控制系统,接收并自动执行调度部门远方发送的有功功率控制信号,确保风电场最大有功功率值及有功功率变化值不超过电网调度部门的给定值。在电网紧急情况下,风电场应根据电网调度部门的指令控制其输出的有功功率,并保证风电场有功功率控制系统的快速性和可靠性。必要时,可通过安全自动装置快速自动切除或降低风电场有功功率。 1. 风电场有功功率控制的原理 由于风能的间歇性和随机性,精确预测风电功率难度非常大。从电网运行角度进行风电有功功率控制,难以像火电、水电等常规电源一样做到随时按照电网调度的要求在指定出力下运行,而且为了有效利用风能资源,必须尽可能保证风电出力的最大化。因此,风电有功功率控制有以下2种方式: 1) 最大出力控制模式。即在保证电网安全稳定的前提下,根据电网风电接纳能力计算各风电场最大出力上限值,风电场出力低于上限值时处于自由发电状态(爬坡速率必须满足要求),超出本风电场最大出力上限值时,可根据其他风电场空闲程度占用其他风电场的系统资源,以达到风电出力最大化与风电场之间风能资源优化利用的目标。 2) 出力跟踪控制模式。即以各风电场风电功率预测为依据,经控制中心站安全校核后下发各风电场发电计划,各风电场必须实时跟踪发电计划进行有功功率的调整。 实现有功功率控制,需要解决以下两大技术难题: 1) 系统的架构设计。即如何根据现有的信道条件、可用设备资源和允许投资总额情况,设计整个系统的架构,保证系统的可靠性和可行性,同时还要考虑系统在今后一段时间内的可扩展性。 2) 系统的控制策略设计。控制策略设计是系统设计的核心,调度运行人员对风电场调度运行的控制经验和控制方法均体现在控制策略设计中。通过有功控制系统对控制策略的自动实施,代替调度运行人员对风电场的实时控制,减少调度运行人员与风电场之间频繁的业务联系和复杂的计算,让其专注于对全网的监控。合理的控制策略设计同时也能最大限度地利用风能资源和电网输电通道资源,提高风电接纳能力和各风电场发电量,加强对风电场的管理和控制。 2. 风电场有功功率控制系统的设计 2.1 风电场功率控制系统

风功率预测系统的应用与优化的讨论

龙源期刊网 https://www.wendangku.net/doc/9410372253.html, 风功率预测系统的应用与优化的讨论 作者:王文刚刘建鹏(等) 来源:《科技创新与应用》2013年第14期 摘要:风电场风功率预测系统是风电安全、优质并网运行的关键技术手段,也是实现风 电场监控及信息化管理的重要基础。同时,采用风功率预测系统,能够有效提高电网调峰能力,增强电网的风电接纳能力,改善电力系统运行的安全性与经济性。文章介绍了即墨华能风电场使用的NSF3100风功率预测系统的体系结构、主要功能,并结合并网风电场给预测系统带来的精度问题展开了讨论。通过实时风场功率数据采集、对比、分析,实现对风场的功率预测和控制,确保电网安全稳定可靠运行。 关键词:风电场;风功率预测系统;应用;预测准确率 ABSTRACT:Wind power forecasting system is the key technical means of wind power security and high-quality operation, but also an important foundation for wind power monitoring and information management. And the wind power forecasting system is the most effective means to improve the power grid peaking capacity, enhance the grid for accepting wind power, perfect security and economy of the power system. This paper introduces the wind power forecasting system NSF3100 in Huaneng Jimo wind farm, including system architecture, main functions, and makes discussions on its improvement. This paper expounds the power prediction function of Huaneng Jimo wind power forecasting system carries out the power controlling for wind farm and keep grid a safe and stable operation through collection, comparison, analysis of the wind power data. KEY WORDS:Wind power; forecasting system; application; predicting accuracy 引言 华能即墨风电场坐落于山东青岛即墨市境内,10米高度年平均风速5.7米/秒,风功率密 度为216.88瓦/平方米,现一期49.5MW已于2011年12月22日并网发电。作为山东省第一家正式投入风功率系统风力发电企业,华能即墨风电场采用的是国电南瑞NSF3100风电功率预测系统。 NSF3100风功率预测系统具有短期预测及超短期预测功能。超短期预测能够预测风电场未来0-4小时的输出功率,时间分辨率为15分钟一次;短期预测能够预测风场未来0-72小时的输出功率[1],时间分辨率也为15分钟一次。预测系统分为实时数据监测、功率预测、软件平台展示三个部分。利用风功率预测系统,电网调度运行人员能够比较准确地预测出风电场的输出功率,提高风电接纳水平。 本文介绍了NSF3100风功率预测系统的组织框架和功能,阐述了系统的应用情况与优化,并对系统的改进进行了讨论。

相关文档
相关文档 最新文档