文档库 最新最全的文档下载
当前位置:文档库 › 太阳能吸附式制冷综述分解

太阳能吸附式制冷综述分解

太阳能吸附式制冷综述分解
太阳能吸附式制冷综述分解

太阳能吸附式制冷综述

学号姓名

摘要:介绍了太阳能吸附式制冷的基本原理与特点,对吸附式制冷技术的研究现状做了简要的分析,包括吸附工质对的性能、吸附床强化、系统循环与结构。在此基础上,介绍了太阳能吸附式制冷的应用,主要应用的方面有低温储粮、制冷与供热联合、吸附式空调。

关键词:吸附式制冷研究现状应用

1. 前言

随着能源与环境问题与社会经济发展矛盾的日益突出,新能源的发展越来越受到各国的关注,对风能、水能、潮汐能的开发与研究力度不断增加,而这些能源的利用与发展根本上说是离不开太阳的。在制冷空调领域,太阳能制冷不仅可以减少电力消耗,同时由于没有采用氟氯烃类物质,不会对大气臭氧层产生破坏,属于清洁能源,符合环保要求。另外,采用太阳能制冷其热量的供给和冷量的需求在季节和数量上高度匹配,在夏季太阳辐射强、气温高,制冷量就越大。因此,利用太阳能制冷技术对节约常规能源,保护自然环境都具有十分重要的意义。

太阳能固体吸附式制冷技术由于利用了太阳能而减少了对传统能源的使用,井通过使用天然友好的制冷剂从而避免了对环境的破坏。太阳能固体吸附式制冷具有结构简单、初投资少、运行费用低、无运动部件、噪音小、寿命长且能适用于振动或旋转等场所的优点。而且,太阳能在时间和地域上的分布特征与制冷空调的用能特征具有高度的匹配性,因此,利用太阳热能驱动的固体吸附式制冷技术的研究具有极大的潜力和优势[1]。

2. 太阳能固体吸附式制冷基本原理

固体吸附式制冷是利用固体吸附剂(如沸石、活性炭、氯化钙)对制冷剂(如水、甲醇、氨)的吸附和解吸作用实现制冷循环的,这种吸附与解吸的过程引起压力的变化,相当于制冷压缩机的作用,吸附剂的再生可以在65~200℃下进行,这很适合于太阳能的利用。吸附式制冷具有结构简单、运行费用低、无噪音、无环境污染、基本不含动力部件,能有效利用低品味热源等一系列有点[2]。

太阳辐射具有间歇性,因而太阳能吸附制冷系统都是以基本循环工作方式运行制冷的,Critoph把太阳能固体吸附式制冷循环描述成四个阶段,即定容加热过程、定压脱附过程、定容冷却过程、定压吸附过程[4]。如图所示,表示一个太阳能冰箱为原型的固体吸附式制冷装置,它的组成部分包括用太阳能供热的吸附/发生器、冷凝器、蒸发器、阀门、贮液器。其工作过程简述如下,该过程的热力循环如图所示:

太阳能吸附式制冷机工作简图

热力循环图

(1)循环从早上开始,关闭阀门,处于环境温度Ta2 的吸附床被太阳能集热器加热,此时只有少量的工质脱附出来,吸附率x(表示单位质量的吸附剂对制冷剂的吸附质量)近似为常数,吸附床内的压力不断升高,从蒸发压力Pe 升高到冷凝压力Pc,此时吸附床温度达到Tg1。

(2)打开阀门,在恒压条件下吸附器中的吸附制冷剂继续受热直至温度达到最大解吸温度Tg2。与此同时,被吸附的制冷剂不断地脱附出来,并在冷凝器中冷凝,冷凝下来地液体进入蒸发器中。

(3)关闭阀门,此时已是傍晚,吸附床随太阳日照的消失逐渐冷却,相应的内部压力下降到相当于蒸发温度下工质的饱和压力,即从Pc 下降到Pe,该过程中吸附率也近似不变,最终温度为Ta1。

(4)打开阀门,蒸发器中的制冷剂液体因压力骤减而迅速汽化,实现蒸发制冷。蒸发出来的气体进入吸附床被吸附,该过程一直进行到第二天早晨。吸附过程放出大量的热,由冷却水或外界空气带走,吸附床最终温度为Ta2。

由以上分析可见,太阳能吸附式制冷系统的工作循环过程是间歇式的。系统运行时,白天为解析过程,晚上为吸附制冷过程。太阳能吸附式制冷主要存在以下难点[4]:

(1)吸附式制冷基本循环不能实现连续制冷,吸附床传热传质性能差,吸附/解吸所需的时间长,循环周期长,系统调节滞后时间长,制冷功率低,制冷系数小,能量利用率低。

(2)晚上制冷不符合空调用能规律,大大限制了太阳能吸附式制冷的应用。

(3)太阳能是低品位能源,且供能不连续,另外,太阳能集热技术难以保证高温而稳定的驱动热源,因此,系统需要较低的驱动温度。这将是推广吸附式制冷技术实用化进程所面临的最大的问题。

(4)吸附式制冷系统难以根据工况的变化迅速及时地做出稳定的调节。

3. 吸附式制冷研究现状

固体吸附制冷技术的商品化应用开发始于20世纪30年代,但在接下来大约50年时间里,由于吸附式循环制冷机制冷效率低、一次性投资大,且当时正值蒸汽压缩式制冷机蓬勃发展,致使吸附式制冷机的发展受到一定限制。自70年代以来,由于全球性能源危机日益加剧,人们又重新审视这种以低品位热能为动力的吸附式制冷技术。为提高制冷效率,降低操作费用,国内外学者做了大量深入系统的研究,从吸附工质对性能、吸附床强化、系统循环及结构三个方面推动吸附制冷技术的发展[5]。

3.1 吸附工质对性能

吸附制冷工质对是吸附制冷系统的核心。吸附工质对的性能对系统性能系数、温升幅度、设备材料及系统一次性投资应用场合等影响很大,从根本上决定固体吸附制冷系统的性能和结构。在不间的应用环境下,选用合适的工质对不仅能大大提高制冷效率,还能节约成本,增强机制的安全性和可靠性[6]。因此,吸附制冷的关键就在于工质对的选择及性能强化。

根据吸附制冷循环的基本原理,崔群[7]等人对吸附剂提出如下要求:

(1)吸附剂吸附容量要大;

(2)吸附等温线平坦;

(3)吸附容量对温度变化敏感;

(4)吸附剂与吸附质相容。

对吸附质(制冷剂)要求:

(1)单位体积蒸发潜热大;

(2)合适的冰点,适当的饱和蒸汽压;

(3)无毒,不可燃;

(4)无腐蚀性,有良好的热稳定性。

吸附剂可分为物理吸附剂与化学吸附剂,常用物理吸附剂大致有活性炭、硅胶、沸石、活性氧化铝和活性碳纤维等一些多孔性物质,化学吸附剂有金属氧化物、金属氢化物,金属氧化物以氯化钙、氯化锶为最佳[8]。而吸附质常用的是氨、甲醇和水。目前常研究的吸附工质对主要有沸石一水、硅胶一水、活性炭一甲醇、氨一氯化钙、氯化锶一氨等。

沸石一水工质对的解吸温度范围较宽(70~250℃),使系统对环境的适应能力强。但该系统蒸发温度大于0℃,不能用于制冰,另外系统是真空系统,对真空密封性要求很高,而蒸发压力低也使得吸附过程较慢,需要在高驱动温度下才具有较高的解吸速度,应用于太阳能制冷不是很理想。

硅胶水一水的解吸温度较低(100℃以下),解吸性能好,但超过120℃硅胶将被烧毁,且其吸附量较小,制冷能力较低。

活性炭一甲醇是太阳能吸附制冷中应用最广的工质对,其吸附量较大,解吸温度不高(100℃左右),吸附热也较小,甲醇的熔点低(一98℃),使得系统可用

于制冰,但是甲醇温度超过150℃将分解,另外,甲醇有毒,不利于其广泛应用。

华南理工大学的陈砺等[9]建立了化学吸附式制冷单元,对氯化锶~氨工质对的制冷性能进行研究,实验研究结果表明,在相同的制冷工况下,氯化锶一氨工质对的制冷量远远大于活性炭一甲醇工质对。在热源温度为100℃时,他们所用的工质对单位质量吸附剂的制冷量是活性炭一甲醇工质对的3.2倍。

物理吸附过程简单,吸附多为多孔介质,接触热阻大,导热性能差,吸附热利用率低。化学吸附过程复杂,设计质量热量传递及化学反应多个过程,影响因素多且难以确定,吸附能力强,制冷效率高。

3.2 吸附床强化

目前的吸附床大多采用平板式和圆管式结构。平板式结构单位容积内充装的吸附剂量较大,板式吸附床制作工艺相对简单,传热传质效果好,易于添加翅片等强化传热结构,但系统真空度较难保证,且整体比热容较大。圆管式吸附床可在床内设置多根开有槽或孔的内插管作为吸附质的传质通道,有效减小传质阻

力,缩短吸附质进出床层的流程,减小压降,从而强化了传质,同时床内温度场分布更均匀。内插管可直接与冷凝器管路相通,也有利于吸附质蒸汽的合理流动。圆管式结构的传热效率高,承压能力好,因此各国研究人员多采用圆管式吸附床结构以强化传热。

从现有的理论基础和设备条件来看,增强吸附床内部的热传导无疑是提高吸附床整体效率最便捷有效的方法。下图为无翅片、翅片和肋片,13X—水工质对在三种床层结构下的脱附量随脱附时间的变化关系。可以看出:在相同脱附时间下,简单二维模型脱附量最小,翅片和肋片换热型脱附量相当,但肋片换热型脱附量更大,因此肋片换热型吸附床传热效果比较好,从结构安装上讲肋片也比较合理的[10]。

兰青等[11]从改善吸附床的传热和接收太阳能的性能上着手,在使用钢化玻璃代替表面钢板并增强吸收率的基础上,采用铜片将吸附床内部布置成蜂窝状,使吸附剂均匀填充于吸附床内,从而减少了传热热阻。为了防止钢化玻璃因负压而破碎,在吸附床里用七号槽钢做支架,同时也起到传热肋片的作用。在吸附床的底部用不锈钢丝网将制冷剂与吸附剂隔开,这样既不会使活性炭下漏,也没有堵住制冷剂通道。经试验测试,采用该吸附床的太阳能制冰机可每天制备4.7kg 的冰和2.3kg的冰水混合物,COP约为0.157。

李秋英等[12]使用分子筛一水作为工质对提出并设计了一种新型吸附床,其结构如图所示。这种吸附床是在壳管式吸附床内放置多个吸附单元管,吸附单元管内放置固体吸附剂,管中央留有传质通道,管外走传热介质,对管内吸附剂进行加热和冷却,实现吸附床的制冷循环。吸附床的脱附速率如图所示,由图可知吸附床内压力和脱附速率在加热初始阶段上升速度较快达到最大值后又逐渐下降这与太阳辐射的减弱是相当吻合的这种结构有良好的传热性能,设计的吸附床结构达到了以优化的目的。

3.3 系统循环及结构

目前,吸附式制冷循环方式取得了重要进展,提出了众多的循环方式,在这里主要介绍连续回热循环、回质循环、对流热波循环三种吸附式制冷循环[13]。

3.3.1 连续回热循环

连续回热型循环是在基本吸附式制冷循环的基础上采用双吸附器构成的。连续回热型循环不但使制冷过程成为连续,而且通过利用吸附器A降温吸附过程放出的部分吸附热量(称为回热)来加热吸附器B使其解吸。采用连续回热型循环可以回收30%~40%左右的吸附热,C0P比同样工况下的基本制冷循环的COP提高50%~70左右。其系统示意图和热力图如下[14]:

如系统示意图所示,连续回热型制冷循环系统的工作过程如下:

(1)假设换热流体沿图示方向流动,则吸附器1处于加热解吸状态,吸附器2处于冷却吸附状态.打开阀门A和D,关闭阀门B和C,让吸附器1与玲凝器3连通,吸附器2与蒸发器4连通。这样保持到吸附器1被加热到最高解吸温度Tg2、吸附器2被冷却到吸附温度Ta2为止。制冷工作由吸附器2的吸附制冷过程完成。

(2)改变换热流体的流动方向,则吸附器1处于冷却吸附状态,吸附器2处于加热解吸状态。打开阙门丑和C,关闭阀门且和D,让吸附器1与蒸发器4连通,吸附器2与冷凝器3连通。这样保持到吸附器1被冷却到吸附温度Ta2、吸附器2被加热到最高解吸温度Tg2为止。制冷工作由吸附器1的吸附制冷过程完成。

(1)、(2)过程交替反复,就可以达到连续制冷的目的。

3.3.2 回质循环

如图所示a2-a3-g1’-g2-g3-a1’-a2为回质循环过程,采用A、B两床反相循环,A床循环由a2点开始,B床循环由g2点开始。当两床分别处于循环半周期末,即状态g2、a2,A床温度和压力都很高,而B床则处于低温低压状态,此时通过阀门将两床连通,可使A床的高温高压蒸气进入B床。这样A床在压力降低的同时又促进了自身的解吸,B床则在压力升高的同时增加了吸附量,直到两床压力平衡(图中的a3、g3点)为止,对应压力近似为冷凝压力和蒸发压力之平均值,回质结束后的过程同基本循环。回质过程可以缩短循环时间,大幅度地提高单位质量吸附剂制冷量,最高可达80%以上,从而大幅度提高循环制冷量[15]。

回质循环系统图

回质循环热力图

3.3.3 对流热波循环

如图(a)所示,制冷剂气体在床外的换热器中加热到一定温度后进入吸附床,在吸附床内制冷剂气体与吸附剂固体之间直接进行对流换热,制冷剂气体放出热量而加热吸附剂,使之解析;解析出的气体随加热气流一起流出吸附床,气体温

度下降,一部分经气体循环泵送往换热器加热升温后继续用来加热吸附床,另一部分气体进入冷凝器冷凝成液体后流入集液器。加热解析过程结束,切换系统使之进入吸附阶段,如图(b)所示。气体循环泵反向输送气体,将温度较低的气体送入吸附床冷却吸附剂,使之降温并吸附制冷剂气体;出口处气体质流量较入口处减少,依靠来自蒸发器的气体补偿;流出吸附床的气体经换热器降温后由循环泵送往吸附床。无论是加热过程还是冷却过程,床内沿气流方向将出现较陡峭的温度梯度,且随着时间的推移,温度梯度(温度波)沿气流方向移动[16]。

当两床联合运行时,可将吸附过程中换热器放出的热量用来加热解析过程中流出吸附床的气体而实现回热。为获得尽可能高的回热率,需要控制两吸附床的运行使加热解析过程和冷却吸附过程相匹配。如何协调系统的运行,需要通过实验或通过模拟计算加以研究。

综合比较三种循环方式的特点,连续回热循环结构简单,容易实现,COP较普通循环提高较大,回质循环可以缩短循环时间,提高循环制冷量,热波循环可以大幅度提高循环效率,英国Critoph对该循环的近期研究表明,其COP可达到0.9。连续回热与回质循环COP对比如下图所示,对流热波的循环的计算工况和性能参数如下图所示:

回热循环与回质循环比较

对流热波循环性能参数表

4. 太阳能吸附式制冷的应用

由于空调制冷会消耗大量的电能,全国所有城市都出现了季节性用电紧张,因此需要寻找新的制冷方式,积极利用天然能源。太阳能吸附式制冷引起了人们广泛的关注,可以应用于低温粮食储存、制冷与供热联合等许多方面。

4.1 低温粮食储存

太阳能吸附式制冷系统主要由真空管太阳能热水系统、吸附式制冷机组、冷却塔及风机盘管构成,循环方式是间歇式制冷,系统组成如图1所示[17]。

太阳能热水系统采用全玻璃u型真空管集热器,总集热面积为49.4m2。循环

水泵的运行由温差控制器单独控制,与制冷机组的运行无关。分层蓄热水箱总容量0.6m3,挡流板上部的容量为0.24m3。

上午,在制冷机组开始运行前,阀13关闭,阀12开启,热水箱中上部分的水被快速加热。当热水箱中上部分的水温高于65cc时,制冷机组开始运行。此后,阀13也开启,热水箱中下部的水也逐渐加热。下午,当热水箱中上部的水温低于65℃时,制冷机组停止运行。

吸附制冷机组由两个相同的吸附单元及一个二级蒸发器组成。采用可编程逻辑控制器PLC控制电动球阀(v0一V10)和真空阀(V11)的开闭,制冷机组可自动以回热回质循环方式运行。每个吸附单元包含吸附器(吸附器中填充约50kg微孔球形硅胶)、冷凝器和蒸发器各一个。在两个吸附单元的蒸发器下面,设置了一个二级蒸发器。冷冻水流经二级蒸发器,二级蒸发器下部的工质受热蒸发,蒸发的工质与吸附单元的蒸发器进行冷凝换热,可实现冷量的单

向传输,减少冷量的损耗,从而提高系统的性能。

太阳能吸附式制冷用于低温粮食储存系统图

实验测试结果表明,在16~2lMJ/井的太阳辐射条件下,该系统能够平稳地向粮仓输送14~22℃的冷空气,系统的日平均制冷功率约为3.25~4.43kw,太阳能制冷系数约为0.096~0.131,包括粮仓送风风机功耗的电制冷系数约为2.03。

2.77。与目前的谷物冷却机相比,太阳能制冷低温储粮系统具有较大的节能优势。

4.2 制冷与供热联合

为了实现不问断制冷,整个循环系统设置二个吸附发生器,它们交替运行。发生器由三部分组成:保温外壳、吸附床、循环水系统。由于采用了水浴式吸附制冷方式,将吸附床置于热水箱中,通过加热水加热吸附床,系统传热性能好,所以可以在保温外壳内设置大量吸附床,这样就相当于在同样大小的空间内成倍的增加了系统的循环量,也可以说是大量节省了空间。这对太阳能吸附式制冷这种要求大面积集热场地的制冷方式来说是非常可贵的。该循环方式的结构如下图所示:

循环工作过程如下:

(1)当发生器4解吸时,关闭真空阀门10和11,以及水阀17和19,打开水阀18和20,处于初始温度的太阳能集热器3接受太阳辐射,吸附发生器4中的循环水循

环于发生器与集热器之间。循环水在集热器被加热,然后流到吸附发生器中加热吸附床,一开始吸附床内只有小量的制冷剂脱附出来,吸附率近似为常数。随着发生器温度升高,吸附床内部压力亦不断升高,从蒸发压力升高到冷凝压力。此时四通阀27b-c和a-d想通,并打开真空阀10及节流阀9,随着太阳辐射的积累,水温进一步升高,被吸附的制冷剂不断脱附出来,并通过放置于水箱6内的冷凝器25,被冷凝为液体进入储液器7中,然后通过节流阀9进入蒸发器8中。

(2)与此同时,发生器5吸附,与其连接的水阀15打开,将冷水注入发生器5内,其压力和温度降低到一定值时,打开真空阀11,通过四通阀吸附蒸发器8中的制冷剂,达到制冷的目的。

(3)当发生器4充分解吸后,关闭水阀18和20以及打开14,将发生器4中热水注入热水箱2中,以供用户使用,然后关闭水阀16。打开水阀17和19,并使四通阀换向,即a-b和c-d想通。受集热器加热后,发生器5开始解吸,与此同时水阀16打开,将冷水注入发生器4中,使发生器4开始吸附。这样如此反复循环,便可达到连续制冷。

4.3 吸附式空调

零碳馆位于北京奥林匹克森林公园内。建筑面积600m2,单层建筑,其主要用做基金会办公室,图中为零碳馆实景图。在此建筑上安装的太阳能空调系统主要功能为吸附式空调制冷此外还有采暖、热水、通风功能[19]。

系统的原理图如下:

系统的夏季功能主要为制冷。其运行原理为:太阳能集热器获得热量通过板式换热器进入A水箱,A水箱温度超过T1时,启动吸附式空调;A水箱温度小于T2时,空调停止。此时A水箱为集热水箱,B水箱为A水箱过热缓解。制冷末端设备为毛细管网,其铺设面积为200m2,对冷水要求为18℃左右。

机组热源水、冷却水温度变化时,机组性能随之变化。额定工况即热水温度80℃,冷却水温度30℃时,机组制冷功率为10kW,热力COP为0.5。在热水温度85℃,冷却水温度33℃时,流量与额定工况相同。

5. 结语

太阳能固体吸附式制冷技术与传统的蒸汽或电动压缩式制冷相比还不是很成熟,但随着太阳能同体吸附式制冷技术研究的不断进步,良好的社会与经济效益都将促进吸附式制冷技术的实用化进程。同时,由于节能和环保优势,决定了它具有广阔的应用前景。相信以后在政府的大力支持下,不断鼓励广大民众使用太阳能吸附式制冷装置,再加上大批在太阳能吸附制冷领域的研究人员的不懈努力下,太阳能固体吸附式制冷技术将逐步实现民用商业化,为社会的发展和人类的进步做出更大的贡献。

参考文献:

[1] 赵加佩,陈宁,冻小飞. 太阳能吸附式制冷技术进展综述. 能源研究与信息[J]. 2007,23(1).

[2] 郑贤德. 制冷原理与装置. 北京:机械工业出版社[M]. 2008,3.

[3] 於俊杰. 太阳能固体吸附式制冷系统概述. 中国房地产业[J]. 2013(3).

[4] 郑家林,郑学林. 太阳能固体吸附式制冷技术的研究与进展. 绿色科技[J]. 2011(9).

[5] 周广英,朱冬生,吴会军. 吸附式制冷工质对的研究进展. 制冷[J]. 2004,23(3).

[6] Cui Qun,Chen Haijun,Yao Huqing. Studies on Benign Working Pairs for Absorption Refrigerator. Journal of Southeast University[N]. 2002(3).

[7] 崔群. 固体吸附式制冷吸附剂的研究进展. 南京化工大学学报(自然科学版)[N]. 1999(06).

[8] 王如竹. 吸附式制冷. 北京:机械工业出版社[M]. 2001.

[9] 陈砺,方利国,谭蕴科. 氯化锶-氨吸附工质制冷性能的实验研究. 太阳能学报[N]. 2002(04).

[10] 崔群,陈海军,吴兵生. 固体吸附式制冷系统中吸附床内传热过程的数值模拟. 四川大学学报(工程科学版)[N]. 2002(05).

[11] 兰青,夏朝凤,李明. 基于太阳能吸附式制冷中新型吸附床的研究. 农业工程学报[N]. 2006(04).

[12] 李秋英,魏琪. 太阳能固体吸附式制冷吸附床的设计及数值模拟分析. 低温工程[J]. 2006(4).

[13] 周远,王如竹. 低温制冷工程. 北京:中国电力出版社[M]. 2003.

[14] 腾毅,王如竹. 连续回热型活性炭-甲醇吸附式制冷循环研究. 低温工程[J]. 1995(3).

[15] 曲天非,王文,李中华,王树刚,王如竹. 吸附式制冷中回质过程的作用. 上海交通大学学报[N]. 2001,35(8).

[16] 陈坚,王如竹. 采用床内强制对流进行传热传质的固体吸附式循环分析. 太阳能学报[N]. 1998,19(4).

[17] 罗会龙,王如竹,代彦平,吴静怡,许煜维. 用于低温制冷储粮的太阳能吸附式制冷系统. 太阳能学报[N]. 2006,6.

[18] 张国东. 太阳能吸附式连续制冷与供热联合循环方式分析. 家电科技[J]. 2005,6.

[19] 李娟,刘志强,李丽霞,刘昌盛. 太阳能吸附式空调应用实例分析. 建筑节能[J]. 2012(3).

太阳能制冷文献综述

文献综述二零一二年六月

文献综述 太阳能制冷系统研究现状及其进展 引言: 在完成太阳能制冷系统研究现状及其进展的论文过程中,我参考了诸多文献,引用了它们的思想或者结论,现将其中一些比较主要的文献作为完成本文的研究依据做一个综述。 1.太阳能吸收式空调及供热综合系统 太阳能吸收式空调系统主要由太阳集热器和吸收式制冷机两部分构成。吸收式制冷的基本原理是利用两种物质所组成的二元溶液作为工质来进行的。这两种物质在同一压强下有不同的沸点, 其中高沸点的组分称为吸收剂, 低沸点的组分称为制冷剂。常用的吸收剂) 制冷剂组合有两种: 一种是溴化锂—水, 通常适用于大型中央空调; 另一种是水—氨, 通常适用于小型空调。 在夏季, 被集热器加热的热水首先进入储水箱, 当热水温度达到一定值时, 由储水箱向制冷机提供热媒水; 从制冷机流出并已降温的热水流回储水箱, 再由集热器加热成高温热水; 制冷机产生的冷媒水通向空调箱, 以达到制冷空调的目的。当太阳能不足以提供高温热媒水时, 可由辅助锅炉补充热量。在冬季, 同样先将集热器加热的热水进入储水箱,当热水温度达到一定值时, 由储水箱直接向空调箱提供热水, 以达到供热采暖的目的。当太阳能不能够满足要求时, 也可由辅助锅炉补充热量。在非空调采暖季节, 只要将集热器加热的热水直接通向生活用储水箱中的热交换器, 就可将储水箱中的冷水逐渐加热以供使用。二空调及供热综合示范系统。 2.热管式真空管集热器的热性能研究 热管式真空管集热器是一种新型的太阳能集热装置。由于运用了真空技术,大幅度地降低了集热器的热损失,因而使其在高工质温度或低环境温度的运行条件下仍具有良好的热性能。同时,由于运用了热管技术,被加热工质不直接流经真空管,因而跟普通真空管集热器比较,热管式真空管集热器还具有许多其它优点:热容量小,在瞬变的太阳辐照条件下可提高集热器输出能量;热二极管效应.当太阳辐照较低时可减少被加热工质向周围环境散热;防冻,在冬季夜间一20%时真空管本身不会冻裂;另外,系统承压高,易于安装、维修等等。 3.新型高效太阳能制冷技术 对传统太阳能制冷技术进行分类总结,指出其热力学局限性,提出一种太阳能制冷新模式。对光纤小碟太阳能聚光集热系统进行介绍,并对其性能进行初步评价,指出利用光纤小碟太阳能聚光集热系统同时驱动气体透平机发电制冷和两级吸收式制冷机,实现太阳能的梯级利用,是获得高效太阳能制冷的新途径。对一

太阳能电池发展现状综述

太阳能电池发展现状综述 摘要:随着社会的发展,传统能源消耗殆尽,能源越来越收到重视。其中发展前景最为广阔的莫过于太阳能。太阳能绿色环保,因此逐渐受到了人们的普遍重视。太阳能已成为新能源领域最具活力的部分,世界各国都致力于发展太阳能。本文主要阐述了太阳能电池的发展历程,太阳能电池的种类,太阳能电池的现状以及发展前景. 关键词:太阳能电池;太阳能电池种类;发展现状; Narration on the Current Situation of Solar Battery Abstract:With the development of society, traditional energy will be used up in a short time.Eneygy are being payed more and more attention.And the solar energy is the most promising.Because of its’environmental protection,it gets widespread attention. Solar energy has become the most vibrant part among the new energy field,and all countrise tried their best to develop solar energy.This article mainly explains the development of solar battery,the types of solar battery,curent situation of solar battery and its’ prospect. Key Words:solar battery; types of solar battery; curent situation of solar battery 1引言 随着经济的发展,能源的重要性日趋凸显。但是石油、煤等不可生起源消耗殆尽,人们开始探索新的能源。太阳能取之不尽用之不竭,因此受到了人们的亲睐。在太阳能电池领域中,太阳能的光电利用是近些年来发展最快、最具活力的研究领域[1].太阳能电池的研制和开发日益得到重视.制作太阳能电池主要是以半导体材料为基础.其工作原理是利用光电材料吸收光能后发生的光电子转化反应。根据所用材料的不同,太阳能电池可分为:①硅太阳能电池;②以无机盐如砷化镓Ⅲ一V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;③纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:①半导体材料的禁带不能太宽;②要有较高的光电转换效率;③材料本身对环境不造成污染;④材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料[2].这也是太阳能电池以硅材料为主的主要原因. 本文简要地综述了太阳能电池发展进程,太阳能电池的种类,以及发展现状,并讨论了太阳能电池的发展趋势。 2太阳能电池现状及其前景

太阳能固体吸附式制冷空调原理及前景

太阳能固体吸附式制冷空调原理及前景 一.前言 随着人们生活水平的大幅提高,空调器已逐渐成为家庭必备的家用电器,另一方面,大范围地使用传统制冷方式已经给环境造成了极大的破坏。首先是臭氧层空洞问题。传统制冷机广泛采用氯氟烃类制冷剂简称CFC,HCFC,它们会催化分解臭氧,削弱对紫外线的阻挡,威胁人类健康;其次,每年常规高能耗的制冷需求占用国家电力消耗的比例迅速增加,引起电力紧张,各地兴建各类发电站,火力占主要,大量烧煤增排CO2增强温室效应,引起全球升温;再次,能源短缺已然成为世界性的问题,普通空调器的普及显然是不利与于能源节约的,近几年来夏季我国各地特别是沿海停电现象严重,拉电限电十分普遍。 基于以上的问题,人们已经逐渐认识到可持续发展的重要性,同时也积极开发对能源有效利用和保护环境的新技术。太阳能固体吸附式制冷技术作为一种以太阳能为能源并且对环境无破坏作用的新型技术备受关注。 国外于二十世纪六七十年代就开始了对吸附式循环的研究。国内的研究开始于八十年代初,严爱珍等人曾在1982年对吸附式制冷作过研究,使用的工质是沸石分子筛-水和沸石分子筛-乙醇。1992年巴黎国际吸附式制冷会议带动了该技术的研究,在接下来的国际会议上均有上百篇论文发表,该项技术得到不断发展。 二. 工作原理 固体吸附式制冷技术的原理包括吸附和脱附两个过程。 1.脱附. 左图是脱附过程的简单模型图。吸附床 内充满了吸附剂,吸附有制冷剂,冷凝 器与冷却系统相连,一般冷却介质为水。 工作时,太阳能集热器对吸附床加热, 制冷剂获得能量克服吸附剂的吸引力从 吸附剂表面脱附,进入右边管道,系统 压力增加,C1导通,C2关闭。当压力与 冷凝器中对应温度下的饱和压力相等 时,制冷剂开始液化冷凝,最终制冷剂 凝结在蒸发器中,脱附过程结束。在这个过程中,太阳能集热器供能Q1,冷凝器放热Q4由冷却水排除到系统之外。 2.吸附. 右图是吸附过程的简单模型图。冷却系统对吸附 床进行冷却,温度下降,吸附剂开始吸附制冷剂, 左边管道内压力降低,C2导通,C1关闭,蒸发 器中的制冷剂因压力瞬间降低而蒸发吸热,达到 制冷效果,制冷剂达到吸附床,吸附过程结束。 在此过程中,吸附床放热Q2,被冷却水排除到 系统之外,蒸发器从环境中吸收Q3的热量。 以上只是最简单的模型图,由上可知单台吸 附床工作时制冷是间歇式的,不能连续制冷,要达到连续制冷的效果,必须使用两台或两台以上的吸附床,交错运行,制冷的循环就连续了。 三. 优点和缺点

太阳能半导体制冷技术的发展与全景(精)

太阳能半导体制冷技术的发展与全景 2007-12-30 10:59:36中国能源信息网我要评论 核心提示:太阳能制冷具有很好的季节匹配性,即天气越热,太阳辐射越好,系统制冷量越大。这一特点使太阳能制冷技术受到重视和发展。实现太阳能制冷有“光-热-冷”、“光-电-冷”、“光-热-电-冷”等途径。太阳能半导体制冷是利用太阳能电池产生的电能来驱动半导体制冷装置,实现 太阳能制冷具有很好的季节匹配性,即天气越热,太阳辐射越好,系统制冷量越大。这一特点使太阳能制冷技术受到重视和发展。实现太阳能制冷有“光-热-冷”、“光-电-冷”、“光-热-电-冷”等途径。太阳能半导体制冷是利用太阳能电池产生的电能来驱动半导体制冷装置,实现热能传递的特殊制冷方式,其工作原理主要是光伏效应和帕尔贴效应。 太阳能驱动的半导体制冷系统,结构紧凑,携带方便,可以根据用户需要做成小型化的专 用制冷装置。它具有使用维护简单,安全性能好,可分散供电,储能比较方便,无环境污染等特点。另外,利用帕尔贴效应的半导体制冷系统与一般的机械制冷相比,它不需要泵、压缩机等运动部件,因此不存在磨损和噪声。它不需要制冷剂,因此不会产生环境污染,也省去了复杂的传输管路。它只需切换电流方向就可以使系统由制冷状态变为制热状态。这些无可比拟的优点,使得人们对太阳能半导体制冷技术产生了浓厚的兴趣。 目前太阳能半导体制冷系统的效率还比较低,系统的一些重要技术问题还有待深入研究。 1 太阳能半导体制冷的工作原理和基本结构 半导体制冷是利用热电制冷效应的一种制冷方式,因此又称为热电制冷或温差电制冷。半导体制冷器的基本元件是热电偶对,即把一个p 型半导体元件和一只n型半导体元件连成的热电偶。 当直流电源接通,上面接头的电流方向是n-p,温度降低,并且吸热,形成冷端;下面接头的电流方向是p-n,温度上升,并且放热,形成热端。把若干对热电偶连接起来就构成了常用的热电堆,借助各种传热器件,使热电堆的热端不断散热,并保持一定的温度,把热电堆的冷端放到工作环境中去吸热,产生低温,这就是半导体制冷的工作原理。太阳能半导体制冷系统就是利用半导体的热电制冷效应,由太阳能电池直接供给所需的直流电,达到制冷制热的效果。

参考文献改

【1】龚光彩、张国强等, 建筑能源结构与可持续发展, 二十一世纪中国与可持续发展国际会议论文集, 1999 年9 月, 华盛顿 【2】.A pipeline & Gas Journal staff report , Long - Range Strategies for China' s Energy Security, Pipeline and Gas Journal , 1998, August 【3】楼新荣,洪锡纲,朱冬生,谭盈科.氨水吸收扩散式制冷机.制冷.1994,4(4). 【4】Srikhirin P,Aphornratana S,Chungpaibulpatana S.A Review of bsorption Refrigration Technologies[J].Renewable & Sustainable Energy Reviews,2001,5(4):343-372 【5】R.M Lazzarin, A.Gasparella,P.Romagnoni, Experimential report on the reliability of ammonia-water absorption chillers[J],Int J.Refrig.,vol.19,No.4,pp.247-256 【6】ULI Jakob,Ursula Eicker,Solar cooling with diffusion absorption principle[C],World renewable energy congress VII(WREC 2002) 【7】B.C. Von Platen G.C. Munters,United States pat,1685764,1928.09.25 【8】Albert Einstein Leo Szilar, United States pat,1781541,1930.11.11 Parker G J. The Effect of Foo tp iece Design on the Perfo rmance of a Small A ir2lift Pump [J ]. Internat. J Heat F luid F low , 1980, 2: 245~252.

太阳能供电冷库系统设计论述参考(学术参考)

专业文献综述 题目: 太阳能供电冷库系统设计论述 姓名: 学院: 专业: 班级: 学号: 指导教师: 职称 年月日 太阳能供电冷库系统设计论述 作者:指导老师:

摘要:化石能源由于储量有限,既不能满足现代经济发展和人口增加的需要,更不宜作 为未来世界能源的依托面对日益增长的能源需求,人们必须寻找一些可以长期源源不断地满足人类需要的能源,以弥补当前能源的不足,并作为未来世界能源的依托。正是在这种情况下,太阳能作为一种新型能源因其无污染,无地域限制而且近乎无穷无尽的总量使得目前在世界范围内都受到了广泛的关注并进行大量的研究。在世界潮流当中,我国作为一个能耗大国发展新型能源的情势尤为迫切,目前国内太阳能技术的研发创新处于飞速发展的阶段。各项新技术被大量应用在生活当中。国内太阳能发电行业得到了国家的大力支持出现大跨步增长。本文就利用太阳能发电提供冷藏系统的供电进行了论证。通过对太阳能发电各部件的分析,明确阐述了太阳能供电制冷系统的优势及发展前景。 关键字:太阳能;供电系统;并网逆变器;利用率 Systematic design of cold storage discusses solar energy current supply Name:Zhai Hong Fei Adviser:Yue Yong Abstrac t:Fossil energy, due to limited reserves, can’t satisfy the demands of modern economic growth and accretion of population and can not be inappropriate support, on which the future world energy relies to face the growing energy demands. It is an imperative to search for some energy that could satisfy mankind’s continuous demands for ages so as to make up for the insufficiency of the current energy and seen the energy as the support for the future world energy. Just in this circumstance, worldwide attention is paid to and a lot of researches are carried out for the solar energy for its non-pollution, non-geographic limitation and nearly inexhaustible volume as a new type of energy. In the world trend, it is extremely urgent for China, as a energy consumption country, to develop new type of energy. Currently, the research and innovation of the solar energy technology is at the fast development stage in China. Various technologies are applied in our daily life. Great step has been witnessed in the growth of China’s solar electrical energy generation industry under the great support of our country. The power supply of cryogenic storage system supplied by the use of solar energy is demonstrated in the passage. The advantages and prospect of the solar energy power supply and refrigerating system is definitely elaborated through the analysis of various components of the solar electrical energy generatio n. Key words:Solar energy;Feed system ;Grid-connected Inverter ;Utilization ratio

太阳能电池的发展历史

龙源期刊网 https://www.wendangku.net/doc/9711537435.html, 太阳能电池的发展历史 作者:张金晶 来源:《商情》2016年第26期 【摘要】相对于风能、地热能、生物能和潮汐能等新能源,太阳能以污染小、可利用率高、资源分布广泛和使用安全可靠等优点,成为最具有发展前景的能源之一。目前,随着太阳能电池制备技术的不断完善,其技术的开发应用已经走向商业化、大众化,特别是一些小功率、小器件的太阳能电池在一些地区都已经大量生产而且广泛使用。所以谁先开发光电转换效率高、制备成本低的太阳能电池就能在将来的市场抢占先机。 【关键词】太阳能单晶硅薄膜电池 引言:随着社会的飞速发展,能源是影响当今社会进步的重要因素,但是现阶段人类社会发展大部分还是依靠化石能源提供能量。可是化石能源分布极不均衡,并且不可再生,而且燃烧化石能源带来的环境污染、雾霾气候和温室效应严重影响到了人类社会的可持续发展。然而太阳能是一种可再生清洁能源,可以提供充足的能量供人类使用,因此开发新能源,是人类社会薪火相传,世代相传的重要保证。 此外,不可再生能源的过快消耗对当今的环境形势提出了新的挑战。例如如何解决温室效应,臭氧空洞等问题。有限的化石能源以及在开发利用不可再生能源的过程中出现的负面影响,不仅阻碍了人类经济的飞速发展,而且还严重影响到社会的可持续发展。因此,发展一种新型能源已然成为世界各国提升自己综合国力和倡导能源发展的一个重要手段。 1. 第一代太阳能电池 第一代太阳能电池是发展时间最久,制备工艺最为成熟的一代电池,一般按照研究对象我们将其可分为单晶硅、多晶硅、非晶硅电池。按照应用程度来说前两者单晶硅与多晶硅在市场所占份额最多,商业前景最好。 单晶硅太阳电池和多晶硅太阳电池。从单晶硅太阳能电池发明开始到现在,尽管硅材料有各种问题,但仍然是目前太阳能电池的主要材料,其比例约占整个太阳电池产量的90%以上。我国北京市太阳能研究所从20世纪90年代起开始进行高效电池研究,采用倒金字塔表面织构化、发射区钝化、背场等技术,使单晶硅太阳能电池的效率达到了19.8%。多晶硅太阳能电池的研究开发成本较低,稳定性也比较好,这两大优势引起了科研工作者的注意。其光电转换效率随着制备工艺的成熟不断提高,它达到的最高的光电转换效率为21.9%,但是它的电池效率在目前的太阳能电池中仍处于一般水平。 2.第二代太阳能电池

太阳能制冷器原理

在太阳能集热器循环中,其组件主要有太阳集热器、汽液分离器、锅炉、预热器等。水或其他工质被太阳能集热器加热至高温状态,先后通过汽液分离器、锅炉、预热器、分别几次放热后,温度逐步降低,最后又进入太阳集热器再进行加热。如此周而复始,使太阳能集热器成为热机循环的热源。 在热机循环中,其组件主要有蒸汽轮机、热交换器、冷凝器、泵等。低沸点的工质从气液分离器出来时,压力和温度升高,成为高压蒸汽,推动蒸汽轮机旋转而对外做功,进入热交换器被冷却,再通过冷凝器而被冷凝成液体。此时液体为低沸点工质,在先后通过预热器、锅炉、气液分离器再次加热成高压蒸汽。由此可见,热机循环是一个消耗热能而对外做功的过程。 在蒸汽压缩式制冷机循环中,其组件主要有制冷压缩机、蒸发器、冷凝器、膨胀阀等。蒸汽轮机的旋转带动制冷压缩机的运行,经过蒸汽压缩式制冷机的压缩、冷凝、节流和汽化等过程,完成制冷循环。在蒸发器外侧流过的空气被蒸发器吸收其热量,从较热的空气变为较冷的空气,将这较冷的空气送入房间从而降温。

太阳能集热器循环:由太阳能集热器、锅炉、储热水槽等几部分组成。在太阳能集热器循环中,水或其他工质先后被太阳能集热器和锅炉加热,温度升高,然后再去加热低沸点工质至高压状态。低沸点工质的高压蒸汽进入蒸汽喷射式制冷机后放热,温度迅速降低,然后又回到太阳能集热器和锅炉再进行加热。如此周而复始,使太阳能集热器成为蒸汽喷射式制冷机循环的热源。 蒸汽喷射式制冷机循环:由蒸汽喷射器、冷凝器、蒸发器、泵等几部分组成。在蒸汽喷射式制冷机循环中.低沸点工质的高压蒸汽通过蒸汽喷射器的喷嘴,因流出速度高、压力低,就吸引蒸发器内生成的低压蒸汽,进入混合室。此混合蒸汽流经扩压室后,速度降低,压力增加,然后进入冷凝器被冷凝成液体。该液态的低沸点工质在蒸发器内蒸发,吸收冷媒水的热量,从而达到制冷的目的。 3、太阳能除湿式制冷原理 太阳能液体除湿是将环境空气或室内回风送入除湿器,使之与除湿溶液接触,空气中部分水分被除去,对干燥后的空气再绝热加湿,从而达到空气调节的目的,被稀释的除湿溶液在再生器中得到再生,从而完成一个循环过程。 该系统中的三大核心部件是溶液再生器、空气除湿器和太阳能集热器。整个流程有两个子循环组成:空气循环和溶液循环。需处理空气(包括回风和新风)经过溶液除湿器后常温冷却,进入直接蒸发冷却器进行降温处理打到房间空调所要求的的送风点后进入室内,空气在室内升温、增湿后其中一部分回到除湿器完成空气循环。在空气除湿器中,常温状态下高浓度的除湿溶液与被处理空气直接接触,由于除湿溶液表层的水蒸气分压力比别处理空气水蒸气低得多,所以空气中的水蒸气以扩散传质的方式进入溶液表层,进而被溶液吸收。从除湿器内出来的稀溶液经过溶液热交换升温后进入太阳能集热器内进行进一步的加热温升。被

太阳能电池发展现状及存在的主要问题

太阳能电池发展现状及存在的主要问题 晨怡热管2008-10-17 23:05:45 一、2005年国际太阳能电池产业发展情况 2005年,世界太阳能电池总产量1656MW,其中日本仍居首位,762M W,占世界总产量的46%,欧洲为464M W,占总产量的28%,美国156M W,占总产量的9%,其他274MW,占总产量的17%。 2004年全球前14位太阳能电池公司总产量达到1055MW,占当年世界总产量的88.3%,近五年来,日本Sharp公司一直领先,2004年产量达到324MW,见表1。

以2004年数据分析,各种太阳能电池中硅基太阳能电池占总产量的98%,晶体硅太阳能电池占总产量的84.6%,多晶硅太阳能电池占总量的56%,见表2。

2005年,世界光伏市场安装量1460M W,比2004年增长34%,其中德国安装最多,为837MW,比2004年增长53%,占世界总安装量的57%;欧洲为920MW,占总世界安装量的63%,日本安装量292M W,增幅为14%,占世界总安装量的20%;美国安装量为102MW,占世界总安装量的7%,其他安装量为146M W,占世界总安装量的10%。

至2005年全世界光伏系统累计安装量已超过5GW,2005年一年内投资太阳能电池制造业的资金超过10亿美元。现在,一个世界性的问题是制造太阳能的电池的硅原材料紧缺,尽管2005年全世界硅原材料供应增长了12%,但仍然供不应求,国际上长期供货合同抬价25%。持续的硅材料紧缺将对2006年太阳能电池生产产生较大的影响,预计2006年世界太阳能电池产量的增幅将不限制在10%左右。要解决硅材料的紧缺问题预计将需要5年以上的时间。 根据光伏市场需求预测,到2010年,全世界光伏市场年安装量将在3.2G到3.9GW之间,而光伏工业年收入将达到186美元到231亿美元。 日本和欧美各国都提出了各自的中长期PV发展路线图。 按日本的PV路线图(TV Roadmap 2030),到2030年PV电力将达到居民电力消耗的50%(累计安装容量约为100GW),具体的发展目标见表3和表4。

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

温州世纪办公楼空调设计【文献综述】

毕业论文文献综述 建筑环境与设备工程 温州世纪办公楼空调设计 一、前言部分 太阳能—地源热泵系统概述 地源热泵系统利用大地作为冷热源,同时又不需要抽取地下水作为传热的介质。它不需要任何的人工热源,冬季从土壤中取热,向建筑物供暖;夏季向土壤排热为建筑物制冷。地源热泵以其高效、节能、舒适,而且安装施工简单、运行维护方便等优点,现在己被作为一项旨在解决空调冷热源问题的新技术,日渐受到人们的重视。 热泵是一种利用高位能使热量从低位热源流向高位热源的高效节能装置[1],也是在空调领域实现建筑节能的重要途径。按工作方式的不同,热泵的基本形式有压缩式,吸收式,喷射式,吸附式和化学热泵等。而按其循环工质冷凝温度的不同,可将其分为四级:即常温热泵(冷凝温度<50℃),中温热泵(冷凝温度50’80℃),中高温热泵(冷凝温度80’100℃)和高温热泵(冷凝温度>100℃)[2]。 太阳能一地源热泵式空调系统是太阳能光伏技术和地源热泵技术的重要应用领域,采用变频技术的深井水泵和空调末端风机可以进一步提高系统的工作效率。太阳能和地源热泵复合系统在空调领域的应用,充分利用自然能,代表着节能型中央空调的发展趋势,符合国家的能源发展政策,缓解中国对煤炭和石油的依赖程度,从而达到能源资源多元化的目的。研究并推广运用这种“绿色技术”,是中国经济发展、能源开发利用的需要。本论文研究的目的是:在结合太阳能光伏利用与地源热泵技术的基础上,分析研究太阳能一地源热泵式空调系统的技术特点,论证了太阳能一地源热泵式空调系统的可行性,和对可再生能源利用的充分性。研究该系统的工作原理以及系统运行时的控制方式,提高了能源利用效率,实现系统对公共电网的零能需求。利用仿真技术,针对地源热泵系统中的相关部件建立仿真模型,对影响各部件运行性能的各参数进行分析和研究。 二、主题部分 2.1 国内外能源现状与对策 近年来由于能源短缺和环境恶化的问题日趋严重,因此在满足人们对生活健康、舒适要求的前提下,节约能源和保护环境己成为空调行业需要面对的一个重要问题。太阳能利用和地源热泵技术在建筑方面的应用,正日益受到人们的关注。 中国是发展中国家,人口众多,能源资源相对匮乏。中国自然资源总量排世界第七,能源资源总量居世界第三位。但中国人均能源资源占有量不到世界平均水平的一半,石油占有量仅为十分之

太阳能电池的发展与趋势

《物理演示实验》结课论文题目:太阳能电池的发展与趋势 学生姓名: 学号: 专业班级: 2013年 5月25日

摘要:现代社会应是节约型的社会,而社会生活也应是节约能耗的生活。而太阳能作为一种取之不尽的新型环保能源已成为世界各国世界上能源探究工作中的一个重要课题。是我国在经济目前状况下采取的较为简单、经济、环保、可靠的节能办法。近些年,随着我国经济的飞速发展、科技水平的快速提升,太阳能技术已逐渐普及、应用到各个行业领域乃至人们的生活中,而市面上也涌现出了大量的太阳能热水器、太阳能发电设备、太阳能照明器具等产品。其中,太阳能电池的应用,不仅充分发挥了太阳能技术环保、节能、可再生的特点,同时也有效满足了当代社会发展、科技进步的需求。本文就太阳能电池新发展的新概念及新的方向作简要的分析、探讨。 关键字:太阳能新能源太阳能电池 一、引言 太阳内部进行着剧烈的由氢聚变成氦的核反应,并不断向宇宙空间辐射出巨大的能量,可以说是“取之不尽、用之不竭”的能源。地面上的太阳辐射能随时间、地理纬度、气候变化,实际可利用量较低,但可利用资源仍远远大于满足现在人类全部能耗及2100年后规划的能源利用量?。地球上太阳能资源一般以全年总辐射量[kJ/(m^2·年)]和全年日照总时数表示。就全球而言,美国西南部、非洲、澳大利亚、中国西藏、中东等地区的全年总辐射量或日照总时数最大,为世界太阳能资源最丰富地区。我国陆地面积每年接收的太阳辐射总量3.3×10^3~8.4×10^6 kJ/(m^2·年)之间,相当于2.4×10^4亿t标煤,属太阳能资源丰富的国家之一。全国总面积2/3以上地区年日照时数大于2200h,日照在5×10^6kJ/(m^2·年)以上。我国西藏、青海、新疆、甘肃、宁夏、内蒙古高原的总辐射量和日照时数均为全国最高,属太阳能资源丰富地区;除四川盆地、贵州资源稍差外,东部、南部及东北等其他地区为资源较富和中等区,所以在我国太阳能有很大的发展前景。 随着新型太阳能电池的涌现,以及传统硅电池的不断革新,新的概念已经开始在太阳能电池技术中显现,从某种意义上讲,预示着太阳能电池技术的发展趋势。通过对太阳能电池的发展背景、现状进行分析,可将太阳能电池发展的新概念、新方向归纳为薄膜电池、柔性电池、叠层电池、以及新概念太阳能电池。 二、太阳能电池概况 1、太阳能电池定义 太阳能电池就是把太阳光转化为电的一种器件,在一般的情况下(注意条件),太阳能电池 的效率随光强增加而增加的。再进一步说就是太阳能电池效率和安装地的综合气候条件有关系。2、太阳能电池的分类 不同的材料对光的吸收系数不同,禁带宽度也不同,量子效率自然也不同,电池效率自然也 不同了。一般来说,单晶硅/多晶硅对光的系数系数远小于非晶硅的,所以非晶硅太阳能电池厚度仅仅有单晶硅/多晶硅厚度的百分之一即可较好的吸收太阳光。另外理论上讲GaAs太阳能电池的极限效率要大于其他太阳能电池的极限效率,因为GaAs太阳电池的禁带宽度在1.4ev,和地面太阳光光谱能量的最值最为接近。根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池3、功能高分子材料制备的太阳能电池4、纳米晶太阳能电池等。硅是最理想的太阳能电池材料,这是太阳能电池以硅材料为主的主要原因。在以上电池中单晶硅太阳能电池转换效率最高,技术也最为成熟,光电转化效率可达23.3%。随着新材料的不断开发和相关技术的发展,以其它材料为基础的太阳能电池也愈来愈显示出诱人的前景。目前国际成本大规模生产技术的研究主要集中在多晶硅、大面积薄膜非晶硅、CdTe电池、CIS 电池的制造技术、III-V族化合物半导体高效光电池,非晶硅及结晶硅混合型薄膜光电池等方面。 三、太阳能电池发展综述 长期以来,世界各国在大力发展经济的同时,各行业领域的过度生产消耗了大量的能源,倘若继续按照此种趋势发展,在未来的五十年里,能源危机将是影响人类生活、阻碍社会进步的首要问题。目前,不同国家、地区、种类的全部能源中,能够使用的化石能源占90%以上,若是以现阶段世界各国的能源消耗状态发展到二十一世纪的中期,可供使用的能源储备、化石能源所占比例将减少近50%,之后的能源需求必将是以可再生能源、核能为主。基于此种趋势,预计到2100年,在人类所使用的能源中,可再生资源将占有30%以上。可供开发、使用的可再生能源主要有地热能、生

太阳能电池的工作原理、工作效率、制造太阳能的材料及大致构造

引言太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染;4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCV D)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和

几种新型制冷技术

浅谈几种新型制冷技术

浅谈几种新型制冷技术 引言: 20世纪初,人们谈论的话题只是能源,而21世纪初,人们谈论的话题则是能源危机。这说明在当今这个高速发展的社会,能源已经成为支撑国家经济发展的基础和核心问题。2010年,我国一次能源消费总量超过32亿吨标准煤,能源消费总量已经占世界总量的20%,能源消费总量已经超过美国,但经济总量仅为美国的三分之一左右。其中,我国的石油对外依存度已经超过55%,天然气也已经超过16%是进口,昨日的煤炭大国在2010年也已经是变成了净进口国。近年来,由于传统的制冷空调设备对氟利昂类制冷剂的大量使用,以及对电能的大量消耗成为导致当前环境与能源问题的重要因素。随着我国能源结构的调整,太阳能、地热能、生物质能等可再生能源的应用比例不断提高。因此,研制和发展对臭氧层无损耗、无温室效应而且可以利用低品位能源作为动力的节能环保型的制冷技术是制冷领域研究的重要课题。 一、太阳能制冷 1、背景: 人类进入21世纪以来,电力、煤炭、石油等不可再生能源频频告急,据美国石油业协会估计,地球上尚未开采的原油储藏量已不足两万亿桶,可供人类开采时间不超过95年。在2050年到来之前,世界经济的发展将越来越多地依赖煤炭。其后在2250到2500年之间,煤炭也将消耗殆尽,矿物燃料供应枯竭。 同时化石燃料燃烧后造成的排放污染问题日益凸显,能源问题日益成为制约国际社会发展的瓶颈。太阳能既是一次能源,有是可再生能源,可免费使用,又无需运输,对环境也没有污染,具有无可避免的自然优势。同时,我国幅员辽阔,有着十分丰富的太阳能资源,有2/3以上的地区日照大于2000小时,太阳能资源的理论储量大每年7000亿吨标准煤[1]。 2、原理: 主要有吸收式、吸附式、冷管式、除湿式、喷射式和光伏等制冷类型[2-3] (1) 太阳能吸收式制冷:用太阳能集热器收集太阳能来驱动吸收式制冷系统,利用储存液态冷剂的相变潜热来储存能量,利用其在低压低温下气化而制冷,目前为止示范应用最多的太阳能空调方式。多为溴化锂—水系统,也有的采用氨—水系统。 (2) 太阳能吸附式制冷:将收式制冷相结合的一种蒸发制冷,以太阳能为热源,采用的工质对通常为活性碳—甲醇、分子筛—水、硅胶—水及氯化钙一氨等,可利用太阳能集热器将吸附床加热后用于脱附制冷剂,通过加热脱附——冷凝——吸附——蒸发等几个环节实现制冷。 (3) 太阳能除湿空调系统:是一种开放循环的吸附式制冷系统。基本特征是干燥剂除湿和蒸发冷却,也是一种适合于利用太阳能的空调系统。 (4) 太阳能喷射式制冷:通过太阳能集热器加热使低沸点工质变为高压蒸汽,通过喷管时因流出速度高、压力低,在吸入室周围吸引蒸发器内生成的低压蒸汽进入混合室,同时制冷剂任蒸发器中汽化而达到制冷效果。 (5)太阳能冷管制冷:这是一种间歇式制冷,主要结构是由太阳能冷管、集热箱、制冷箱、蓄冷器和冷却水回路等组成,是一种特殊的吸附式制冷系统 (6)太阳能半导体制冷:该系统由太阳能光电转换器(太阳能电池)、数控匹配器、储能设备(蓄电池)和半导体制冷装置四部分组成。太阳能光电转换器输出直流电,一部分直接供给半导体制冷装置进行制冷运行,另一部分则进入储能设备储存,以供阴天或晚上使用,保证系统可以全天候正常运行。[2-3] 3、优点:

暖通毕业设计文献综述

暖通毕业设计文献综述 【篇一:暖通毕业文献综述】 文献综述 题目家用中央空调的研究与发展前景 学生姓名 专业班级 学号院(系) 指导教师(职称) 完成时间 家用中央空调的研究与发展前景 1 家用中央空调具有的特点 1.1 家用中央空调的优点 (1)具有单台房间空调器的优势。如质量可靠、故障率低、使用灵活、安装方便、维护简单等。 (2)具有中央空调的优势,如房间内温度分布均匀,不占有房间的 使用面积,能和装修较好的配合,室内噪音低等。 (3)具有较好的个性化,~方面要体现在住户个人购买、个人使用,另一方面室内空调机布置能够灵活多样,可根据房间的布局、个人 喜好有多种方案可供选择。 (4)家用中央空调消费群体不光是针对高消费群体,而逐步针对普 通的工薪阶层。随着空调厂家大规模生产、开发,其价格会逐渐回落,使家用中央空调能落户于普通百姓家庭成为可能。 1.2家用中央空调的缺点 (1)比分体空调贵不少,但是配合装修效果非常好。 (2)耗电量比较大,不容易清洗。机组噪音比较大。噪音方面主要 影响的是夜间睡眠,可以调成最低风速运行。另外,在选择中央空 调品牌时可以关注室内机噪音值。 (3)不同品牌价格差距很大,制冷效果也有差距。 2 家用中央空调方式的分析比较 2.1几种家用中央空调输送介质方式的分析比较 中央空调是集中处理空调负荷的系统型式,其冷/热量是通过一定 的介质输送到空调房间里去的。按照家用小型中央空调的输送介质 的不同,常见的家用小型中央空调可以分成以下三种主要型式。 2.1.1风管式系统

风管式系统以空气为输送介质,其原理与大型全空气中央空调系统 的原理基 本相同。它利用室外主机集中产生冷/热量,将从室内引回的回风(或回风和新风的混风)进行冷却/力d热处理后,再送入室内消除其 空调冷/热负荷。相对于其它的家用小型中央空调型式,风管式系 统初投资较小。如若引入新风,其空气品质能得到较大的改善。但 风管式系统的空气输配系统所占用建筑物空间较大,一般要求住宅 要有较大的层高。而且它采用统~送风的方式,在没有变风量末端 的情况下,难以满足不同房间不同的空调负荷要求。而变风量末端 的引入将会使整个空调系统的初投资大大增加。 2.1.2冷/热水机组 冷/热水机组的输送介质通常为水或乙二醇溶液。它通过室外主机 产生出空调冷,热水,由管路系统输送至室内的各末端装置,在末 端装置处冷,热水与室内空气进行热量交换,产生出冷/热风,从 而消除房间空调负荷。它是一种集中产生冷/热量,但分散处理各 房间负荷的空调系统型式。该系统的室内末端装置通常为风机盘管。目前风机盘管一般均可以调节其风机转速(或通过旁通阀调节经过盘 管的水量),从而调节送入室内的冷/热量,因此该系统可以对每个 空调房间进行单独调节,满足各个房间不同的空调需求,同时其节 能性也较好。此外,由于冷/热水机组的输配系统所占空间很小, 因此一般不受住宅层高的限制。但此种系统一般难以引进新风,因 此对于通常密闭的空调房间而言,其舒适性较差。 2.1.3 vrv系统 变制冷剂流量(varied refrigerant volume,简称vrv)空调系统是一 种冷剂式空调系统,它以制冷剂为输送介质,室外主机由室外侧换 热器、压缩机和其他制冷附件组成,末端装置是由直接蒸发式换热 器和风机组成的室内机。一台室外机通过管路能够向若干个室内机 输送制冷剂液体。通过控制压缩机的制冷剂循环量和进入室内各换 热器的制冷剂流量,可以适时地满足室内冷、热负荷要求。vrv系统 具有节能、舒适、运转平稳等诸多优点,而且各房间可独立调节, 能满足不同房间不同空调负荷的需求。但该系统控制复杂,对管材 材质、制造工艺、现场焊接等方面要求非常高,且其初投资比较大。除了风管式系统、冷/热水机组、vrv系统这三种基本的系统型式外,还可以互相交叉,衍生出一些新型的系统。例如,将冷/热水机组 和风管式系统进行组合,往室内送冷热水处理房间空调负

相关文档