文档库 最新最全的文档下载
当前位置:文档库 › 北京揽宇方圆卫星影像数据表

北京揽宇方圆卫星影像数据表

北京揽宇方圆卫星影像数据表
北京揽宇方圆卫星影像数据表

北京揽宇方圆信息技术有限公司影像数据表

分辨率卫星时相数据类型起订面积起订面积

备注平方公里景

0.3米Worldview32014年至今

0.3全色+1.2米多

光谱

25\存档卫星Worldview42016年至今

0.3全色+1.2米多

光谱

25\存档卫星

0.4米Worldview32014年至今

0.4全色+1.6米多

光谱

25\存档卫星Worldview42016年至今

0.4全色+1.6米多

光谱

25\存档卫星Kompsat-3A2015年至今

0.4全色+1.6米多

光谱

25\存档卫星

0.5米Worldview32014年至今

0.5全色+2米多光

25\存档卫星Worldview42016年至今

0.5全色+2米多光

25\存档卫星Worldview22009年至今

0.5全色+2米多光

25\存档卫星Worldview12007年至今0.5全色25\存档卫星geoeye2009年至今

0.5全色+2米多光

25\存档卫星高景一号2016年至今

0.5全色+2米多光

25\存档卫星pleiades2012年至今

0.5全色+2米多光

25\存档卫星

0.6米quickbird 2002年至

2015

0.5全色+2米多光

25\存档卫星

0.7米

EROS-B

2006年至

2016

0.7米全色25\存档卫星Kompsat-32012年至今

0.7全色+2.8米多

光谱

25\存档卫星

0.8米高分二号2014年至今

0.8全色+3.2米多

光谱

\1景

幅宽:

23.5*23.5公里IKONOS

1999年至

2014年

0.8全色+3.2米多

光谱

25\存档卫星

1米

北京二号2015年至今1全色+4米多光谱25\存档卫星KOMPSAT-22006年至今1全色+4米多光谱25\存档卫星

1.5米SPOT6/72012年至今 1.5全色+6米多光谱250\存档卫星

2米

高分一号2013年至今2全色+8米多光谱\1景

幅宽:

32.5*32.5公里资源三号01

2012年至今

2.1全色+5.8米多光

\1景

幅宽:

50*50公里资源三号02

2016年至今

2.1全色+5.8米多光

\1景

幅宽:

50*50公里

2.5米资源一号

02C卫星

2011年至今

2.36全色+10米多光

\1景

幅宽:

50*50公里ALOS1

2006年至

2011年

2.5全色+10米多光

\1景

全色和多光谱

幅宽不一样SPOT5

2002年至

2015年

2.5全色+10米多光

\1景

价格不等具体

咨询

5米rapideye2008年至今 5.8米光谱500\有红边波6米SPOT6/72012年至今6米多光谱250\存档卫星

10米Sentinel-2

A

2015年至今13个\1景具体咨询SPOT1-51986年至今

10米全色+20米多光

\1景具体咨询

15米

以上

TM、ETM、LANDSAT8、ASTER、Hyperion、环境星

历史

卫星

北京揽宇圆权威解答锁眼全系例卫星1960年至1980年雷达

卫星

Radarsat-2、Terrasat-X、Palsar、alos-2、高分三号

解译数据DLG、DEM、DTM、DSM、影像校正、融合、镶嵌、解译、土地利用、水土流失、电子矢量、地形图、地质图、土壤图、植被图专业制作

北京揽宇方圆雷达卫星影像insar技术地面沉降监测中应用

北京揽宇方圆信息技术有限公司 1、引言 在我国,由于人们过度的开采地下资源,引起的地面形变的问题非常突出。地表形变问题给当地的环境造成很大的破坏,直接危害着地面建筑设施和人们的生命安全。因此,对地面形变进行有效的监测可以对研究地表形变的形成机理、变化规律和控制地表变形相当重要,对国民经济的可持续发展有着十分重要的意义。目前地表形变监测的方法有:传统的大地水准测量、GPS技术、摄影测量和卫星合成孔径雷达差分干涉(DInSAR)测量。DInSAR是一项新近发展起来的空间对地观测技术,它具有测量精度高、作业范围大、不受天气条件的限制等技术优势,目前DInSAR及其拓展技术已经在火山、地震、冰川、滑坡和地表形变等研究领域得到广泛的应用。

图1-1DInSAR技术的应用领域 传统的路面沉降监测方法有很大的局限性:都必须预计出大致的沉降位置和范围,从而布置监测点;都是利用离散的观测点获得的沉降数据来建立经验模型,然后通过数值内插方法得到面状沉降;而且对于人员很难到达的区域,实测困难。因此,该方法只能反映局部少数的沉降信息,不能直观、宏观地反应整个沉降区域的沉降状况。表1-1反映了DInSAR技术相比于其他监测方法的优势 表1-1DInSAR技术与其他监测方法的对比 2、DInSAR技术原理 DInSAR是一个多重嵌套的缩写词,由雷达(Radar,Radio Detection and Ranging)、合成孔径雷达(Synthetic Aperture Radar,SAR)、合成孔径雷达干涉测量(SAR Interferometry,InSAR)、合成孔径雷达差分干涉测量(DiferfenceInSAR,DInSAR)嵌套

常见的资源卫星影像数据区别

一.遥感数据基础知识: 太阳辐射经过大气层到达地面,一部分与地面发生作用后反射,再次经过大气层,到达传感器。传感器将这部分能量记录下来,传回地面,即为遥感数据。目前用于遥感的电磁波段有紫外线、可见光、红外线和微波。航空与航天飞行器运行快、周期短,可获得多时相数据。以美国陆地卫星5号(Landsat 5 )为例,Landsat 5每天环绕地球14.5圈,覆盖地球一遍所需时间仅16天,而气象卫星的周期更短(1天或半天)。由于探测距离远,传感器所获得的地面影像覆盖的空间范围较大。它距离地表的高度是705.3 km,对地球表面的扫描宽度是185 km,一幅TM 图像可以全部覆盖我国海南岛大小的面积。不同的卫星传感器获得的同一地区的数据以及同一传感器在不同时间获得的同一地区的数据,均具有可比性. (1)遥感平台 遥感平台是装载传感器的运载工具,按高度分为: 地面平台:为航空和航天遥感作校准和辅助工作。 航空平台:80 km以下的平台,包括飞机和气球。 航天平台:80 km以上的平台,包括高空探测火箭、人造地球卫星、宇宙飞船、航天飞机。 人造地球卫星的类型: 低高度、短寿命卫星:150~350 km,用于军事。 中高度、长寿命卫星:350~1800 km,地球资源。 高高度、长寿命卫星:约3600 km,通信和气象。 (2)遥感数据类型 按平台分 地面遥感、航空遥感、航天遥感数据。

按电磁波段分 可见光遥感、红外遥感、微波遥感、紫外遥感数据等。 按传感器的工作方式分 主动遥感、被动遥感数据。 (3)遥感数据获取原理; (4)传感器 a.传感器定义:传感器是收集、探测、记录地物电磁波辐射信息的工具。它的性能决定遥感的能力,即传感器对电磁波段的响应能力、传感器的空间分辨率及图像的几何特征、传感器获取地物信息量的大小和可靠程度。 b.传感器的分类 按工作方式分为: 主动方式传感器:侧视雷达、激光雷达、微波辐射计。 被动方式传感器:航空摄影机、多光谱扫描仪(MSS)、TM、ETM(1,2)、HRV、红外扫描仪等。 c.传感器的组成

遥感卫星影像镶嵌的基本原则

北京揽宇方圆信息技术有限公司 遥感卫星影像镶嵌的基本原则 遥感卫星影像镶嵌是指对一幅或若干幅图像通过几何镶嵌、色调调整、去重叠等处理,镶嵌到一幅大的背景图像中的影像处理方法。 基本原则 镶嵌时应对多景影像数据的重叠带进行严格配准,镶嵌误差不低于配准误差,镶嵌区应保证有10-15个像素的重叠带。影像镶嵌时除了要满足在镶嵌线上相邻影像几何特征一致性,还要求相邻影像的色调保持一致。镶嵌影像应保证色调均匀、反差适中,如果两幅或多幅相邻影像时相不同使得影像光谱特征反差较大时,应在保证影像上地物不失真的前提下进行匀色,尽量保证镶嵌区域相关影像色彩过渡自然平滑。 1、原则上,镶嵌只针对采样间隔相同影像。需在相邻数据重叠区域进行如下处理:首先,在相邻数据重叠区勾绘镶嵌线,镶嵌线勾绘尽量靠近采样间隔较小影像的外边缘,以保证其数据使用率最大化。然后对镶嵌线两侧影像进行裁切,裁掉重叠区域影像,为避免因坐标系转换导致接边处出现漏缝,对于采样间隔小的影像严格沿镶嵌线裁切,采样间隔大的影像应适当外扩一定范围,原则上不超过10个像素进行裁切。 2、镶嵌前进行重叠检查。景与景间重叠限差应符合要求。重叠误差超限时应立即查明原因,并进行必要的返工,使其符合规定的接边要求。采用

“拉窗帘”方式目视检查相邻影像间重叠区域的精度,若同名地物出现“抖动”或“错位”现象,则量测该处同名点误差,两者接边精度不超过1个像素。 3、镶嵌时应尽可能保留分辨率高、时相新、云雾量少、质量好的影像。 4、选取镶嵌线对DOM进行镶嵌,镶嵌处无地物错位、模糊、重影和晕边现象。 5、时相相同或相近的镶嵌影像纹理、色彩自然过渡;时相差距较大、地物特征差异明显的镶嵌影像,允许存在光谱差异,但同一地块内光谱特征尽量一致。 重叠精度检查 叠加相邻纠正单元,采用“拉窗帘”方式逐屏幕目视检查相邻纠正单元间重叠区域的精度,若同名地物出现“抖动”或“错位”现象,则量测该处同名点误差,两者相对精度应满足下表要求。 相邻影像采样间隔≤1米时,其相对误差限差满足表中规定。 相对误差限差表 地形类别 平地、丘陵(采样间 隔) 山地、高山地(采样间 隔) 相对误 差 2.0倍8.0倍 基础底图采样间隔>1米时,其相对误差限差满足表中规定。 相对误差限差表 地形类别 平地、丘陵(采 样间隔) 山地、高山地(采 样间隔) 相对误差 2.0倍 4.0倍 注:相对误差因侧视角超限、基础底图和高程数据等控制资料精度不足引起,且无法改正的特殊地区除外,但该区域周边不超限。 镶嵌步骤 1、镶嵌线选取

Planet遥感卫星全球最大规模的地球影像卫星星座群-北京揽宇方圆

北京揽宇方圆信息技术有限公司 Planet 遥感卫星全球最大规模的地球影像卫星星座群-北京揽宇方圆Planet(曾命名为Planet Lab)遥感卫星群是全球最大规模的地球影像卫星星座群,由美国卫星成像初创公司Planet Labs 研制,有超过150颗在轨卫星(减去已失效的卫星),使全球对地观测进入“每日”时代,有着其他公司无法比拟每天覆盖全球一次的超高频时间分辨率。 Planet 卫星星座可以识别赈灾地点和提高全球发展中国家的农业产量。用户也可以使用这些影像资源进行全球环境保护,比如森林砍伐监测和极地冰盖变化监测。商业应用包括测图、房地产和建筑业、油气资源监测,甚至是交通堵塞监测。如果公司需要对其拥有的高价值、分布式资源进行定期监测,Planet 可以补充或替代使用直升机飞过输油管道来监测油气泄漏,因为Planet 卫星可以快速获取需要的影像。 表1.PLANETSCOPE 轨道参数 参数国际空间站轨道(32颗)太阳同步轨道(100颗) 轨道高度400km 475km 轨道倾角51.6°-98° 纬度覆盖±52°±81.5° 降交点地方时可变9:30-11:30am 回归周期可变每天 表2.PLANETSCOPE 有效载荷技术指标 参数国际空间站轨道(32颗)太阳同步轨道(100颗) 波段范围蓝波455-515nm 蓝波455-515nm 绿波500-590nm 绿波500-590nm 红波590-670nm 红波590-670nm

近红外780-860nm近红外780-860nm 地面采样距离3m 3.7m 幅宽24.6km x16.4km24.6km x16.4km 影像带最大面积(一条轨道)8100km220,000km2 影像获取能力可变 1.5亿km2/天 数据提供起始时间4224842248 北京揽宇方圆信息技术有限公司

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

电子表格常用函数公式

电子表格常用函数公式 1.去掉最高最低分函数公式: =SUM(所求单元格…注:可选中拖动?)—MAX(所选单元格…注:可选中拖动?)—MIN(所求单元格…注:可选中拖动?) (说明:“SUM”是求和函数,“MAX”表示最大值,“MIN”表示最小值。)2.去掉多个最高分和多个最低分函数公式: =SUM(所求单元格)—large(所求单元格,1)—large(所求单元格,2) —large(所求单元格,3)—small(所求单元格,1) —small(所求单元格,2) —small(所求单元格,3) (说明:数字123分别表示第一大第二大第三大和第一小第二小第三小,依次类推) 3.计数函数公式: count 4.求及格人数函数公式:(”>=60”用英文输入法) =countif(所求单元格,”>=60”) 5.求不及格人数函数公式:(”<60”用英文输入法) =countif(所求单元格,”<60”) 6.求分数段函数公式:(“所求单元格”后的内容用英文输入法) 90以上:=countif(所求单元格,”>=90”) 80——89:=countif(所求单元格,”>=80”)—countif(所求单元格,”<=90”) 70——79:=countif(所求单元格,”>=70”)—countif(所求单元

格,”<=80”) 60——69:=countif(所求单元格,”>=60”)—countif(所求单元格,”<=70”) 50——59:=countif(所求单元格,”>=50”)—countif(所求单元格,”<=60”) 49分以下: =countif(所求单元格,”<=49”) 7.判断函数公式: =if(B2,>=60,”及格”,”不及格”) (说明:“B2”是要判断的目标值,即单元格) 8.数据采集函数公式: =vlookup(A2,成绩统计表,2,FALSE) (说明:“成绩统计表”选中原表拖动,“2”表示采集的列数) 公式是单个或多个函数的结合运用。 AND “与”运算,返回逻辑值,仅当有参数的结果均为逻辑“真(TRUE)”时返回逻辑“真(TRUE)”,反之返回逻辑“假(FALSE)”。条件判断 AVERAGE 求出所有参数的算术平均值。数据计算 COLUMN 显示所引用单元格的列标号值。显示位置 CONCATENATE 将多个字符文本或单元格中的数据连接在一起,显示在一个单元格中。字符合并 COUNTIF 统计某个单元格区域中符合指定条件的单元格数目。条件统计 DATE 给出指定数值的日期。显示日期

遥感卫星影像数据产品类型有哪些@北京揽宇方圆

北京揽宇方圆信息技术有限公司 北京揽宇方圆具有一支国内领先的遥感应用科研队伍,可根据用户的实际需求,开展航天、航空对地观测数据加工、数据专题应用等服务,用户可以向我中心的数据服务部进行咨询与洽商,具体操作过程见深加工数据订购流程。 遥感影像地图产品 遥感图像是某一时间对地表状况的客观记录。出于对资源、环境等现势性快速了解的需求,应用时间性强的遥感数据资料制作影像地图,在通常情况下已成为解决传统制图周期长等问题的首选方法。通过选择合适的航天、航空对地观测数据源,采用的合理波段组合和有效的信息增强技术,可以得到信息丰富,直观易读的影像。对于政府部门、企事业单位等了解区域地貌类型、资源状况、城市分布以及指导规划等都有很大的帮助。根据经费状况和应用目的不同,用户可以对遥感数据影像图的形式作选择,包括:一般遥感影像图,行政区划遥感影像图,立体影像图,批量的印刷型遥感影像图等。 按地形图标准分幅的影像产品

与上述的遥感数据影像图的主要区别在于这类产品完全按国家标准地形图图幅号进行图像裁切,形成1:2.5万-1:100万系列遥感影像产品,它们拥有与标准地形图一致的坐标系统和地理网格注记,便于比对和野外定位。精度高是其重要特点之一,表现在几何定位上的准确性、辐射水平的连续性和信息的可判读性。我中心特有的高水准预处理级几何精校正技术、几何精校正或正射校正技术、数字镶嵌技术和多源数据融合技术则从技术上保证了这类遥感数据产品的精度要求。目前,通过对数据的深加工处理,按标准地形图分幅的遥感数据影像图产品已受到众多用户的青睐,服务于野外调绘和地形图的更新等方面。 遥感数据融合产品 由于航天、航空对地观测的传感器种类越来越多,多种光谱与几何分辨率、多时相遥感数据源的接收、应用以及对高质量遥感数据的需求是促使各种遥感数据融合技术的出现与发展的直接动力。为了在有限的投资内获得不同遥感数据源的信息优势,以增强对目标物的检测与识别能力,提高遥感数据应用的精度和效率,我中心向用户提供航天、航空数据融合产品,能够针对不同的遥感数据源、不同地物特征和应用目的采用不同的融合方法;或强调信息保持,保证图像判读和统计上的一致性;或突出光谱变异以取变化信息。 专题信息产品 1.土地资源调查 充分利用遥感地球所的航天、航空数据源以及信息处理与应用的技术优势,结合政府部门对土地管理的需求,提供土地利用分类、基本农田、城市建设用地、土地开垦、土地沙漠化、退耕还林还草等方面的动态监测专题图件。 2.生态环境监测

SPOT卫星遥感影像数据基本参数

SPOT5遥感卫星基本参数 北京揽宇方圆信息技术有限公司 前言: 遥感传感器是获取遥感数据的关键设备,由于设计和获取数据的特点不同,传感器的种类也就繁多,就其基本结构原理来看,目前遥感中使用的传感器大体上可分为如下一些类型:(1)摄影类型的传感器; (2)扫描成像类型的传感器; (3)雷达成像类型的传感器; (4)非图像类型的传感器。 无论哪种类型遥感传感器,它们都由如下图所示的基本部分组成: 1、收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2、探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。 3、处理器:对收集的信号进行处理。如显影、定影、信号放大、变换、校正和编码等。具体的处理器类型有摄影处理装置和电子处理装置。 4、输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。 虽然不同卫星的基本组成部分是相同的,但是由于,各个组成部分的具体构造的精细度又是不同的,的,所以不同的卫星具有不同的分辨率。 一、法国SPOT卫星 法国SPOT-4卫星轨道参数: 轨道高度:832公里 轨道倾角:98.721o 轨道周期:101.469分/圈 重复周期:369圈/26天 降交点时间:上午10:30分 扫描带宽度:60 公里 两侧侧视:+/-27o 扫描带宽:950公里 波谱范围: 多光谱XI B1 0.50 – 0.59um 20米分辨率B2 0.61 – 0.68um B3 0.78 – 0.89um SWIR 1.58 – 1.75um

电子表格常用函数公式

电子表格常用函数公式 1、自动排序函数: =RANK(第1数坐标,$第1数纵坐标$横坐标:$最后数纵坐标$横坐标,升降序号1降0升) 例如:=RANK(X3,$X$3:$X$155,0) 说明:从X3 到X 155自动排序 2、多位数中间取部分连续数值: =MID(该多位数所在位置坐标,所取多位数的第一个数字的排列位数,所取数值的总个数) 例如:612730************在B4坐标位置,取中间出生年月日,共8位数 =MID(B4,7,8) =19820711 说明:B4指该数据的位置坐标,7指从第7位开始取值,8指一共取8个数字 3、若在所取的数值中间添加其他字样, 例如:612730************在B4坐标位置,取中间出生年、月、日,要求****年**月**日格式 =MID(B4,7,4)&〝年〞&MID(B4,11,2) &〝月〞& MID(B4,13,2) &〝月〞&

=1982年07月11日 说明:B4指该数据的位置坐标,7、11指开始取值的第一位数排序号,4、2指所取数值个数,引号必须是英文引号。 4、批量打印奖状。 第一步建立奖状模板:首先利用Word制作一个奖状模板并保存为“奖状.doc”,将其中班级、姓名、获奖类别先空出,确保打印输出后的格式与奖状纸相符(如图1所示)。 第二步用Excel建立获奖数据库:在Excel表格中输入获奖人以及获几等奖等相关信息并保存为“奖状数据.xls”,格式如图2所示。 第三步关联数据库与奖状:打开“奖状.doc”,依次选择视图→工具栏→邮件合并,在新出现的工具栏中选择“打开数据源”,并选择“奖状数据.xls”,打开后选择相应的工作簿,默认为sheet1,并按确定。将鼠标定位到需要插入班级的地方,单击“插入域”,在弹出的对话框中选择“班级”,并按“插入”。同样的方法完成姓名、项目、等第的插入。 第四步预览并打印:选择“查看合并数据”,然后用前后箭头就可以浏览合并数据后的效果,选择“合并到新文档”可以生成一个包含所有奖状的Word文档,这时就可以批量打印了。

高分一号卫星影像数据免费查询单位

北京揽宇方圆信息技术有限公司 高分一号卫星影像数据免费查询单位高分一号 高分一号卫星是中国高分辨率对地观测系统的第一颗卫星,于2013年4月26日成功发射。“高分一号”的全色分辨率是2米,多光谱分辨率为8米。它的特点是增加了高分辨率多光谱相机,该相机的性能在国内投入运行的对地观测卫星中最强。此外,“高分一号”的宽幅多光谱相机幅宽达到了800公里,重访周期只有4天,“高分一号”实现了高空间分辨率和高时间分辨率的完美结合。它为国土资源部门、农业部门、环境保护部门提供高精度、宽范围的空间观测服务,在地理测绘、海洋和气候气象观测、水利和林业资源监测、城市和交通精细化管理,疫情评估与公共卫生应急、地球系统科学研究等领域发挥重要作用。 高分一号卫星参数 项目 技术性能轨道 轨道类型 太阳同步圆轨道平均轨道高度 644.5km 降交点地方时 10:30AM 回归周期 41天重访、覆盖特性重访:侧摆条件下,2/8m 相机4天 覆盖:16m 相机4天,2/8m 相机41 天 卫星重量 总重量1060kg 卫星尺寸发射状态最大包络 Φ2650mm×2000mm 在轨太阳翼展开后的跨度 7930mm 高分成像谱段/μm 全色:0.45~0.90 B1:0.45~0.52,B2:0.52~0.59 B3:0.63~0.69,B4:0.77~0.89 星下点地面像元分辨率 全色优于2m,多光谱优于8m 地面幅宽 >60km 宽幅成像 谱段/μm B1:0.45~0.52;B2:0.52~0.59; B3:0.63~0.69;B4:0.77~0.89 星下点地面像元分辨率 优于16m 地面幅宽 >800km 姿态控制控制方式 三轴稳定,对地定向

(完整版)卫星图像处理流程

卫星图像处理流程 一.图像预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 图1 消除噪声前

图2 消除噪声后 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。 图3 去条纹前

图4 去条纹后 图5 去条带前

图6 去条带后 2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正 通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。(1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。

遥感卫星影像数据采购知识要素

北京揽宇方圆信息技术有限公司 (一)遥感卫星数据类型有哪些? 北京揽宇方圆卫星公司可提供多种遥感数据类型供用户选择,目前来说是国内遥感数据最多的遥感数据中心,分辨率从0.3米到30米的光学卫星影像,还有各种极化方式的雷达卫星影像,高光谱卫星影像,还有解密的1960年至1980年的锁眼卫星影像,根据自己的情况来定,也可以把自己的卫星数据需求告诉我们,给您推荐合适的卫星数据类型。如果您想获取高程信息DEM、DLG等信息,需要购买的就是卫星影像立体像对数据,并不是所有卫星都有立体像对哦。 (二)遥感卫星数据影像有哪些级别? 卫星公司北京揽宇方圆销售的都是1A级别原始卫星影像,光学卫星影像原始数据都是以全色+多光谱捆绑形式提供,卫星影像一般可以经过一定的处理,形成各级别的影像数据,不同的级别可以针对不同的用户需求,在订购时需特别注意。 *名词(全色就是黑白数据,多光谱是指红绿蓝近红外) (三)遥感卫星数据影有没有最小数量起订的说法? 北京揽宇方圆提醒您在购买卫星影像时,都要确认购买面积大小或景数。对于高分辨率影像来说,一般是按面积大小来计算,单位为平方公里。但是往往有个最小购买面积,例如,WorldView影像的存档数据最低起购面积为25平方公里,且需要满足四边形两边相距大于等于5公里;而中低分辨率影像则往往按景数来计算,景是一幅卫星影像的通俗讲法,例如,一景高分一号卫星影像,范围大小为32.5×32.5公里。 (四)遥感卫星存档数据是指什么? 北京揽宇方圆详解遥感卫星存档数据:是指先前卫星已经拍摄过的某区域的影像数据,已存档在数据库中,是现成品。该种影像的购买价格相对较低,订购时间较快。但是订购前需要对既定需求区域做出确认,即确认所需区域是否有卫星影像数据存档、卫星影像存档数据的拍摄时间、拍摄质量(包含了云量、拍摄倾角等因素)等。 (五)遥感卫星编程数据是什么意思? 北京揽宇方圆遥感公司对遥感卫星编程数据的解释是指地面编程控制卫星对需求区域拍摄最新的影像,可以让用户得到需求区域最新的影像。但是编程影像的拍摄周期通常较长,订购初期需要先向卫星运营公司申请拍摄区域的拍摄周期,然后由卫星公司反馈计划拍摄周期。在这个拍摄周期中,并不能够保证拍摄成功,这与所拍摄地的天气情况、拍摄数据的优先级权重以及需求数据范围有关。 (六)遥感卫星影像数据价格如何一般是多少? 目前市面上的商业遥感卫星数量较多,北京揽宇方圆是国内遥感数据资源最多的公司,不同的行业根据自己的遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星

遥感卫星影像预处理做哪些

北京揽宇方圆信息技术有限公司热线:4006019091 遥感影像数据预处理 影像融合不同传感器的数据具有不同的时间、空间和光谱分辨率以及不同的极 化方式。单一传感器获取的影像信息量有限,往往难以满足应用需要, 通过影像融合可以从不同的遥感影像中获得更多的有用信息,补充单一 传感器的不足。全色图影像一般具有较高空间分辨率,多光谱影像光谱 信息较丰富。为提高多光谱影像的空间分辨率,可以将全色影像融合进 多光谱图像,通过融合既提高多光谱影像空间分辨率,又保留其多光谱 特性。对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段, 从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融 合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息, 从而达到影像地图信息丰富、视觉效果好、质量高的目的。 影像匀色相邻的遥感图像,由于成像日期、季节、天气、环境等因素可能有差异, 不仅存在几何畸变问题,而且还存在辐射水平差异导致同名地物在相 邻图像上的色彩亮度值不一致。如不进行色调调整就把这种图像镶嵌起 来,即使几何配准的精度很高,重叠区复合得很好,但镶嵌后两边的影 像色调差异明显,接缝线十分突出,既不美观,也影响对地物影像与专 业信息的分析与识别,降低应用效果。要求镶嵌完的数据色调基本无差 异,美观。遥感影像匀色后保证影像整体色彩一致性。 影像镶嵌将不同的图像文件合在一起形成一幅完整的包含感兴趣区域的图像,通 过镶嵌处理,可以获得更大范围的地面图像。参与镶嵌的图像可以是不 同时间同一传感器获取的,也可以是不同时间不同传感器获取的图像, 但同时要求镶嵌的图像之间要有一定的重叠度。 影像去云雾影像数据常常有云雾覆盖,针对有云雾覆盖的影像,可以通过后期技术 处理去除薄云雾,达到影像最佳效果。 影像纠正依据控制点,利用相应软件模块对数据进行几何精校正,这一步骤包括 利用地面控制点(GCPs)找出实际地形,计算配准中控制点的误差,利 用DEM消除地形起伏引起的位移,然后对图像进行重采样等。形成符合 某种地图投影或图形表达要求的新影像。 即插即用无使用门槛,可与各类GIS软件系统无缝衔接 第 1 页

常用的遥感卫星影像数据有哪些

北京揽宇方圆信息技术有限公司 常用的遥感卫星影像数据有哪些 公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、高分一号、资源三号等卫星的代理权,与国内多家遥感影像一级代理商长期合作,能够为客户提供全天候、全覆盖、多分辨率、多尺度的影像产品 WorldView,分辨率0.5米 WorldView卫星系统由两颗(WorldView-I和WorldView-II)卫星组成。WorldView-I全色成像系统每天能够拍摄多达50万平方公里的0.5米分辨率图像,并具备现代化的地理定位精度能力和极佳的响应能力,能够快速瞄准要拍摄的目标和有效地进行同轨立体成像。WorldView-II多光谱遥感器具有8个波段,平均重访周期为一天,每天采集能力达到97.5万平方公里。

QuickBird,分辨率0.61米 QuickBird具有较高的地理定位精度,每年能采集7500万平方公里的卫星影像数据,在中国境内每天至少有2至3个过境轨道,有存档数据约500万平方公里,重访周期为1-6天,每天采集能力达到21万平方公里。 IKONOS,分辨率0.8米 IKONOS卫星是世界上第一颗高分辨率卫星,开启了商业高分辨率卫星的新时代,同时也创立了全新的商业化卫星影像标准。全色影像分辨率达到了0.8米,多光谱影像分辨率4米,平均重访周期3天。

Geoeye,分辨率0.41米 GeoEye-1卫星具有分辨率最高、测图能力极强、重返周期极短的特点。全色影像分辨率达到了0.41米,多光谱影像分辨率1.65米,定位精度达到3米,重访周期2-3天,每天采集能力70万平方公里。

五金常用公式及数据表

第三章 常用公式及數據表 第四節 衝壓件模具設計常用公式 一. 衝裁間隙分類見表4-1 表4-1 衝裁間隙分類(JB/Z 271-86) 分 類 依 據 類 別 Ⅰ Ⅱ Ⅲ 制 件 剪 切 面 質 量 剪切面特征 t=材料厚度 塌角深度a (4~7)%t (6~8)%t (8~10)%t 光亮帶b (35~55)%t (25~40)%t (15~25)%t 剪裂帶E 小 中 大 毛刺高度h 一般 小 一般 斜度β 4°~ 7° 7°~ 8° 8°~ 11° 制 件 精 度 撓角f 稍小 小 較大 尺寸精度 落料件 接近凹模尺寸 稍小于凹模尺寸 小于凹模尺寸 沖孔件 接近凸模尺寸 稍小于凸模尺寸 小于凸模尺寸 模 具 壽 命 較低 較高 最高 適 用 場 合 制件剪切面質量﹑尺寸精度要求高時采用,模具壽命較低 制件剪切面質量﹑尺寸精度要求一般時采用,適用于繼續塑變的制件 制件剪切面質量﹑尺寸精度要求不高時采用,以利提高模具壽命 二. 衝裁間隙選取(僅供參考) 見表4-2 表4-2 衝裁間隙比值(單邊間隙) (單位:%t) 分 類 依 據 類 別 Ⅰ Ⅱ Ⅲ 低碳鋼 08F ﹑10F ﹑10﹑20﹑A3﹑B2 3.0~7.0 7.0~10.0 10.0~12.5 中碳鋼45 不銹鋼1Cr18Ni9Ti 、4Cr13 可伐合金4J29 3.5~8.0 8.0~11.0 11.0~15.0 高碳鋼 T8A 、T10A 、65Mn 8.0~12.0 12.0~15.0 15.0~18.0 純鋁L 2、L 3、L 4、L 5 鋁合金(軟態)LF21 黃銅(軟態)H62 紫銅(軟態)T 1、T 2、T 3 2.0~4.0 4,5~6.0 6.5~9.0

0.3米分辨率卫星影像-worldview3卫星销售@北京揽宇

北京揽宇方圆信息技术有限公司 2015年2月25日,美国数字全球(DigitalGlobe)公司在其官网正式宣布“开始向所有用户销售0.3m分辨率卫星观测图像”,并认为“在全球应用市场,更高分辨率的卫星图像如今已成为航空图像的高竞争力替代产品”。这是迄今全球商业卫星遥感公司能够提供的最高分辨率数据产品,将成为商业对地观测领域的里程碑事件。 2014年,全球商业对地观测领域保持蓬勃发展态势,各国纷纷发布或修订新版航天政策法规,大量创新卫星系统相继成功部署。其中,美国放宽商业销售数据分辨率限制以及世界观测-3(WorldView-3)卫星发射入轨尤为引人注目。此前,美国政府禁止商业遥感卫星运营商向美国政府以外的用户销售优于0.5m分辨率的卫星图像数据,这一施行多年的政策早已饱受业界诟病。在DigitalGlobe公司不断争取以及美国政府情报、安全和商务部门的持续磋商下,2014年6月,美国政府最终决定放宽商业销售图像分辨率限制,允许商业公司销售最高0.25m 分辨率的天基对地观测图像。同年8月13日,DigitalGlobe公司成功发射了WorldView-3卫星,全色分辨率高达0.31m,多光谱分辨率高达1.24m。WorldView-3卫星成功发射,使得DigitalGlobe公司在美国新数据政策支持下更具全球竞争力。 WorldView-3是全球分辨率最高的商业光学遥感成像卫星,其分辨率是DigitalGlobe公司竞争对手的5倍。图1是DigitalGlobe公司WorldView-3卫星与该公司运营的WorldView-2卫星拍摄的同一地区的卫星图像对比图,图2是DigitalGlobe公司WorldView-3卫星与其竞争对手卫星拍摄的同一地区的卫星图像对比图。从这两幅图片不难看出,WorldView-3卫星在成像分辨率、图像信噪比、纹理清晰度等方面具有明显优势。DigitalGlobe公司0.3m分辨率卫星图像对应的美国国家图像解析度分级标准(NIIRS)是5.7级,能够识别出地面井盖、建筑物通风孔、消防栓等物体。这一分辨率等级的图像能提供更清晰、更丰富的数据信息,有助于支撑改进决策,提高运营效率,增强政府民用、防务情报、能源以及研发等部门的天基对地观测应用能力。如图3所示,WorldView-3卫星拍摄的新西兰奥克兰市港口图像,其中港口停车场的地面停车位标志线清晰可见。此外,WorldView-3卫星还具备独一无二的短波红外(SWIR)成像能力,能够透视烟尘雾霾、识别矿物和人造物以及评估农作物健康状况。 图1WorldView-3和WorldView-2卫星拍摄的同一地区图像对比

遥感数据预处理

遥感讲座——遥感影像预处理 据预处理是遥感应用的第一步,也是非常重要的一步。目前的技术也非常成熟,大多数的商业化软件都具备这方面的功能。预处理的大致流程在各个行业中有点差异,而且注重点也各有不同。下面是预处理中比较常见的流程。 1、数据预处理一般流程 数据预处理的过程包括几何精校正、配准、图像镶嵌与裁剪、去云及阴影处理和光谱归一化几个环节,具体流程图如图所示。 各个行业应用会有所不同,比如在精细农业方面,在大气校正方面要求会高点,因为它需要反演;在测绘方面,对几何校正的精度要求会很高。 2、数据预处理的各个流程介绍 (一)几何精校正与影像配准 引起影像几何变形一般分为两大类:系统性和非系统性。系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。 在做几何校正前,先要知道几个概念: 地理编码:把图像矫正到一种统一标准的坐标系。 地理参照:借助一组控制点,对一幅图像进行地理坐标的校正。 图像配准:同一区域里一幅图像(基准图像)对另一幅图像校准

影像几何精校正,一般步骤如下, (1)GCP(地面控制点)的选取 这是几何校正中最重要的一步。可以从地形图(DRG)为参考进行控制选点,也可以野外GPS测量获得,或者从校正好的影像中获取。选取得控制点有以下特征: 1、GCP在图像上有明显的、清晰的点位标志,如道路交叉点、河流交叉点等; 2、地面控制点上的地物不随时间而变化。 GCP均匀分布在整幅影像内,且要有一定的数量保证,不同纠正模型对控制点个数的需求不相同。卫星提供的辅助数据可建立严密的物理模型,该模型只需9个控制点即可;对于有理多项式模型,一般每景要求不少于30个控制点,困难地区适当增加点位;几何多项式模型将根据地形情况确定,它要求控制点个数多于上述几种模型,通常每景要求在30-50个左右,尤其对于山区应适当增加控制点。 (2)建立几何校正模型 地面点确定之后,要在图像与图像或地图上分别读出各个控制点在图像上的像元坐标(x,y)及其参考图像或地图上的坐标(X,Y),这叫需要选择一个合理的坐标变换函数式(即数据校正模型),然后用公式计算每个地面控制点的均方根误差(RMS)根据公式计算出每个控制点几何校正的精度,计算出累积的总体均方差误差,也叫残余误差,一般控制在一个像元之内,即RMS<1。 (3)图像重采样 重新定位后的像元在原图像中分布是不均匀的,即输出图像像元点在输入图像中的行列号不是或不全是正数关系。因此需要根据输出图像上的各像元在输入图像中的位置,对原始图像按一定规则重新采样,进行亮度值的插值计算,建立新的图像矩阵。常用的内插方法包括: 1、最邻近法是将最邻近的像元值赋予新像元。该方法的优点是输出图像仍然保持原来的像元值,简单,处理速度快。但这种方法最大可产生半个像元的位置偏移,可能造成输出图像中某些地物的不连贯。 2、双线性内插法是使用邻近4个点的像元值,按照其距内插点的距离赋予不同的权重,进行线性内插。该方法具有平均化的滤波效果,边缘受到平滑作用,而产生一个比较连贯的输出图像,其缺点是破坏了原来的像元值。 3、三次卷积内插法较为复杂,它使用内插点周围的16个像元值,用三次卷积函数进行内插。这种方法对边缘有所增强,并具有均衡化和清晰化的效果,当它仍然破坏了原来的像元值,且计算量大。 一般认为最邻近法有利于保持原始图像中的灰级,但对图像中的几何结构损坏较大。后两种方法虽然对像元值有所近似,但也在很大程度上保留图像原有的几何结构,如道路网、水系、地物边界等。

常用电子表格公式

常用电子表格公式 1、查找重复内容公式:=IF(COUNTIF(A:A,A2)>1,"重复","")。 2、用出生年月来计算年龄公式: =TRUNC((DAYS360(H6,"2009/8/30",FALSE))/360,0)。 3、从输入的18位身份证号的出生年月计算公式: =CONCATENATE(MID(E2,7,4),"/",MID(E2,11,2),"/",MID(E2,13,2))。 4、从输入的身份证号码内让系统自动提取性别,可以输入以下公式: =IF(LEN(C2)=15,IF(MOD(MID(C2,15,1),2)=1,"男","女 "),IF(MOD(MID(C2,17,1),2)=1,"男","女"))公式内的“C2”代表的是输入身份证号码的单元格。 1、求和: =SUM(K2:K56) ——对K2到K56这一区域进行求和; 2、平均数: =AVERAGE(K2:K56) ——对K2 K56这一区域求平均数; 3、排名: =RANK(K2,K$2:K$56) ——对55名学生的成绩进行排名; 4、等级: =IF(K2>=85,"优",IF(K2>=74,"良",IF(K2>=60,"及格","不及格"))) 5、学期总评: =K2*0.3+M2*0.3+N2*0.4 ——假设K列、M列和N列分别存放着学生的“平时总评”、“期中”、“期末”三项成绩; 6、最高分: =MAX(K2:K56) ——求K2到K56区域(55名学生)的最高分; 7、最低分: =MIN(K2:K56) ——求K2到K56区域(55名学生)的最低分; 8、分数段人数统计: (1) =COUNTIF(K2:K56,"100") ——求K2到K56区域100分的人数;假设把结果存放于K57单元格; (2) =COUNTIF(K2:K56,">=95")-K57 ——求K2到K56区域95~99.5分的人数;假设把结果存放于K58单元格; (3)=COUNTIF(K2:K56,">=90")-SUM(K57:K58) ——求K2到K56区域90~94.5分的人数;假设把结果存放于K59单元格;

Sentinel-5P卫星影像-北京揽宇方圆

Sentinel-5P卫星影像-北京揽宇方圆 Sentinel-5P卫星是欧洲GMES(环境与安全全球监视)项目的预先运行低轨卫星任务。该任务由ESA和NSO(荷兰空间办公室)共同努力下促成。用于填补现有的大气监测监视载荷(包括ESA卫星Envisat上的SCIAMACHY和NASA卫星Aura上的OMI)与未来先进载荷(指ESA的卫星Sentinel-5)之间的空档期。Sentinel-5计划于2020年发射,而Envisat任务终结于2012年。 Sentinel-5P(低轨)、Sentinel-4(地球静止轨道)、和Sentinel-5(低轨)三个任务将用于GMES计划大气层服务,主要执行大气成分监测任务。Sentinel-5P任务的目标是在2015~2020年之间提供大气成分监测数据。随后

的继任者是Sentinel-5,计划于2020年发射。 Sentinel-5P与其他相关卫星的时间衔接关系 卫星情况: Sentinel-4和-5卫星任务和之前的任务(Sentinel-1,Sentinel-2和Sentinel-3)并不相像,它们作为从事气象卫星的“宿主”,用于监视大气成分,为哥白尼大气服务项目工作。该任务只有单独一台载荷设备TROPOMI,这是一款推扫型,四通道超光谱成像仪,覆盖了从紫外线到短波红外谱段。2011年12月8日,ESA与Astrium公司签署合同,Astrium公司作为Sentinel-5P卫星的主承包商。 Sentinel-5P卫星采用Astrium公司的AstroBus-L250M卫星平台,该平台继承自西班牙的SEOSat/Ingenio任务,在ESA的控制下发展起来,曾用于SPOT-6和-7卫星项目上,这是两颗商业成像卫星任务。该平台还曾用于出口

WorldView卫星影像命名规则

WorldView卫星影像命名规则 WorldView-2于2009年10月6日发射升空,运行在770Km高的太阳同步轨道上。更高的轨道带来了更短的重访周期和更好的拍摄机动性。作为Digital Globe公司当时先进的遥感卫星,它同样使用了控制力矩陀螺技术。这项高性能技术可以提供多达10倍以上的加速度的姿态控制操作,从而可以更精确的瞄准和扫描目标。卫星的旋转速度可从QuickBird的60秒减少至9秒,星下摆动距离达200km。所以,WorldView-2在太空中的角色就像一个神奇的画笔,能灵活的前后扫描、拍摄大面积的区域,能在单次操作中完成多频谱影像的扫描。除了更快速的采集和更高的精度,WorldView-2还是第一颗具有八波段多光谱的高分辨率遥感卫星,它不但具有传统遥感卫星的四个多光谱波段,还新增加了海岸线、黄、红边和近红外2波段。 一般情况下,我们订购的影像都是分块存储的,上图就是一幅分块影像的所有文件。 (1)*.ATT——姿态文件:存储第一个数据点的时间、数据点数目、点和姿态信息间隔。 (2)*.EPH——星历文件:存储第一个数据点获取的时间、数据点数目、点和星历信息之间的间隔。 (3)*.GEO——几何定标文件:虚拟相机的标注摄影测量参数,是基础产品的相机和光学系统之间的关系。

(4)*.IMD——影像元数据文件:存储影像关键信息,包括产品级别、角点坐标、投影信息、获取时间、分辨率、视线高度、方位角、云覆盖率等。对后期数据处理分析有很大帮助。 (5)*.RPB——RPC参数文件:包含影像的RPC参数,是影像物方空间坐标与像方空间坐标之间的数学映射。这是我们做卫星影像立体成图RPC空三的关键参数。 (6)*.STE——立体文件:包含构成立体的影像列表,重叠区域等。 (7)*.TIF——影像文件:原始影像格式为非标准16bit,普通看图软件无法打开显示,可将其转换成8bit后再打开。或者使用ArcGIS、ERdas等专业软件打开。 (8)*.TIL——影像分块文件:产品分块情况及各部分位置关系。 (9)*.XML——影像索引文件:包含索引、许可、影像元数据、分块、rpc 文件的索引信息。 (10)*README.TXT——高级影像索引文件:产品文件列表和辅助数据文件以及产品版本信息。 备注说明: 北京揽宇方圆200多颗遥感卫星数据资源,各卫星都有详细的价格体系表,不同行业根据自己遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星影像的价格则主要由以上参数决定。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,遥感行业的国家高新技术企业,整合全球200多颗遥感卫星数据资源,遥感卫星影像数据贯穿中国1960年至今的所有商业卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫

相关文档
相关文档 最新文档