文档库 最新最全的文档下载
当前位置:文档库 › 极值点偏移问题专题(三)一一题学懂极值点偏移5大套路

极值点偏移问题专题(三)一一题学懂极值点偏移5大套路

极值点偏移问题专题(三)一一题学懂极值点偏移5大套路
极值点偏移问题专题(三)一一题学懂极值点偏移5大套路

一题弄懂极值点偏移5大套路

已知()21ln 2

f x x x mx x =--,m ∈R .若()f x 有两个极值点1x ,2x ,且12x x <,求证:212e x x >(e 为自然对数的底数).

解法一:齐次构造通解偏移套路

证法1:欲证212e x x >,需证12ln ln 2x x +>.

若()f x 有两个极值点1x ,2x ,即函数()f x '有两个零点.又()ln f x x mx '=-,所以,1x ,2x 是方程()0f x '=的两个不同实根.

于是,有1122ln 0ln 0x mx x mx -=??-=?,解得1212

ln ln x x m x x +=+. 另一方面,由1122ln 0ln 0x mx x mx -=??

-=?,得()2121ln ln x x m x x -=-, 从而可得,21122112

ln ln ln ln x x x x x x x x -+=-+. 于是,()()22212111122211

1ln ln ln ln ln 1x x x x x x x x x x x x x x ??+ ?-+??+==--. 又120x x <<,设21

x t x =,则1t >.因此,()121ln ln ln 1t t x x t ++=-,1t >. 要证12ln ln 2x x +>,即证:()1ln 21t t t +>-,1t >.即:当1t >时,有()21ln 1

t t t ->+.设函数()()21ln 1t h t t t -=-+,1t ≥,则()()()()

()()222212111011t t t h t t t t t +---'=-=≥++, 所以,()h t 为()1.+∞上的增函数.注意到,()10h =,因此,()()10h t h ≥=. 于是,当1t >时,有()21ln 1

t t t ->+.所以,有12ln ln 2x x +>成立,212e x x >.

解法二 变换函数能妙解

证法2:欲证212e x x >,需证12ln ln 2x x +>.若()f x 有两个极值点1x ,2x ,即函数()f x '有两个零点.又()ln f x x mx '=-,所以,1x ,2x 是方程()0f x '=的两个不同实根.显然0m >,否则,函数()f x '为单调函数,不符合题意. 由()11121222

ln 0ln ln ln 0x mx x x m x x x mx -=??+=+?-=?

解法三 构造函数现实力

证法3:由1x ,2x 是方程()0f x '=的两个不同实根得ln x m x =,令()ln x g x x =,()()12g x g x =,由于()21ln x g x x

-'=,因此,()g x 在()1,e ↑,()e,+∞↓. 设121e x x <<<,需证明212e x x >,只需证明()2

12e 0,e x x >∈,只需证明()212e f x f x ??> ???

,即()222e f x f x ??> ???,即()222e 0f x f x ??-> ???

.来源: 微信公众号 中学数学研讨部落 即()()()()2e 1,e h x f x f x x ??=-∈ ???

,()()()

22221ln e 0e x x h x x --'=>,故()h x 在()1,e ↑,故()()e 0h x h <=,即()2e f x f x ??< ???.令1x x =,则()()2211e f x f x f x ??=< ???,因为2x ,()21e e,x ∈+∞,()f x 在()e,+∞↓,所以221e x x >,即212e x x >.

极值点偏移的典型例题(含答案)

极值点偏移的问题(含答案) 2 1212()ln ,(1()11 21()()3(),,f x x ax a f x x x a a f m f m f x x x x x e =-==?1.已知为常数) ()若函数在处的切线与轴平行,求的值;()当时,试比较与的大小; ()有两个零点证明:> 21212()ln (),,. f x x ax f x x x x x e =-?变式:已知函数,a 为常数。(1)讨论的单调性; (2)若有两个零点,试证明:>

2012120()+sin ,(0,1);2 ()()()()(),2. x f x x ax x f x a a f x f x f x f x x x x π=+∈=+2.已知(1)若在定义域内单调递增,求的取值范围; (2)当=-2时,记取得极小值为若求证> ( )2121212121 ()ln -,() 2 (1=()()()(1)()1 ,,0,2 f x x ax x a R f f x g x f x ax g x a x x f x f x x x x x =+∈-++=+≥ 3.已知(1)若)0,求函数的最大值; (2)令=-,求函数的单调区间; (3)若=-2,正实数满足()证明: 2 12122(1)1 (1)1,,x x x x x e -+>>4.设a>0,函数f(x)=lnx-ax,g(x)=lnx-证明:当时,g(x)>0恒成立; (2)若函数f(x)无零点,求实数a 的取值范围;(3)若函数f(x)有两个相异零点x 求证:x

12123 12()2ln ,1()2(),8f x x a a x a R f x f x x x x x a x x a =--∈

极值点偏移问题专题

极值点偏移问题专题(0)——偏移新花样(拐点偏移) 例1已知函数()22ln f x x x x =++,若正实数1x ,2x 满足()()12+=4f x f x , 求证:122x x +≥。 证明:注意到()1=2f ,()()()12+=21f x f x f ()()()12+=21f x f x f ()2 = +210f x x x '+> ()22 =2f x x ''-+,()1=0f '',则(1,2)是()f x 图像的拐点,若拐点(1,2)也是()f x 的对称 中心,则有12=2x x +,证明122x x +≥则说明拐点发生了偏移,作图如下 想到了“极值点偏移”,想到了“对称化构造”,类似地,不妨将此问题命名为“拐点偏移”,仍可用“对称化构造”来处理. 不妨设1201x x <≤≤,要证 ()() 1221212 212x x x x f x f x +≥?≥-≥?≥- ()() ()() 11114242f x f x f x f x ?-≥-?≥+- ()()()2F x f x f x =+-,(]0,1x ∈,则 ()()()()222212212F x f x f x x x x x '''=--????=++-+-+ ? ?-????

() () 1 4110 2 x x x ?? =--≥ ? ? - ?? , 得() F x在(]0,1上单增,有()()() 1214 F x F ≤=+=,得证。 2、极值点偏移PK拐点偏移常规套路 1、极值点偏移(()00 f x '=) 二次函数()() 12120 2 f x f x x x x =?+= 2、拐点偏移() () f x ''= ()()() 120120 22 f x f x f x x x x +=?+= 极值点偏移问题专题(1)——对称化构造(常规套路) 例1(2010天津) 已知函数()e x f x x- =. (1)求函数() f x的单调区间和极值; (2)已知函数() g x的图像与() f x的图像关于直线1 x=对称,证明:当1 x> ()() 12201 120 2 2 f x f x x x x x x x =?>- ?+> ()()() 120201 120 22 2 f x f x f x x x x x x x +=?>- ?+>

极值点偏移问题的两种常见解法之比较

极值点偏移问题的两种常见解法之比较 浅谈部分导数压轴题的解法 在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且 12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点12 02 x x x += ,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点12 02 x x x +≠的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、, 1212()()f x f x x x . 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”? 两个正数a 和b 的对数平均数定义:,,(,)ln ln ,, a b a b L a b a b a a b -?≠? =-??=? 对数平均数与算术平均数、 (,)2 a b L a b +≤≤,(此式记为对数平均不等式) 下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ln ln a b a b --, ln ln a b a b -<-, 只须证:ln a b < 1x =>,只须证:1 2ln ,1x x x x ≤-> 设1 ()2ln ,1f x x x x x =-+>,则222 21(1)()10x f x x x x -'=--=- <,所以()f x

极值点偏移问题

极值点偏移问题总结 一、 判定方法 1、极值点偏移的定义 对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程0)(=x f 的解分别为 21x x 、,且b x x a <<<21, (1)若 02 12x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移; (2) 若0212 x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0 x 左偏; (3)若02 12 x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0 x 右偏。 2、极值点偏移的判定定理 证明:(1)因为可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,则函数)(x f y =的单调递增(减)区间为),(0x a ,单调递减(增)区间为),(0b x ,又 b x x a <<<21,有 ),(221b a x x ∈+由于0)2('21>+x x f ,故),(2 02 1x a x x ∈+,所以02 1)(2 x x x ><+,即函数极大(小)值点0x 右(左)偏。

证明:(1)因为对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,则函数)(x f y =的单调递增(减)区间为),(0x a ,单调递减(增)区间为),(0b x ,又 b x x a <<<21,有01x x <,且0202x x x <-,又)2()(201x x f x f -<,故2012)(x x x -><,所以 02 1)(2 x x x ><+,即函数极大(小)值点0x 右(左)偏. 结论(2)证明略。 二、 运用判定定理判定极值点偏移的方法 1.方法概述: (1)求出函数()f x 的极值点; (2)构造一元差函数00()()()F x f x x f x x =+-- (3)确定函数()F x 的单调性; (4)结合(0)0F =,判断()F x 的符号,从而确定00(),()f x x f x x -+的大小关系。 2.抽化模型 答题模板:若已知函数()f x 满足12()()f x f x =,0x 为()f x 的极值点,求证:1202x x x +< (1)讨论函数()f x 的单调性并求出()f x 的极值点0x ; 假设此处()f x 在()0,x -∞上单调递减,在()0,x +∞ 上单调递增。 (2)构造00()()()F x f x x f x x =+--;

极值点偏移第2招--含参数的极值点偏移问题

含参数的极值点偏移问题,在原有的两个变元12,x x 的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数. ★例1. 已知函数x ae x x f -=)(有两个不同的零点12,x x ,求证:221>+x x . 不妨设12x x >,记12t x x =-,则0,1t t e >>, 因此只要证明:1 21 t t e t e +?>-01)1(2>+--?t t e e t , 再次换元令x t x e t ln , 1=>=,即证),1(,01 ) 1(2ln +∞∈>+-- x x x x 构造新函数2(1) ()ln 1 x F x x x -=- +,0)1(=F 求导2 ' 22 14(1)()0(1)(1)x F x x x x x -=- =>++,得)(x F 在),1(+∞上递增, 所以0)(>x F ,因此原不等式122x x +>获证.

★例 2. 已知函数()ln f x x ax =-,a为常数,若函数() f x有两个零点 12 ,x x,证明: 2 12 . x x e ?> 法二:利用参数a作为媒介,换元后构造新函数: 不妨设 12 x x >, ∵ 1122 ln0,ln0 x ax x ax -=-=,∴ 12121212 ln ln(),ln ln() x x a x x x x a x x +=+-=-, ∴12 12 ln ln x x a x x - = - ,欲证明2 12 x x e >,即证 12 ln ln2 x x +>. ∵ 1212 ln ln() x x a x x +=+,∴即证 12 2 a x x > + , ∴原命题等价于证明12 1212 ln ln2 x x x x x x - > -+ ,即证:112 212 2() ln x x x x x x - > + ,令1 2 ,(1) x t t x =>,构造 2(1) ln, 1 )1 ( t t g t t t - =-> + ,此问题等价转化成为例1中思路2的解答,下略. 法三:直接换元构造新函数: 1222 1211 ln ln ln , ln x x x x a x x x x ==?=设2 12 1 ,,(1) x x x t t x <=>, 则11 21 11 ln ln ln , ln ln tx t x x tx t t x x + ==?=, 反解出: 1211 ln ln ln ln,ln ln ln ln ln 111 t t t t x x tx t x t t t t ===+=+= --- , 故2 1212 1 ln ln2ln2 1 t x x e x x t t + >?+>?> - ,转化成法二,下同,略.

(完整版)导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题 极值点偏移问题常见的处理方法有⑴构造一元差函数()()()x x f x f F --=02x 或者 ()()()x x f x x f x F --+=00。其中0x 为函数()x f y =的极值点。⑵利用对数平均不等式。 2 ln ln ab b a b a b a +< --< 。⑶变换主元等方法。 任务一、完成下面问题,总结极值点偏移问题的解决方法。 1.设函数2 2 ()ln ()f x a x x ax a R =-+-∈ (1)试讨论函数()f x 的单调性; (2)()f x m =有两解12,x x (12x x <),求证:122x x a +>. 解析:(1)由2 2 ()ln f x a x x ax =-+-可知 2222(2)()()2a x ax a x a x a f x x a x x x --+-'=-+-== 因为函数()f x 的定义域为(0,)+∞,所以 ① 若0a >时,当(0,)x a ∈时,()0f x '<,函数()f x 单调递减, 当(,)x a ∈+∞时,()0f x '>,函数()f x 单调递增; ② 若0a =时,当()20f x x '=>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③ 若0a <时,当(0,)2 a x ∈-时,()0f x '<,函数()f x 单调递减, 当(,)2 a x ∈- +∞时,()0f x '>,函数()f x 单调递增; (2)要证122x x a +>,只需证12 2 x x a +>, (x)g =22 2(x)2,g (x)20(x)(x)a a f x a g f x x '''=-+-=+>∴=则为增函数。 只需证:12 x x ( )()02 f f a +''>=,即证()2121221212221+0+0a x x a x x a x x x x a -+->?-+->++(*) 又2222 111222ln ,ln ,a x x ax m a x x ax m -+-=-+-=两式相减整理得:

极值点偏移问题专题.(精选)

极值点偏移问题专题(0)——偏移新花样(拐点偏移) 例1已知函数()22ln f x x x x =++,若正实数1x ,2x 满足()()12+=4f x f x , 求证:122x x +≥。 证明:注意到()1=2f ,()()()12+=21f x f x f ()()()12+=21f x f x f ()2 =+210f x x x '+> ()22 =2f x x ''-+,()1=0f '',则(1,2)是()f x 图像的拐点,若拐点(1,2)也是()f x 的 对称中心,则有12=2x x +,证明122x x +≥则说明拐点发生了偏移,作图如下 想到了“极值点偏移”,想到了“对称化构造”,类似地,不妨将此问题命名为“拐点偏移”,仍可用“对称化构造”来处理. 不妨设1201x x <≤≤,要证 ()() 1221212 212x x x x f x f x +≥?≥-≥?≥- ()() ()() 11114242f x f x f x f x ?-≥-?≥+- ()()()2F x f x f x =+-,(]0,1x ∈,则 ()()()()222212212F x f x f x x x x x '''=--????=++-+-+ ? ?-????

() ( ) 1 4110 2 x x x ?? =--≥ ? ? - ?? , 得() F x在(]0,1上单增,有()()() 1214 F x F ≤=+=,得证。 2、极值点偏移PK拐点偏移常规套路 1、极值点偏移(()00 f x '=) 二次函数()() 12120 2 f x f x x x x =?+= 2、拐点偏移() () f x ''= ()()() 12 0120 22 f x f x f x x x x +=?+= 极值点偏移问题专题(1)——对称化构造(常规套路) 例1(2010 天津)已知函数()e x f x x- =. (1)求函数() f x的单调区间和极值; (2)已知函数() g x的图像与() f x的图像关于直线1 x=对称,证明:当1 x>时, ()() 12201 120 2 2 f x f x x x x x x x =?>- ?+> ()()() 120201 120 22 2 f x f x f x x x x x x x +=?>- ?+>

最新极值点偏移的问题(含答案)

1 极值点偏移的问题(含答案) 2 1212()ln ,(1()11 21()()3(),,f x x ax a f x x x a a f m f m f x x x x x e =-==?1.已知为常数) ()若函数在处的切线与轴平行,求的值;()当时,试比较与的大小; ()有两个零点证明:> 21212()ln (),,. f x x ax f x x x x x e =-?变式:已知函数,a 为常数。(1)讨论的单调性; (2)若有两个零点,试证明:>

2 2012120()+sin ,(0,1);2 ()()()()(),2. x f x x ax x f x a a f x f x f x f x x x x π=+∈=+2.已知(1)若在定义域内单调递增,求的取值范围; (2)当=-2时,记取得极小值为若求证>

3 ()2121212121 ()ln -,() 2 (1=()()()(1)()51 ,,0,f x x ax x a R f f x g x f x ax g x a x x f x f x x x x x =+∈-+++=+≥ 3.已知(1)若)0,求函数的最大值; (2)令=-,求函数的单调区间; (3)若=-2,正实数满足()证明: 2 12122(1)1 (1)1,,x x x x x e -+>>4.设a>0,函数f(x)=lnx-ax,g(x)=lnx-证明:当时,g(x)>0恒成立; (2)若函数f(x)无零点,求实数a 的取值范围;(3)若函数f(x)有两个相异零点x 求证:x

4 12123 12()2ln ,1()2(),8f x x a a x a R f x f x x x x x a x x a =--∈

极值点偏移的判定方法

极值点偏移的判定方法和运用策略 一、判定方法 1、极值点偏移的定义 对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若02 12 x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2) 若 02 12 x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏; (3)若02 1 2 x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏。 2、极值点偏移的判定定理 判定定理1 对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若0)2 ( '2 1>+x x f ,则02 1)(2 x x x ><+,即函数)(x f y =在区间),(21x x 上极大(小)值点0x 右(左)偏;(2)0若0)2('21<+x x f ,则021)(2 x x x <>+,即函数)(x f y =在区间),(21x x 上极大(小)值点0x 左(右)偏。 证明:(1)因为可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,则函数)(x f y =的单调递增(减)区间为),(0x a ,单调递减(增)区间为),(0b x ,又 b x x a <<<21,有 ),(221b a x x ∈+由于0)2('21>+x x f ,故),(2 021x a x x ∈+,所以02 1)(2 x x x ><+,即函数极大(小)值点0x 右(左)偏。 结论(2)证明略。 判定定理2 对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若)2()(201x x f x f -<,则 02 1)(2x x x ><+, 即函数)(x f y =在区间),(21x x 上极大(小)值点0x 右(左)偏;(2)若)2()(201x x f x f ->,则 02 1)(2x x x <>+, 即函数)(x f y =在区间),(21x x 上极大(小)值

极值点偏移问题的不等式解法

极值点偏移问题的不等式解法 我们熟知平均值不等式:,a b R +∈ 22 2 1122a b a b ab a b ++≤≤≤+ 即“调和平均数”小于等于“几何平均数”小于等于“算术平均值”小于等于“平方平均值” 等号成立的条件是a b =. 我们还可以引入另一个平均值:对数平均值: ln ln a b a b -- 那么上述平均值不等式可变为:对数平均值不等式 ,?>≠a b a b ln ln 2 a b a b ab a b -+-<< 以下简单给出证明: 不妨设a b >,设a bx =,则原不等式变为: 2(1)1,ln 1x x x x x -?><<+以下只要证明上述函数不等式即可. 以下我们来看看对数不等式的作用. 题目1:(2015长春四模题)已知函数()x f x e ax =-有两个零点12x x <,则下列说法错误的是 A. a e > B.122x x +> C.121x x > D.有极小值点0x ,且 1202x x x +< 【答案】C 【解析】函数()f x 导函数: '()x f x e a =-

有极值点ln x a =,而极值(ln )ln 0f a a a a =-<,a e ∴>,A 正确. ()f x 有两个零点:110x e ax -=,220x e ax -=,即: 11ln ln x a x =+① 22ln ln x a x =+② ①-②得: 1212ln ln x x x x -=- 根据对数平均值不等式: 121212 12ln ln x x x x x x +->=>-122x x ∴+> ,而1>121x x ∴< B 正确,C 错误 而①+②得:12122ln ln 2ln x x a x x a +=+<,即D 成立. 题目2:(2011辽宁理)已知函数()2ln (2)f x x ax a x =-+-. 若函数()y f x =的图像与x 轴交于,A B 两点,线段AB 中点的横坐标为0x ,证明: ()0'0f x < 【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问: 设11(,())A x f x ,22(,())B x f x ,12x x <,则1202 +=x x x , 2111ln (2)0x ax a x -+-=① 2222ln (2)0x ax a x -+-=② ①-②得:12121212ln ln ()()(2)()0x x a x x x x a x x --+-+--=,化简得: 121212 10()(2)ln ln x x a x x a x x -=>+---③ 而根据对数平均值不等式:

极值点偏移 专题

一、极值点偏移的含义 众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点. 如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为 221x x +,则刚好有02 12 x x x =+,即极值点在两根的正中间,也就是极值点没有偏移. 若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或 )2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同. 故单峰函数) (x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则2 2 1x x +与极值点m 必有确定的大小关系: 若221x x m +< ,则称为极值点左偏;若22 1x x m +>,则称为极值点右偏. 如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点2 21x x +的左边, 我们称之为极值点左偏.

二、极值点偏移问题的一般题设形式: 1. 若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数) (x f 的极值点); 2. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点); 3. 若函数)(x f 存在两个零点21,x x 且21x x ≠,令2 2 10x x x += ,求证:0)('0>x f ; 4. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令22 10x x x +=,求证: 0)('0>x f . 三、问题初现,形神合聚 ★函数x ae x x x f ++-=12)(2有两极值点21,x x ,且21x x <. 证明:421>+x x .

(完整版)极值点偏移问题专题.docx

极值点偏移问题专题(0 )——偏移新花样(拐点偏移) 例 1 已知函数f x2ln x x2x ,若正实数x1,x2满足 f x1 +f x2 =4 ,求证 : x1x2 2 。 证明:注意到 f1=2 , f x1 +f x2=2f 1 f x1 +f x2=2f1 f x =2 10 +2x x f x =2 2 , f 1 =0 ,则(1,2)是 f x 图像的拐点,若拐点(1,2)也是 f x 的x2 对称中心,则有x1x2 =2 ,证明 x1x2 2 则说明拐点发生了偏移,作图如下 想到了“极值点偏移”,想到了“对称化构造”,类似地,不妨将此问题命名为“拐点偏移”,仍可用“对称化构造”来处理. 不妨设 0 x11x2,要证 x1x22 x22x11 f x2f 2 x1 4f x1f2x1 4f x1f2x1 F x f x f2x, x0,1 ,则 F x f x f2x 2 2x12 2 2x 1 x2x

1 , 4 1 x 1 0 x 2x 得 F x 在 0,1上单增,有 F x F 1 2 1 4 ,得证。 2 、极值点偏移PK 拐点偏移常规套路 1 、极值点偏移( f x00 ) 二次函数 f x1 f x2x1x22x0f x 1 f x 2 x 2 2x x 1 x1x22x0 2 、拐点偏移 f x00 f x1 f x2 2 f x0 f x1 f x2 2 f x0x2 2x0 x1 x1 x2 2x0 x2 2x0 x1 极值点偏移问题专题( 1 )——对称化构造(常规套路) 例 1 ( 2010 天津)已知函数 f x xe x. (1)求函数f x的单调区间和极值; (2)已知函数g x的图像与f x的图像关于直线x 1对称,证明:当x 1时,

(完整word版)极值点偏移的好题

12.关于函数()2ln f x x x =+,下列说法错误..的是( ) A .2x =是()f x 的极小值点 B .函数()y f x x =-有且只有1个零点 C .存在正实数k ,使得()f x kx >恒成立 D .对任意两个正实数12,x x ,且21x x >,若()()12f x f x =,则124x x +> (21)(本小题满分12分) 已知函数2()(2)e (1)x f x x a x =-+-有两个零点. (I )求a 的取值范围; (II )设x 1,x 2是()f x 的两个零点,证明:122x x +<. 21.(本小题满分12分)已知函数f (x )=211x x -+e x . (1)求f (x )的单调区间; (2)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0. (1)解:函数f (x )的定义域为(-∞,+∞). f ′(x )=211x x -??' ?+?? e x +211x x -+e x =2222211e 11x x x x x x ??---+??(+)+?? =222[12]e 1x x x x -(-)+(+) . 当x <0时,f ′(x )>0;当x >0时,f ′(x )<0. 所以f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞). (2)证明:当x <1时,由于 211x x -+>0,e x >0, 故f (x )>0; 同理,当x >1时,f (x )<0. 当f (x 1)=f (x 2)(x 1≠x 2)时,不妨设x 1<x 2, 由(1)知x 1∈(-∞,0),x 2∈(0,1). 下面证明:?x ∈(0,1),f (x )<f (-x ),即证 22 11e e 11x x x x x x --+<++. 此不等式等价于 (1-x )e x - 1e x x +<0. 令g (x )=(1-x )e x -1e x x +,则 g ′(x )=-x e -x (e 2x -1).

极值点偏移问题专题(二)——函数的选取(操作细节)

这或许是史上最全的极值点偏移系列文章公众号极值点偏移系列文章,关注后按提示word分享 极值点偏移(0)——偏移新花样(拐点偏移) 极值点偏移(1)——对称化构造(常规套路) 极值点偏移(2)——函数的选取(操作细节) 极值点偏移(3)——变更结论(操作细节) 极值点偏移(4)——比值代换(解题方法) 极值点偏移(5)——对数平均不等式(本质回归) 极值点偏移(6)——泰勒展开(本质回归) 极值点偏移(7)——好题精选一题多解23例 其他相关文章 极值点偏移(8)——好题精选一题多解23例 极值点偏移(9)——好题精选一题多解23例

极值点偏移问题专题(二)——函数的选取(操作细节) 例4 已知函数()e x f x ax =-有两个不同的零点1x ,2x ,其极值点为0x . (1)求a 的取值范围; (2)求证:1202x x x +<; (3)求证:122x x +>; (4)求证:121x x <. 解:(1)()e x f x a '=-,若0a ≤,则()0f x '>,()f x 在R 上Z ,()f x 至多有一个零点,舍去;则必有0a >,得()f x 在(),ln a -∞上],在()ln ,a +∞上Z ,要使()f x 有两个不同的零点,则须有()ln 0e f a a .(严格来讲,还需补充两处变化趋势的说明:当x →-∞时,()f x →+∞;当x →+∞时,()f x →+∞). (3)由所证结论可以看出,这已不再是()f x 的极值点偏移问题,谁的极值点会是1呢?回到题设条件: ()e e 0e x x x f x ax ax a x =-=?=?=,记函数()e x g x x =,则有()()12g x g x a ==. 求导得()()2e 1x x g x x -'=,则1是()g x 的极小值点,我们选取函数()g x 来证(3)中结论122x x +>;顺带地,也可证(4)中结论121x x <.

最新高考数学极值点偏移问题专题复习

最新高考数学极值点偏移问题专题复习 【例1】已知函数有且仅有两个不同的零点,,则( B ) A .当时,, B. 当时,, C. 当时,, D. 当时,, 【例2】设函数,若的图像与图像有且仅有两 个不同的公共点,则下列判断正确的是( D ) A .当时, B .当时, C .当时, D .当时, 【例3】设函数,若的图像与图像有且仅有两个不同的公共点,则下列判断正确的是( B ) A .当时, B .当时, C .当时, D .当时, 【例4】(2010东城二模)已知函数. (Ⅰ) 若函数在上为单调增函数,求的取值范围; (Ⅱ) 设,,且,求证: . 解:(Ⅰ) )0(2)(2 3≠-+=a bx ax x f 1x 2x 0x x 0+x x 021a 021<+x x 021>x x 0>a 021>+x x 021>0a >12120,0x x x x +<>0a >12120,0x x x x +<<21 (),()(,,0)f x g x ax bx a b R a x = =+∈≠()y f x =()y g x =1122(,),(,)A x y B x y 0a <12120,0x x y y +<+>0a <12120,0x x y y +>+<0a >12120,0x x y y +<+<0a >12120,0 x x y y +>+>(1) ()ln 1 a x f x x x -=- +()f x (0,)+∞a m n + ∈R m n ≠ln ln 2 m n m n m n -+<-' 21(1)(1) ()(1) a x a x f x x x +--= -+

极值点偏移问题专题

极值点偏移问题专题(0)——偏移新花样(拐点偏移) 例1已知函数()22ln f x x x x =++,若正实数1x ,2x 满足()()12+=4f x f x , 求证:122x x +≥。 证明:注意到()1=2f ,()()()12+=21f x f x f ()()()12+=21f x f x f ()2 = +210f x x x '+> ()22 =2f x x ''-+,()1=0f '',则(1,2)就是()f x 图像得拐点,若拐点(1,2)也就是()f x 得对称 中心,则有12=2x x +,证明122x x +≥则说明拐点发生了偏移,作图如下 想到了“极值点偏移”,想到了“对称化构造”,类似地,不妨将此问题命名为“拐点偏移”,仍可用“对称化构造”来处理. 不妨设1201x x <≤≤,要证 ()() 1221212 212x x x x f x f x +≥?≥-≥?≥- ()() ()() 11114242f x f x f x f x ?-≥-?≥+- ()()()2F x f x f x =+-,(]0,1x ∈,则 ()()()()222212212F x f x f x x x x x '''=--????=++-+-+ ? ?-????

()( )1 41102x x x ??=--≥ ? ?-?? , 得()F x 在(]0,1上单增,有()()()1214F x F ≤=+=,得证。 2、极值点偏移PK 拐点偏移常规套路 1、 极值点偏移(()00f x '=) 二次函数()()121202f x f x x x x =?+= 2、拐点偏移()() 00f x ''= ()()()12012022f x f x f x x x x +=?+= 极值点偏移问题专题(1)——对称化 构造(常规套路) 例1(2010天津) 已知函数()e x f x x - =. (1)求函数()f x 得单调区间与极值; (2)已知函数()g x 得图像与()f x 得图像关于直线1x =对称,证明:当1x >时,()()f x g x >; (3)如果12x x ≠,且()()12f x f x =,证明:122x x +>. ()()12201 120 22f x f x x x x x x x =?>-?+>()()()120201120 222f x f x f x x x x x x x +=?>-?+>

高中数学极值点偏移问题

一:极值点偏移(俗称峰谷偏)问题的定义 对于可导函数在区间(a,b)上只有一个极大(小)值点,方程(f(x)=m)的解分别为且<

1) 若)()(x b f x a f -=+,则)(x f 的图象关于直线2 b a x += 对称;特别地,若)()(x a f x a f -=+(或f(x)=f(2a-x)),则)(x f 的图象关于直线a x =对称 2) 若函数f(x)满足 有下列之一成立: ①f(x)在 递增,在(a,2a)递减,且f(a-x)<(>)f(a+x)(f(x)<(>)f(2a-x)) ②f(x)在(0,a)递减,在(a,2a)递增,且f(a-x)>(<)f(x+a)(f(x)>(<)f(2a-x)) 则函数f(x)在(0,2a)的图象关于直线x=a 偏移(偏对称)(俗称峰谷偏函数)其中① 极大 值左偏(或右偏)也称峰偏左(或右)②极小值偏左(或偏右)也称谷偏左(或右); 性质: 1) )(x f 的图象关于直线a x =对称若 则 <=> ,( =0, ); 2)已知函数是满足条件的极大值左偏(峰偏左)若则 则 ,及 极值点偏移解题步骤: ①求函数f(x)的极值点; ②构造函数F(x)=f(x+)-f( (F(x)=f( )-f( , F(x)=f(x+)-f( , F(x)=f(x)-f( )确定F(x)单调性 ③结合F(0)=0(F(-)=0,F(判断F(x)符号从而确定f(x+),f( ( f(x+) 与f( f(x)与f(的大小关系; 答题模式: 已知函数y=f(x)满足,为函数y=f(x)的极值点,求证: ①求函数f(x)的极值点; ②构造函数F(x)=f(x+)-f( 确定F(x)单调性 ③判断F(x)符号从而确定f(x+),f( 的大小关系; 假设F(x)在(0,+单调递增则F(x)>F(0)=0,从而得到x>0时f(x+)>f( ④

(完整版)极值点偏移问题专题——对数平均不等式

极值点偏移——对数平均不等式(本质回归) 笔者曾在王挽澜先生的著作《建立不等式的方法》中看到这样一个不等式链: , 不曾想,其中一部分竟可用来解极值点偏移问题. 对数平均不等式:对于正数,,且,定义为,的对数平均值,且 ,即几何平均数<对数平均数<算术平均数,简记为. 先给出对数平均不等式的多种证法. 证法1(对称化构造) 设 ,则, ,构造函数,则.由得,且在上,在上,为的极大值点.对数平 ,等价于,这是两个常规的极值点偏移问题,留给读者尝试. 证法2(比值代换) 令,则 ,构造函数可证. 证法3(主元法) 不妨设 , 1 1 1ln 2e e 2ln b a b a a a b b ab ab b a b a b a b a b b b a a a ---??-+?? < <<<<< ? ?+ -?? ??a b a b ≠ln ln a b a b --a b ln ln 2 a b a b a b -+< -()()(),,,G a b L a b A a b <<0 ln ln a b R a b -= >-ln ln k a k b a b -=-ln ln k a a k b b -=-()ln f x k x x =-()()f a f b =()1k f x x '= -()0f k '=()f x ()0,k Z (),k +∞]x k =()f x 2a b k +<< 2 2a b k ab k +>??()()11ln ln 2ln 2 b t b t a b a b a b t -+-+<

极值点偏移的好题

12.关于函数()2ln f x x x =+,下列说法错误..的就是( ) A.2x =就是()f x 的极小值点 B.函数()y f x x =-有且只有1个零点 C.存在正实数k ,使得()f x kx >恒成立 D.对任意两个正实数12,x x ,且21x x >,若()()12f x f x =,则124x x +> (21)(本小题满分12分) 已知函数2 ()(2)e (1)x f x x a x =-+-有两个零点、 (I)求a 的取值范围; (II)设x 1,x 2就是()f x 的两个零点,证明:122x x +<、 21.(本小题满分12分)已知函数f (x )= 2 11x x -+e x 、 (1)求f (x )的单调区间; (2)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0、 (1)解:函数f (x )的定义域为(-∞,+∞). f ′(x )=211x x -??' ?+?? e x +211x x -+e x =2222211e 11x x x x x x ??---+??(+)+?? =222[12]e 1x x x x -(-)+(+) 、 当x <0时,f ′(x )>0;当x >0时,f ′(x )<0、 所以f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞). (2)证明:当x <1时,由于211x x -+>0,e x >0,

故f (x )>0; 同理,当x >1时,f (x )<0、 当f (x 1)=f (x 2)(x 1≠x 2)时,不妨设x 1<x 2, 由(1)知x 1∈(-∞,0),x 2∈(0,1). 下面证明:?x ∈(0,1),f (x )<f (-x ),即证 2211e e 11x x x x x x --+<++、 此不等式等价于 (1-x )e x -1e x x +<0、 令g (x )=(1-x )e x - 1e x x +,则 g ′(x )=-x e -x (e 2x -1). 当x ∈(0,1)时,g ′(x )<0,g (x )单调递减,从而g (x )<g (0)=0、即 (1-x )e x -1e x x +<0、 所以?x ∈(0,1),f (x )<f (-x ). 而x 2∈(0,1),所以f (x 2)<f (-x 2), 从而f (x 1)<f (-x 2). 由于x 1,-x 2∈(-∞,0),f (x )在(-∞,0)上单调递增,所以x 1<-x 2,即 x 1+x 2<0、 21、(本小题满分12分) 已知函数()()ln ,a x f x b a b R x =+∈的图象在点()()1,1f 处的切线方程为1y x =-、 (Ⅰ)求实数,a b 的值及函数()f x 的单调区间;

相关文档
相关文档 最新文档