文档库 最新最全的文档下载
当前位置:文档库 › 声学基础资料

声学基础资料

声学基础资料

波长

声波振动一次所传播的距离,用声波的速度除以声波的频率就可以计算出该频率声波的波长,声波的波长范围为17米至1.7厘米,在室内声学中,波长的计算对于声场的分析有着十分重要的意义,要充分重视波长的作用。例如只有障碍物在尺寸大于一个声波波长的情况下,声波才会正常反射,否则绕射、散射等现象加重,声影区域变小,声学特性截然不同;再比如大于2倍波长的声场称为远场,小于2倍波长的声场称为近场,远场和近场的声场分布和声音传播规律存在很大的差异;此外在较小尺寸的房间内(与波长相比),低音无法良好再现,这是因为低音的波长较长的缘故,故在一般家庭中,如果听音室容积不足够大,低音效果很难达到理想状态。

很多现场调音师都没有理会到音频与波长的关系,其实这是很重要的:音频及波长与声音的速度是有直接的关系。在海拔空气压力下,21摄氏温度时,声音速度为344m/s,而我接触国内的调音师,他们常用的声音速度是34Om/s,这个是在15摄氏度的温度时声音的速度,但大家最主要记得就是声音的速度会随着空气温度及空气压力而改变的,温度越低,空气里的分子密度就会增高,所以声音的速度就会下降,而如果在高海拔的地方做现场音响,因为空气压力减少,空气内的分子变得稀少,声音速度就会增加。音频及波长与声音的关系是:波长=声音速度/频率;λ=v/f,如果假定音速是344 m/s时,100Hz的音频的波长就是3.44 m,1000hz(即lkHz)的波长就是34.4 cm,而一个20kHz的音频波长为1.7cm。

动态范围

音响设备的最大声压级与可辨最小声压级之差。设备的最大声压级受信号失真、过热或损坏等因素限制,故为系统所能发出的最大不失真声音。声压级的下限取决于环境噪声、热噪声、电噪声等背景条件,故为可以听到的最小声音。动态范围越大,强声音信号就越不会发生过荷失真,就可以保证强声音有足够的震撼力,表现雷电交加等大幅度强烈变化的声音效果时能益发逼真,与此同时,弱信号声音也不会被各种噪声淹没,使纤弱的细节表现得淋漓尽致。一般来说,高保真音响系统的动态范围应该大于90分贝,太小时还原的音乐力度效果不良,感染力不足。在专业音响系统的调整过程中,音响师在调音时要主意以下两方面问题:一是调音台的的输入增益量不要调的过小,否则微弱的声音会被调音台的设备噪声所淹没。二是压限器的阈值和压缩比的调整要格外慎重,阈值过小和压缩比过大,都会使声音动态压缩严重,故应该在保证效果的前提下,尽量减少对声音的动态损失。另外,在放大电路和音源中也存在动态范围,此时即可分辨的最小信号和可达到的最大不失真信号之差。

反相

两个相同声音信号相位相差为180度的情况,在同一声音的策动下音箱或话筒之间的振动方向相反亦属于反相。音响系统有左右声道之问反相、真实相位(即输人信号与输出信号之间相位)反相、话筒之间相位反相和多只音箱组成的阵列中部分音箱反相等四种情况。反相可导致声短路(即声音之间互相抵消,音量减小)、声像失去定位和低音浑浊等现象,对再现声音造成破坏。

分贝

电功率增益和声强的量度单位,由单位贝尔的十分之一而得名,功率每增加一倍为增加3分贝,每增加lo 倍为增加10分贝。

哈斯效应

双声源系统的一个效应,两个声源中的的一个声源延时时间在5至35毫秒以内时,听音者感觉声音来自先到达的声源,另一个声源好象并不存在。若延时为。至5毫秒,则感觉声

音逐步向先到的音箱偏移;若延时为30至50毫秒,则可感觉有一个滞后声源的存在。海尔式杨声器以发明者美国的诲尔博士的名字而命名的扬声器,1973年问世,将振膜折叠成褶状,振膜不是前后振动,而是像子风琴风箱似的在声波辐射的横方向振动,是一种特殊结构的电动式扬声器,主要用于高频。

劳氏效应

一种赝(假)立体声效应,将信号延时后以反相叠加在直达声信号上,立即就会产生明显的空间印象,声音似乎来自四面八方,听音者有置于乐队之中的感受。

互调失真

指两个振幅按一定比例(通常为4:1)混合的单音频信号通过重放设备后产生新的频率分量的一种信号失真,属于一种非线性失真,新的频率分量包括两个单音频信号的各次谐波及其各种组合的加拍和差拍。

近场

距离为两倍波长以内的声场,声波的最长波长(即频率为20赫兹时)为17米,故对于整个音频范围来说,小于34米的声场为近场,近场的房间称为小房间,在近场的情况下,声音将发生干涉,声场中会存在菲涅尔声干涉区。

扩散场

能量密度均匀、在各个传播方向作无规则分布的声场,在此声场中任何一点所接收到的各个方向的声能将是相当的。

近讲效应

亦称球面波效应,声源距话筒很近时,低音成分逐步增加,距离越近,低音加重越显著。在使用时,可以利用此效应来增加声音的温暖感和柔和感,但若演唱或演奏时不断交化与话筒间距离,则会使音色改变较大,故应确定一个使用距离。在调音时,音响师要根据不同音乐的要求,有控制地应用或利用好话筒的近讲效应。

频率

声音信号每秒钟变化或振动的次数,频率越高、振动就越快,声音的音调就越高。

声波

能引起听觉的振动波,频率在20赫兹至20千赫兹之间,在空气等媒质中传播,振动方向与传播方向相同,声速等于340米/秒。

声压级

声级的单位,用分贝来表示,在通常情况下,声压级等于声强级。

声短路

振动方向相反的一个或几个声波在空间相遇后相互抵消或损耗的现象,无障板扬声器和音箱反相时都会产生声短路,声短路不仅会使音箱放音音量受到损失,还会造成音质不良和立体声声像失去定位等一系列问题。

声部

音乐术语。凡结合两行以上的旋律或两个以上的音同时进行的音乐称为“多声部音乐”,其中每一行旋律或构成和弦进行的每一条音的线条即为一个“声部”。如二重唱包括两个声部,三重唱包括三个声部,混声四部合唱包含女高音、男高音、女低音、男低音四个声部;弦乐四重奏包含第一小提琴、第二小提琴、中提琴、大提琴四个声部。在音乐中,各个声部间有其基本的音域(或频率)范围,故音响系统再现音乐声部时出现声部不平衡现象的主要原因就是音响设备的频率响应特性曲线不够平坦。

声功率

单位时间内垂直通过指定面积的声能量,声源的辐射声功串则常指在单位时间内向空间辐射

的总能量。

声染色

亦称音染,由于室内(有时也指音响设备)频率响应变化,使原始声音信号被赋予外加频率,原信号频谱有了某种改变,某些频率的声音得到加强的现象。

声影区

由于遮挡等原因,声波大法到达的区域,属于声缺陷。

声环境

声音放送时所处的环境,由房间的内装修、体形和布局等决定,良好的声环境,可以获得优秀的声音再现效果。

声线

声音的传播路线,声线图可以表现声音在空间传播情况及其分布情况,是反映空间声场变化的重要手段。在均匀静止的媒质中,声线一般可用自声源射出的直线代表,用这些线来表达声音的传播和反射等过程较为直观。

声阻抗

媒质对声波所呈现的阻抗作用,用某一面积上的声压与通过该面积的声通量的复数比来量度。

声波吸收

声波在各种媒质中传播时,能量会由于不断地被介质吸收而逐渐减少。在空气中传播时,距离越远、温度越低、湿度越小、频率越高衰减越大,反之,衰减越小。

声级

与人们对声音强弱的主观感觉相一致的物理量,单位为分贝。听闻对应的声级为o分贝,但o分贝并不意味着没有声音,而是可闻声的起点,声强每增加10分贝,其声级就增加10分贝,房间的本底噪声的声级大约为40分贝,正常对话为70分贝,交响乐高潮时为90分贝,人的痛阈声级为120分贝。

声像

又称虚声源或感觉声源。用两个或两个以上的音箱进行立体声放音时,听音者对声音位置的感觉印象,故有时也称这种感觉印象为幻象,声音图像的空间分布由人的双耳效应决定。立体声放音正是以声像的形式,再现原来声音的空间分布,从而使人们产生一种幻觉,诱发立体感觉。

声强

声波振动强弱程度的参量,在空间某点指定方向上,通过垂直于该方向单位面积的乎均声通量,即声源在单位时间内向外辐射的总声能。

声带

录有声迹的电影胶片或在胶片上附着的磁性带。一般有声影片大都采用光学声带,宽银幕立体声影片则采用多路磁性声带,影片拷贝上的声带位于画面的旁边,影片放映时,声带经过放映机的光学或磁性拾音装置,即能将声带记录的声音信息还原,使声音与画面实时同步播映。

声级计

预加校准的,包括拾音话筒、放大器、衰减器、适当计权网络和规定动态特性的的指示仪表的一种测量声级的仪器。有A、B、C等计权方式,A计权测量声级范围为0至30分贝之间,B计权测量声级范围为30至印分贝之间,C计权测量声级范围为印至130分贝之间。声像调节

调音台上调节左右声道音量比例的旋钮,用于调节声像的空间分布,往左旋到尽头,表示声源在左边,往右旋到尽头,表示声源在右边,若放在中间位置则表示声源在中间位置,这

种调节对于真实再现立体声效果有重要意义。

声场不均匀度

房间听音区域的最大声压级与最小声压级之差,要求各处音量不能相差太多,声场均匀意味着听音区域音质的一致性好。

声桥

在双层或多层隔声结构(例如.房屋中双层间壁;楼板等)中传播声音和影响隔声效果的连接物,是造成房间隔声不良的重要原因之一。

受声场

从声源到话筒之间的区域或空间,即话筒的拾音区域,有近讲声场和远讲声场两种情况,与话筒的拾音质量有密切关系。

声谱

声音频谱的简称,,指构成某一声音的分音幅值(或相位)随频率分布的图形。

绕射

声波在空间传播时,如果被一个大小近于或小于波长的物体阻挡,就绕过这个物体,继续前进。低频声音的绕射能力高于高频声音的绕射能力。

声源指向性因数(Q)

声源位于房间的不同位置时,由于界面反射而使声级增加的倍数。如音箱在空中用挂时,指向性因数(Q)等于1;位于一面墙或地面上时,Q等于2;位于两墙面交线上时,Q等于4;位于三面墙角时,Q等于8。

清晰度、可懂度

一个或几个发言人说话,,经过音响系统后,被听音者听清楚的语言单位百分数。习惯上当语言单位问的上下文关系对决定听音者的确认不占重要地位时,就用清晰度这个词;当上下文关系占重要地位时,就用可懂度这个词。室内清晰度指脉冲响应中有益声能(对清晰度有帮助的声能,取直达声能和50毫秒以内的反射声能)占全部声能的比例

听觉疲劳

人们在强烈声音环境经过一段时间后,会出现听阈提高的现象,即听力有所下降。如果这种情况持续时间不长,则在安静环境中停留一段时间,听力就会逐渐恢复,这种听阈暂时提高,事后可以恢复的现象称为听觉疲劳。

厅堂效果

具有密度较低的早期反射声,衰减迟缓平滑,混响时间有限,在直达声上加上辅助的环绕声,声音显得清脆,给人以深旷和现场扩大的感觉,如同在音乐厅、长廊或大会堂内听音一样。推挽扬声器系统

将两只或更多(必须为偶数)只扬声器安装在箱体内的扬声器系统,一半扬声器纸盆向外放置,另一半扬声器纸盆向内放置。在振膜振动相位相同的情况下,当给所有扬声器输入同一声音信号时,纸盆向内和纸盆向外的扬声器的声音互相叠加,从而提高了放音声压线。

稳态特性

对平稳声音的再现能力,声音从时间上可以分为稳态和瞬态,起始段和衰减段之间为稳定段,稳定段是声音的基本特征,不同声源稳态阶段所占比例有所不同,吹奏乐和拉弦乐的稳定段较长,打击乐较短。

响度

声音在人耳中校感受的强弱程度。主要由声音的强度和频率所决定。入耳感受声音强弱的程度与声波功率的大小不成线形正比关系,而是与声波功率比值的对数成正比,即声音强度

增加100倍,人耳感受到声音的响度只增加了20分贝。对声强相同的声音,人耳感受1000至4000赫兹之间频率的声音最响,超出此频率范围的声音,其响度随频率的降低或上升将减小,直到20赫兹以下或20千赫兹以上时响度为零,即在音频范围以外,物体的振幅再大,入耳也听不到其声响。响度的单位是宋

吸声系数

人射声能被材料表面或媒质吸收的百分数,吸声系数越大,对声能吸收的越多。

响度级

某一频率声音的声压级,即此声音与1000赫兹的纯音比较,当两者听起来一样响时,这looo 赫兹纯音的声压级数值就是该声音的响度级。响度级的单位为方。

厅堂效果

具有密度较低的早期反射声,衰减迟缓平滑,混响时间有限,在直达声上加上辅助的环绕声,声音显得清脆,给人以深旷和现场扩大的感觉,如同在音乐厅、长廊或大会堂内听音一样。声音的软硬度

声音的软硬度也可以称为声音的松紧度,一般是针对低音效果而言,对再现声音的艺术风格有很大影响。在大多数的情况下低音的软硬度要保持适中,但在表现某些特殊的音乐风格时,声音的软硬度就要有一定的侧重,以使音乐风格更加鲜明突出,如摇滚乐的声音要硬些,而交响乐则要柔和些。软的低音一般听起来低音长度长,而硬的低音的强度强,阻尼系数和转换速率等指标可以决定声音的软硬度,而音箱是决定声音软硬的最重要部分。目前很多音响周边设备都可以调整低音的软硬度,如激励器、压限器和均衡器等,但它们的控制机理和声音效果不尽相同。

梳状滤波效应

由于声音之间相互干涉而引起的频率响应曲线梳状起伏现象,会导致声音音色还原不良和保真度差等问题。

双耳效应

人们依靠双耳间的音量差、时间差和音色差判别声音方位的效应,由于两耳朝向、距离等原因,致使两耳听到的声音出现差别,感觉声音来自音量较大、较早到达和音色较好的方向。瞬态特性

亦称顺应能力,指对脉冲信号迅速而明确的响应能力,音乐中存在很多淬发信号,如钢琴、打击乐等,它们的上升沿很陡峭,音响设备若不能及时跟上信号的升降变化,就无法真实地反映声音原有的特征,对声音信号的起始段和结束段,必须有适当的反应速度,过慢则难以跟随突变信号,声音听起来拖泥带水,当然过快或过度的变化夸张会带来突兀感,听起来也不一定舒服

汤.霍尔曼实验

英文缩写为THX,—种环绕立体声系统,这种系统可以较真实地还原软件中的声音效果(软件中必须有Ihx编码标准),有三个特点:(1)再均衡功能,在大的声场中提升高音能够使声音具有鲜明感,而在面积较小的家庭重放时,高音会过于明亮,为了去除过度的明亮度,必须对高音进行适当衰减。(2)去相关功能,利用将声音扩展到背景的方法达到扣人心弦的效果,使听音者觉得不像是从某个扬声器发出的声音。(3)音色匹配功能,修正前置声道与环绕声道的差异,可防止声音图像在正面和周围几个扬声器之间移动时可能出现的音色变化,保证音响效果。家庭THX与杜比定向逻辑环绕立体声的基本区别还在于将单声道的环绕声信号在中高频率分解成两个反相信号,从而产生一种声音并不限制在后面墙上,而是有了很宽阔的空间感的左右独立信号,并将环绕声模拟成立体声,再加上超重低音,营造出丰满的低音效果。

心理声学

研究声音的主观听觉和物理量关系的科学,它着重研究声刺激与其反应的关系,人们对声音的正确感受和理解能力对听音评价十分重要。

同相

两个声音信号之间的相位差等于o的情况,在音响系统中指两种状态:一是两只(或多只)扬声器输入同一个信号时振动方向一致,音箱同相会使声音叠加,立体声声像定位正确,低音浑厚有力;二是两只(或两只以上)话筒拾取同一声音时,输出信号之间相位差等于o。信噪比

信号噪声比的简称,信号平均功率与噪声平均功率的比值,信噪比越高,系统本底噪声越小,较弱的细节声音信号就不容易被噪声所淹没,设备的动态范围也会相应提高。

相位失真

频率相位失真的简称,是音响系统线性失真的一个重要方面,由于不同频率的音频信号通过电阻、电抗的电路时的相移不同,以及由于音箱发出不同频率的声音到达听音者的时间顺序不同等,改变了声源声音各频率成分之间的相位(即时间)关系,输出的声音信号波形不再与原来的声音波形相同。相位失真会对再现声音的音色(改变了基波与谐波的相位关系)和声像定位(声音的前后、左右顺序发生混乱)产生一定影响,并导致低音模糊、高音层次变差等问题,在立体声放音系统中,相位失真对还原的声像定位影响尤为严重。它是一种不容忽视的失真现象,故在音响系统中要尽量减少相位失真。

对混响时间

声源停止发声后,声压级衰减到人耳听不到的程度所需要的时间。

谐波失真

非线性失真的一种,信号通过重放设备后产生新谐波分量的波形失真,以输出信号中的谐波成分与总输出声音信号之比来表示失真的大小。研究表明,奇次谐波对声音音色破坏最大,如三次谐波使声音变尖,五次谐波产生金届感,七次及以上奇次谐波会产生极尖锐刺耳的声音;而偶次谐波则不同,如二次谐波比基频高八度,听起来不但没有不和谐感,反而能够使音色更丰富,现代激励器就是利用这个特性,人为地给声音增加了偶次谐波成分,从而改善了再现声音音色。但任何严重的谐波失真都会使声音发劈、发破、发毛、发炸,要尽量减少音响设备的谐波失真。

听阈

能引起听觉的最小声压,即人耳能够听到的最小声音,听闻上移即耳背现象

削波

亦称切顶,由于音频信号过强或动态范围过大,超过线性区而造成的一种信号的峰值顶部被齐齐地切去的现象。削波现象导致信号削波失真,削波失真不仅会破坏音质,还有可能烧毁设备,如随之产生的高频谐波会烧毁音箱高音头,而直流分量亦可烧毁低音单元。避免的方法是适当调整信号电平,保证音响系统中各设备的削波灯(峰值显示)在最大声音信号时不能亮。

扬声器灵敏度

扬声器电声转换效率的参量,通常以扬声器在输入1瓦功率信号的情况下,其轴线一米处酗得的声压级为指标,声压级越大,扬声器灵敏度越高,根据扬声器的灵敏度和额定功率可以推算出该扬声器的最大声压级指标。

延时反馈率

多重回声随时间衰减情况,可以反映房间界面的吸声系数。在延时效果中,用于控制回声次数,反馈率在0%至99%之间连续可调e反馈率为0%时,为延时效果;99%时为无休止

的回声。

扬声器频率响应

扬声器输出特性随频率变化的情况,主要由扬声器本身的惯性系统元件以及谐振频率等因素决定。如声波辐射时声阻抗减少,使低频段灵敏度下降振动系统的惯性使高频段的灵敏度降低。通过对音箱的结构进行合理设计、选用优秀的扬声器单元和音箱材料等。可以改善扬声器的频率响应特性,补偿扬声器本身的频率缺陷。

移相效果

效果器中的一种特殊声音效果。声音在房间传播过程中声源发出的直达声与延时反射声之间由于存在相位差,当两个声音遇到一起后,就会产生一种在声学上被称为梳状滤波效应的现象,即在某些点上互相加强形成峰点,而在另一些点上则互相抵消形成谷点。效果器的移相(Phasing)效果就是利用了这个现象,它设有直达声(即未经过处理的声音信号)与反射声的延时时间量参数调节功能.可以控制梳状滤波效应的峰与谷出现位置,从而使声音中奇次谐波增强、偶次谐波削弱,或者使奇次谐波减弱、偶次谐波增强,以便达到改善声音音色、滤除某些失真所产生的多余谐波成分的目的。杭状滤波器蜂谷幅度相差的大小由延时信号和直达信号的混合比例决定,两者的混合比例为1:1时相差最大,效果最明显,此时峰点幅度比混合前的直达信号高6分贝,谷点幅度为o。梳状滤波器通常选用短延时,其延时时间在1至20毫秒之间。

相对混响时间

声源停止发声后,声压级衰减到人耳听不到的程度所需要的时间。

扬声器失真

扬声器输出声信号较原输入的音频信号发生了畸变的状态.主要由扬声器振动系统的振动幅度与输入电平不成线性关系变化而产生谐波,以及扬声器振动系统的瞬态特性跟不上电信号的变化而产生,这种失真是扬声器固有的。

音叉

形似英文字母u的金属又,下端有柄,用锤击其上端,即发出一定频率的音。音叉两臂长而薄,所发音的频率较低;两密短而厚,所发音的频率较高。由于它所包含的泛音成分极少,声音接近于纯音,因此常用作测定音调的标准,还可以用它做声音干涉产生驻波的实验。双耳效应

人们依靠双耳间的音量差、时间差和音色差判别声音方位的效应,由于两耳朝向、距离等原因,致使两耳听到的声音出现差别,感觉声音来自音量较大、较早到达和音色较好的方向。瞬态特性

亦称顺应能力,指对脉冲信号迅速而明确的响应能力,音乐中存在很多淬发信号,如钢琴、打击乐等,它们的上升沿很陡峭,音响设备若不能及时跟上信号的升降变化,就无法真实地反映声音原有的特征,对声音信号的起始段和结束段,必须有适当的反应速度,过慢则难以跟随突变信号,声音听起来拖泥带水,当然过快或过度的变化夸张会带来突兀感,听起来也不一定舒服。

衍射

亦称绕射,声波在传播时,如果被一个大小近于声波波长或等于波长的物体所阻挡,就会绕过这个物体,继续行进。当阻挡物较小(与波长相比)时,其后面仍能清晰地听到声音;但当阻挡物较大时,就会在其后形成声影民音量明显减少。

扬声器阻抗曲线

描述扬声器阻抗随频率变比的特性曲线,在谐振峰频率处,阻抗达最大值,在反谐振垮频率(谷)处,阻抗达最小值,通常以此值作为扬声器的额定阻抗,当频率高过反谐振峰对应的频率时扬声器线圈的感抗作用增大,阻抗曲线就继续升高,阻抗曲线对于设计音箱及阻抗匹配等都有一定参考作用。

音程

两音之间的距离,计算音程的单位称为度,两音问包含几个音级就称为几度。

痛阈

人耳对声音产生难受感时的声压,不同频率的声音具有不同频率的痛阂,例如50赫兹声音的痛阑在10 帕左右,而1000赫兹声音的痛阈则达200帕左右,对各种频率声音的痛阂画成一条曲线,叫做“痛阈曲线”。

音域

指某一乐器或人声所能发出的最低音和最高音之间的范围。

音区

乐器或人声的整个音域,可根据其音高和音色特点划分为若干部分,每一部分叫做一个音区。指人声时则称“声区”,音域大都可分成三个音区。

音频

亦称声频,音频的频率范围定义为20赫兹至20千赫兹。

听觉定位

人耳判断声源的方向和远近的功能,人耳确定声源远近的准确度较差,而确定声源方向却相当准确。听觉定位是由双耳效应引起的,声源发出的声音到达两耳时,会产生音量差和时间差,频率高予1400赫兹时,强度差起主要作用,低于1400赫兹时,则时间差起主要作用G人耳对声源方向的辨别,在水平方向上比垂直方向上好。在声源处于正前方,即水平方位角为o度时,一个正常听觉的人,在安静无回声的环境中,可以辨别1至3度的水平方位的变化和左右耳间o.5至1分贝的声级变化;在水平方位角为0至60度范围内,人耳有良好的方位辨别能力,而超过60度就迅速变差。在垂直方向,人耳定位能力相对期差,但通过头部摆动可以大大改善垂直定位能力。

隐蔽效应

在聆听一个声音的同时,由于被另一个声音(称为隐蔽声)所掩盖而听不见的现象,被掩蔽声的频率越接近掩蔽声时,隐蔽量越大;掩蔽声的声压级越高,掩蔽量越大;低频声容易隐蔽高频声,而高频声较难掩蔽低频声。在音乐进行的过程中,人们感觉不到噪声的存在,但当音乐停止或间歇过程中,人们就可以感觉到音箱发出的本底噪声,这种效应就是掩蔽效应。

音频频段的划分

在音质评价和音响系统调整个通常要将音频范围分为若干个频段,不同频段声音信号的提升与衰减对于听音评价者来说,主现听音感受有所不同,根据不同要求,音频频段可以分为3段、4段和7段等,最多将音频分为极低音、低音、中低音、中音、中高音、高音和极高音等7个频段。极低音的频率范围是20 至40赫兹,负责声音的重度,这个频率的多寡决定了声音的沉重感,合适时声音强而有九能控制雷声、低音鼓、贝司和管风琴的声音,过度提升会使声音含混不清。低音的频率范围是40至150赫兹,负责声音的宽a,吉他和鼓等低音乐器位于此频段,过度提升会使声音变得松软,听起来有拖长的感觉,合适时低音张弛得宜,不足时声音单薄、欠丰满。中低音的频率范围是150至500赫兹,负责声音的力度,人声位于这个频段,这个频段不足时,演唱声会被音乐声淹没,声音软绵绵,过强时会使低音生硬,合适时低音有力度且硬朗。中音的频率范围是500至2K赫兹,负责声音的亮度,包含大多数乐器低次谐波和泛音,过强时,会产生类似电话中听到的声音,但小

军鼓等打击乐的特征音就在此范围合适时透彻明亮,不足时声音朦陇。中高音的频率范围是2K赫兹,负责声音的透明度,为人类听音最敏感的部分,弦乐器的特征音(如拉弦乐弓与弦的磨擦声、弹拨乐手指触弦的声音)位于此频段,过强时会掩蔽语音声音的识别,不足时声音穿透力下降。高音的频率范围是5K至10K赫兹.负责声音的脆度,影响声音的距离感、亲切感和色彩感,过强时会使木管乐(如短笛、长笛)和小提琴的声音突出,语言的齿音明显。极高音频率范围是10K至20K赫兹,负责声音的纤细度,合适时三角铁和立镣的声音金属感剔透逼真,沙锤的节奏清晰可辨,不足时声音的细节听不到。

音高

在语言学中表示声音的岗低,由声波振动的快慢来决定,决定于人声带的长短、松紧、薄厚。在音乐中称音调。

折射

声波在两种物质(或密度不同的物质、媒质)的接触面上由于声速变化而改变传播方向后,进入第二种物质的现象,例如声音从空气中进入墙体,方向就会发生改变。

谐音

指复音中的频率与基音频率成整数倍关系的分音,通常基音称第…谐音,频率为基音二倍或三倍的分别称第二谐音或第三谐音等。

早期反射声

亦称近次反射声,直达声后50毫秒以内到达的、经一次或两次反射的声音。在声场中,合适的早期反射声可以使声音加厚、加重,甚至可以加强直达声,但过强时会破坏声像定位,要通过声学设计,合理利用和控制界面的早期反射声。

直达声

从声源(即音箱)发出直接到达听音者的声音,是声音的主要成分。在音响系统中,未经过处理的声音信号也称为直达声。在传播过程中,直达声不受室内反射界面的影响,距声源的距离每增加一倍,直达声的声压级衰减6分贝,音色非常纯正,但听起来发干,现代音响声场设计要求充分利用从音箱发出的直达声,合理控制反射声,音箱吊挂是获得直达声的最好方案。在听音区获得音箱直达声的条件是:(1)听音区可以看到所有音箱,(2)听音区位于所有音箱交叉辐射的区域。

延时时间

同一声音的前后到达时间差。在房间中用声源与反射面的距离除以声速即可计算出声音发出后返回的延时时风延时时间短时(小于50毫米)为早期反射声效果,较长时则为颤动回声和回声效果。有些效果器把早期反射声之前的预延时时间和混响声之前的进入时间统称为延时时间,而不具体分是初始延时还是混响延时。效果器的延时时间调得短时(小于50毫秒),声音近似混响声;在50毫秒至0.2秒之间时,可以创造不同颤动频率的颤音效果;大于O.2秒时,为回声间隔时间。

有效值

亦称均方根值,声音信号的实际音量和强度值,与人的听觉响度感觉非常接近,故一般应根据有效值状态显示,判断声音信号是否合适。

远场

大于两倍波长的声场,声波的员长波长(即频率为20赫兹时)为17米p故对于整个音频范围来说,大于34米的声场为远场,尺寸达到远场的房间为大房间,在远场的情况下,声音之间可视为无干涉。距离每增加一倍,声压级衰减6分贝。

驻波

两列传播方向相反的声被迭加干涉产生的声音起伏变化的现象。声音在介质界面(如墙壁)上,入射波发生反射,反射波与人射波迭加,以及两声源发出的声音相遇等都会形成驻波,

驻波是引起声音在空间传播时声染色(亦称音染)现象的主要原因。

主观评价

根据人耳的听音结果对声音进行评价的方法,是音质评价的重要方面,可以对音质做出定性评价,具有简便易行的特点,但评价结果带有一定的个人主观色彩,对评价者的听力水平要求较高。

延时反馈率

多重回声随时间衰减情况,可以反映房间界面的吸声系数。在延时效果中,用于控制回声次数,反馈率在0%至99%之间连续可调e反馈率为0%时,为延时效果;99%时为无休止的回声。

转折频率

亦称截止频率,全电平通过的信号与被衰减或截止信号的分界频率,高于此频率的的信号可以全电平通过,低与这个频率的信号则完全不能通过(实际上是迅速得到衰减)。如在低切或高通滤波功能键旁所标的频率就是转折频率,意味着低于这个频率的声音不复存在,高于这个频率的声音正常通过,有些设备的转折频率是连续可调的。

衍射

亦称绕射,声波在传播时,如果被一个大小近于声波波长或等于波长的物体所阻挡,就会绕过这个物体,继续行进。当阻挡物较小(与波长相比)时,其后面仍能清晰地听到声音;但当阻挡物较大时,就会在其后形成声影民音量明显减少。

噪声门

利用扩展器原理制成的一种降低背景噪声的设备,输入信号小于一定程度(阈值)时噪声门无输出,大于此值时正常输出,可以消除声音间歇过程的本底噪声,在音响领域中除了降低背景噪声外,还可以用于提高声音分离度、处理鼓声等。

折射

声波在两种物质(或密度不同的物质、媒质)的接触面上由于声速变化而改变传播方向后,进入第二种物质的现象,例如声音从空气中进入墙体,方向就会发生改变。

总噪声级

扩声系统在无有用声信号输入的情况下,音箱发出的本底噪声级。系统总噪声级与音响工程质量、音响系统设计、音响系统的调试和音响设备本身等因素有关。

响废控制

亦称等响控制,是为补偿人耳的听觉对中音比较敏感而对低音和高音比较迟钝而设置的一种控制方式,当放大器开大音量时它不起作用,而当放大器音量关小时,响区控制电路能目动将信号的同首和低音适当加以提升,从而得到响度频率补偿。由于人耳在音量大时对低音和高音感觉较好,而在音量小时低音和高音感受力不良,听音时就会出现音量大时人们感觉高音低音合适,而当音量小时高音低音明显不足这一现象。响度控制是一种带补偿的音量控制器,它能补偿人耳在不同音量情况下对听觉特性的差异,不论音量开大或关小,人耳听觉感受只是声音的响度发生变化,音色不变。

主动分频

亦称电子分频、电压分频或前级分频。分频器位于功率放大器之前,将音频信号分频后,按不同频段分配给各功率放大器,各功率放大器将不同频段的音频功率信号送至各扬声器,因电流较小故可蝴小功率的电子有源滤波器实现。优点是调整容易,电声指标高,信号损失小、音质好,但由于这种方式每路要用独立的功率放大器,故成本高,电路结构复杂,适用于专业扩声系统。

移相效果

效果器中的一种特殊声音效果。声音在房间传播过程中声源发出的直达声与延时反射声之间由于存在相位差,当两个声音遇到一起后,就会产生一种在声学上被称为梳状滤波效应的现象,即在某些点上互相加强形成峰点,而在另一些点上则互相抵消形成谷点。效果器的移相(Phasing)效果就是利用了这个现象,它设有直达声(即未经过处理的声音信号)与反射声的延时时间量参数调节功能.可以控制梳状滤波效应的峰与谷出现位置,从而使声音中奇次谐波增强、偶次谐波削弱,或者使奇次谐波减弱、偶次谐波增强,以便达到改善声音音色、滤除某些失真所产生的多余谐波成分的目的。杭状滤波器蜂谷幅度相差的大小由延时信号和直达信号的混合比例决定,两者的混合比例为1:1时相差最大,效果最明显,此时峰点幅度比混合前的直达信号高6分贝,谷点幅度为o。梳状滤波器通常选用短延时,其延时时间在1至20毫秒之间。

最大声压级

在扩声系统中,音箱所能发出的最大稳态声压级,最大声压级越高,说明系统的功率储备就大,声音听起来底气足、动态大,坚实有力。决定扩声系统最大声压级的因素主要是功放、音箱总功率和声场大小等。

纵波

传播方向与振动方向相同的波,亦称疏密波,声波即属于纵波,将振动引起的气压变化传送开采,气压高(正压)的地方空气致密,气压低(负压)的地方空气稀疏。

阻尼系数

反映音响设备瞬态特性的指标之一,计算方法是:音箱阻抗/功放内阻*导线阻抗。扬声器放送声音时,纸盆的往复振动,会导致低频共振,只要功放的内阻和音箱线的阻抗很小,就有可能将扬声器共振时音团产生的感应电动势短路,起到抑制共振的目的,从而使声音清晰明了。阻尼系数过小,声音出现拖后,造成浑浊;过大,声音硬而干涩无味,一般在10至30之间较为合适。

柱面波

波阵面为同轴柱面的声波,一般为线声源(如声柱)或声音通过较长的狭缝所产生,在传播中的衰减小于球面波,距离每增加一倍,声压级衰减3分贝,使扬声器发出柱面波是扩声系统提高声波传输距离的重要手段。

预延时

亦称初始延时,为早期反射声与直达声之间的时间间隔,不同体形和体积的房间的预延时时间是不尽相同的,但它主要与房间大小有关,可以用房间的平均自由程来计算。效果器的预延时调得较大时,可以获得大空间、大厅堂效果,同时还可以避免反射声直接对直达声的干扰而造成的声染色,但也不宜调得过长,一般应调到听音空间与房间的实际空间大小相适和声音清晰、声像殷实的程度。

自由声场

开放空间形成的,如开阔的、周围无任何建筑物的空旷场地和野外等,露天演出即属于此类情况。界面吸声性能非常好(吸音系数接近于1)的房间—般也属于自由声场,如消声室和某些声学实验室等,此类房间一般用于电声器件(如话筒、扬声器和音箱)的测量和进行声学实验。在自由声场中,声音不受反射界面影响,相当于无限大容积的空间,没有由于反射而产生的声音干涉现象,故音色纯正,但听起来发干,混响时间几乎等于零,距离每增加一倍,声压级衰减6分贝。

啭音

频率作正弦式调制的纯音,常用在混响时间等厅堂声学特性指标的测量中,用唠声作测试信号时,可以充分减少由于声音干涉而导致的驻波干扰,使测量结果更加准确。

电声基础

电声学基础知识 (参考资料之一) 《音频声学简介》(5页)《电声学名词及物理意义》(4页) 深圳市美欧电子股份有限公司 南京电声技术中心

于“稠密”状态;活塞向左运动时,则空气层质点膨胀,空气层的密度将减小,压强亦将减小,使空气层处于“稀疏”状态。活塞不断地来回运动,将使空气层交替地产生疏密的变化。由于空气分子之间的相互作用,这种交替的疏密状态,将由近及远地沿管子向右传播。这种疏密状态的传播,就形成了声波。 §2 描述声波的物理量 一、声压 大气静止时的压强即为大气压强。当有声波存在时,局部空气产生稠密或稀疏。在稠密的地方,压强将增加,在稀疏的地方压强将减小;这样,就在原有的大气压上又附加了一个压强的起伏。这个压强的起伏是由于声波的作用而引起的,所以称它为声压;用p 表示。声压的大小与物体(如前述的活塞)的振动状态有关;物体振动的振幅愈大、则压强的起伏也愈大,声压也就愈大。然而,声压与大气压强相比,是及其微弱的。 存在声压的空间,称为声场。声场中某一瞬时的声压值,称为瞬时声压)(t p 。在一定的时间间隔中最大的瞬时声压值,称为峰值声压。如果,声压随时间的变化是按简谐规律的,则峰值声压就是声压的振幅。瞬时声压)(t p 对时间取方均根值,即 ?=T e dt t p T p 02)(1 …1?

称为声压的有效值或有效声压。T 为取平均的时间间隔。它可以是一个周期或比周期大得多的时间间隔。一般我们用电子仪器所测得的声压值,就是声压的有效值;而人们习惯上所指的声压值,也是声压的有效值。 声压的大小,表示了声波的强弱。目前国际上采用帕(a P )作为声压的单位。以往也用微巴作为单位,它们的换算关系为; 1帕=1牛顿/米2 (MKS 制) 1微巴=1达因/厘米2 CGS (制) 1微巴=0.1帕 1大气压=a P 5100325.1? (常温下) 为了对声压的大小数值,有一个感性的了解,在表一中列出了几种声源所发出的声音的声压的大小。 大小之间可以相差上亿倍。 二、频率 声源(如上述的活塞)每秒振动的次数称为声波的频率,并用字母f表示,其单位为赫兹(H z)1/秒。虽然在自然界中能产生单频率的声源很少,大多数声源的振动是一个很复杂的过程,产生的大多为复合音。但是,我们可以用频谱分析的方法,把一个复合音分解为一系列幅值不同的单频声的组合。因此研究单频声具有基础性的意义,而频率则是描述单频声的一个重要物理量。 频率的倒数则称为周期。单位为秒。 人耳能听得见的声波的频率范围为20~20000H z,称为可闻声或音频声。低于20H z的声波,称为次声。虽然人耳听不到,但可用仪器接收到,它在研究热带风暴、地震及核爆炸等方面有广泛的应用。高于20000H z的声波称为超声,它在无损探伤、切割、诊断、水下探测等方面,均有广泛的应用。当频率再提高至波长可与物质结构的线度相比较时,就可以用声波来研究物质结构,这样频率的声波则称为特超声。 在音响和通信中所涉及的声波,就是人耳能感知的音频声。而研究音频声的

声学基础资料-专业名词解释

波长 声波振动一次所传播的距离,用声波的速度除以声波的频率就可以计算出该频率声波的波长,声波的波长范围为17米至1.7厘米,在室内声学中,波长的计算对于声场的分析有着十分重要的意义,要充分重视波长的作用。例如只有障碍物在尺寸大于一个声波波长的情况下,声波才会正常反射,否则绕射、散射等现象加重,声影区域变小,声学特性截然不同;再比如大于2倍波长的声场称为远场,小于2倍波长的声场称为近场,远场和近场的声场分布和声音传播规律存在很大的差异;此外在较小尺寸的房间内(与波长相比),低音无法良好再现,这是因为低音的波长较长的缘故,故在一般家庭中,如果听音室容积不足够大,低音效果很难达到理想状态。 很多现场调音师都没有理会到音频与波长的关系,其实这是很重要的:音频及波长与声音的速度是有直接的关系。在海拔空气压力下,21摄氏温度时,声音速度为344m/s,而我接触国内的调音师,他们常用的声音速度是34Om/s,这个是在15摄氏度的温度时声音的速度,但大家最主要记得就是声音的速度会随着空气温度及空气压力而改变的,温度越低,空气里的分子密度就会增高,所以声音的速度就会下降,而如果在高海拔的地方做现场音响,因为空气压力减少,空气内的分子变得稀少,声音速度就会增加。音频及波长与声音的关系是:波长=声音速度/频率;λ=v/f,如果假定音速是344 m/s时,100Hz的音频的波长就是3.44 m,1000hz(即lkHz)的波长就是34.4 cm,而一个20kHz的音频波长为1.7cm。 动态范围 音响设备的最大声压级与可辨最小声压级之差。设备的最大声压级受信号失真、过热或损坏等因素限制,故为系统所能发出的最大不失真声音。声压级的下限取决于环境噪声、热噪声、电噪声等背景条件,故为可以听到的最小声音。动态范围越大,强声音信号就越不会发生过荷失真,就可以保证强声音有足够的震撼力,表现雷电交加等大幅度强烈变化的声音效果时能益发逼真,与此同时,弱信号声音也不会被各种噪声淹没,使纤弱的细节表现得淋漓尽致。一般来说,高保真音响系统的动态范围应该大于90分贝,太小时还原的音乐力度效果不良,感染力不足。在专业音响系统的调整过程中,音响师在调音时要主意以下两方面问题:一是调音台的的输入增益量不要调的过小,否则微弱的声音会被调音台的设

物理性污染控制课程教学改革

《物理性污染控制》课程教学改革 (辽宁石油化工大学,辽宁抚顺113001) 摘要:《物理性污染控制》是环境工程专业的一门系统地阐述物理性污染基础知识和控制技术的专业课,针对在教学过程中出现的授课教材内容枯燥、理论性太强、板书授课方式过于单一、学生缺乏工程实践意识等问题,在教材选用、授课方式、和考核方式三个方面提出并进行了相应的教学改革试验。 关键词:专业课教学改革;工程实践意识;多媒体教学 《物理性污染控制》是辽宁石油化工大学环境工程专业第五学期的一门专业课。这门课主要包括噪声污染及其控制、振动污染及其控制、电磁辐射污染及其控制、放射性污染及其控制、热污染及其控制、光污染及其控制这六个方面。通过课程讲授,使学生了解环境物理性污染的基本概念、基本内容和主要特点;培养学生的环保意识,培养学生运用所学理论知识解决实际问题的能力。例如,了解噪声的度量、评价和控制标准的有关概念和噪声测试技术;理解掌握噪声控制技术——吸声、消声和隔声;了解振动的危害、评价标准和振动控制措施;了解电磁辐射源及其危害、放射性的来源以及核物理与核技术的发展现状;了解热环境、温室效应、热岛效应的基本概念和内容;了解光环境、照明单位和度量的基本知识等等。笔者在多年的教学实践中,在教材的选用、授课方式和考核方式三个方面提出相应的教改建议,并尝试进行了探索。 一、结合实际情况选用合适教材 目前使用的教材是国家“十一五”规划教材――《物理性污染控制》,由高等教育出版社2007年出版,该书共 274 页7章。在教学中我们发现: (1)这部教材的理论性比较强,适合考试课而不适合考查课。比如第一章噪声污染与控制,介绍声学基础的概念与公式推导;第二章振动的原理,涉及的知识在大学物理中已经学过。这些内容都适合考试课,但《物理性污染控制》课程属于环境工程专业的考查课。学生在经过2年大学基础知识的学习后,更多想掌握或应该掌握的是一些前沿的、实践性的专业知识,过多的基础知识内容使得这部教材显得枯燥、与实践脱节。 (2)在此教材中,污染的控制技术涉及到了工艺流程,读懂工艺流程是作为工程专业的学生必会的基本技能,但涉及工艺流程内容的专业基础课――《水污染控制工程》也在这个学期刚开课,学生对工艺流程内容还没有完全掌握。另外教材中对工艺流程的讲解甚少,工程类的学生连流程图都搞不懂,将来怎么进行工作。 (3)这部教材每章都设置了大量的课后习题,例如第二章计算题有32道之多,但目前没有与该教材配套的习题手册,网上也没有相应的答案。使用该教材的其他院校,如芜湖的安徽工程大学等都删除了课后习题的讲解。笔者在某学期的教学中为了方便学生将来考研或环保工程师考试,尝试进行了习题的精讲,但占用的课堂学时太多,仅第一章课后习题的讲解就占用了4个学时。作为考查课,本身课时就不多,若习题课过多就会影响全部教学内容的完成。另外,该书中还存在一些错误。如书中第18页的公式、第195页的流程图出现错误。如果类似的错误不能及时修正,很可能会误导学生,影响学生的课前预习和课后复习。

声学基础资料

声学基础资料 波长 声波振动一次所传播的距离,用声波的速度除以声波的频率就可以计算出该频率声波的波长,声波的波长范围为17米至1.7厘米,在室内声学中,波长的计算对于声场的分析有着十分重要的意义,要充分重视波长的作用。例如只有障碍物在尺寸大于一个声波波长的情况下,声波才会正常反射,否则绕射、散射等现象加重,声影区域变小,声学特性截然不同;再比如大于2倍波长的声场称为远场,小于2倍波长的声场称为近场,远场和近场的声场分布和声音传播规律存在很大的差异;此外在较小尺寸的房间内(与波长相比),低音无法良好再现,这是因为低音的波长较长的缘故,故在一般家庭中,如果听音室容积不足够大,低音效果很难达到理想状态。 很多现场调音师都没有理会到音频与波长的关系,其实这是很重要的:音频及波长与声音的速度是有直接的关系。在海拔空气压力下,21摄氏温度时,声音速度为344m/s,而我接触国内的调音师,他们常用的声音速度是34Om/s,这个是在15摄氏度的温度时声音的速度,但大家最主要记得就是声音的速度会随着空气温度及空气压力而改变的,温度越低,空气里的分子密度就会增高,所以声音的速度就会下降,而如果在高海拔的地方做现场音响,因为空气压力减少,空气内的分子变得稀少,声音速度就会增加。音频及波长与声音的关系是:波长=声音速度/频率;λ=v/f,如果假定音速是344 m/s时,100Hz的音频的波长就是3.44 m,1000hz(即lkHz)的波长就是34.4 cm,而一个20kHz的音频波长为1.7cm。 动态范围 音响设备的最大声压级与可辨最小声压级之差。设备的最大声压级受信号失真、过热或损坏等因素限制,故为系统所能发出的最大不失真声音。声压级的下限取决于环境噪声、热噪声、电噪声等背景条件,故为可以听到的最小声音。动态范围越大,强声音信号就越不会发生过荷失真,就可以保证强声音有足够的震撼力,表现雷电交加等大幅度强烈变化的声音效果时能益发逼真,与此同时,弱信号声音也不会被各种噪声淹没,使纤弱的细节表现得淋漓尽致。一般来说,高保真音响系统的动态范围应该大于90分贝,太小时还原的音乐力度效果不良,感染力不足。在专业音响系统的调整过程中,音响师在调音时要主意以下两方面问题:一是调音台的的输入增益量不要调的过小,否则微弱的声音会被调音台的设备噪声所淹没。二是压限器的阈值和压缩比的调整要格外慎重,阈值过小和压缩比过大,都会使声音动态压缩严重,故应该在保证效果的前提下,尽量减少对声音的动态损失。另外,在放大电路和音源中也存在动态范围,此时即可分辨的最小信号和可达到的最大不失真信号之差。 反相 两个相同声音信号相位相差为180度的情况,在同一声音的策动下音箱或话筒之间的振动方向相反亦属于反相。音响系统有左右声道之问反相、真实相位(即输人信号与输出信号之间相位)反相、话筒之间相位反相和多只音箱组成的阵列中部分音箱反相等四种情况。反相可导致声短路(即声音之间互相抵消,音量减小)、声像失去定位和低音浑浊等现象,对再现声音造成破坏。 分贝 电功率增益和声强的量度单位,由单位贝尔的十分之一而得名,功率每增加一倍为增加3分贝,每增加lo 倍为增加10分贝。 哈斯效应 双声源系统的一个效应,两个声源中的的一个声源延时时间在5至35毫秒以内时,听音者感觉声音来自先到达的声源,另一个声源好象并不存在。若延时为。至5毫秒,则感觉声

自-上海交通大学船舶与海洋工程专业考研真题-考研资料-参考书-教材-考研淘宝

◆报考上海交通大学船舶与海洋工程专业考研专业课资料的重要性 根据考研淘宝网的统计,87.3%以上报考上海交通大学船舶与海洋工程专业考研成功的考生,尤其是那些跨学校的考研人,他们大多都在第一时间获取了上海交通大学船舶与海洋工程专业考研专业课指定的教材和非指定的上海交通大学船舶与海洋工程专业内部权威复习资料,精准确定专业课考核范围和考点重点,才确保了自己的专业课高分,进而才才最后考研成功的。如果咱们仔细的研究下问题的本质,不难发现因为非统考专业课的真题均是由上海交通大学船舶与海洋工程专业自主命题和阅卷,对于跨校考研同学而言,初试和复试命题的重点、考点、范围、趋势、规律和阅卷的方式等关键信息都是很难获取的。所以第一时间获取了上海交通大学船舶与海洋工程专业考研专业课指定的教材和非指定的上海交通大学船舶与海洋工程专业内部权威复习资料的考生,就占得了专业课复习的先机。专业课得高分便不难理解。 那么怎么样才能顺利的考入上海交通大学船舶与海洋工程专业呢?为了有把握的的取得专业课的高分,确保考研专业课真正意义上的成功,考研专业课复习的首要工作便是全面搜集上海交通大学船舶与海洋工程专业的内部权威专业课资料和考研信息,建议大家做到以下两点: 1、快速消除跨学校考研的信息方面的劣势。这要求大家查询好考研的招生信息,给大家推荐一个考研淘宝网,有详细的考研招生信息。 2、确定最合适的考研专业课复习资料,明确专业课的复习方法策略,并且制定详细的复习计划,并且将复习计划较好的贯彻执行。 那到底都需要哪些上海交通大学船舶与海洋工程专业的考研专业课资料呢? 一、上海交通大学船舶与海洋工程专业的考研指定参考书、参考教材 这个的重要性是毋庸置疑的,即使你有再权威的复习资料,参考书和教材是基本,也是十分有必要的。上海交通大学船舶与海洋工程专业的考研指定参考书、参考教材可以在报考院校的研究生招生网站可以查到,有的院校也可以在百度上搜到,在这里我给大家推荐一个查询参考书的网站: 。一般这些书都能在网上买到,淘宝网、当当网、卓越网上都可以买到的。如果实在买不到的话,可以让同学或朋友在目标院校附近的书店里买,或者到上海交通大学船舶与海洋工程专业的教材科去购买。 上海交通大学船舶与海洋工程专业考研招生信息、招生简章、参考书、参考教材、研究方向、考试科目 上海交通大学船舶与海洋工程专业 2012年考研招生简章招生目录 招生年份:2012本院系招生人数:185 船舶与海洋工程专业招生人数:未 公布 专业代 码:082400

声学基础知识之轮胎噪声

声学基础知识之轮胎噪声 轮胎噪声包括空气扰动噪声、道路噪声、轮胎结构振动噪声以及轮胎旋转时搅动空气引起的风噪声。 1空气扰动噪声 轮胎快速滚动时对其周围空气形成扰动,辐射出噪声。由于轮胎胎面有各种花纹,当轮胎胎面与地面接触时,胎面受压缩、拉伸,形成泵气、吸气效应。这种泵吸效应在轮胎滚动过程中周期性地发生,在空气中形成辐射噪声。由于空气泵吸时的流速很高,这种噪声相当大,是轮胎噪声的主要成分。 对于常见的齿形花纹轮胎,当胎面花纹节距相同时,空气扰动噪声的频率为f=(v*n)/(3.6*2*n*R) 式中:v—汽车行驶速度,km/h; R-轮胎的滚动半径,m; n一轮胎圆周上的花纹槽数。 2道路噪声 道路噪声是由于路面凹凸不平而产生的噪声。当汽车通过小凸凹路面时凹凸内的空气因受挤压和排放,类似于泵的作用而形成的噪声。 3轮胎结构振动噪声 轮胎结构振动噪声是由于轮胎不平衡、胎面花纹刚度变化或路面凹凸不平等原因激发轮胎振动而产生的噪声,其中轮胎的径向振动为主,其振动频率一般在200Hz以下;周向振动主要影响高频噪声。 4风噪声 风噪声与路面无关,它是轮胎在前进和旋转时搅动周围空气而产生的空气振动声。在车辆低速行驶时,轮胎的风噪声可以忽略。 影响轮胎噪声的因素很多,除了轮胎花纹外,车速、负荷、轮胎气压、以及路面状况等使用因素对轮胎噪声的影响也很大。各种花纹形式的轮胎与不同路面相互作用可使轮胎噪声级和噪声频谱有很大变化。 轮胎噪声与车速具有一定的线性关系,随着车速的提高,轮胎噪声也相应增大,这是因为轮胎花纹内的空气容积变化速度加快,''气泵"声增大;而胎面花纹承受的激振力也增大,振动声随之增大。 汽车辆的负荷不同时,轮胎花纹的挤压作用也产生变化。随着载荷的增加,胎面花纹的变形增大,轮胎的胎肩逐渐接触地面,横向花纹便容易造成''空腔的封闭''而使噪声增大,而对纵向花纹轮胎那么影响不大。轮胎气压增加,轮胎变形小,反之那么变形增大。因此,对于齿形花纹轮胎来说,当气压高时,噪声小,而气压低时,噪声大。 路面状况对轮胎噪声的影响主要是路面的粗糙度和潮湿程度。资料说明,由于路面粗糙度不同所引起的轮胎噪声变化程度约7dB(A)左右;湿路面比干路面的噪声大10dB(A)左右,其增大的程度随路面含水量而变化。湿路面的轮胎噪声主要是因为溅水造成的,和轮胎花纹的关系不大。 汽车的噪声除上述原因外,还有在高速行驶时产生的车身干扰空气噪声、制动噪声、贮气筒放气声、喇叭声以及各种专用车辆上的动力装置噪声等。但是这些噪声不是连续性的, 因此,在汽车噪声中不占主要地位。

喇叭原理及培训资料

关于扬声器原理 首先,我们来谈谈如何认识一个扬声器,随着电子技术的发展,扬声器在不断地改进,扬声器品种繁多,若按扬声器换能原理来分类,则可为电磁式扬声器、励磁式扬声器、静电式扬声器,压电陶瓷式扬声器、电动式扬声器、挂画式平面扬声器.本书主要介绍电动式喇叭(耳机喇叭). 第一章扬声器的类型 扬声器(喇叭)器件是一种电能与声转换器件,扬声器品种繁多,若按扬声器换能原理来分类,则

可为电磁式扬声器、励磁式扬声器、静电式扬声器,压电陶瓷式扬声器、电动式扬声器、挂画式平面扬声器。 一、电磁式扬声器 电磁式扬声器(舌簧式)主要由永久磁铁(马早蹄形)、衔铁(舌簧)、线圈、纸盘和盆架等组成。 电磁式扬声器的特点:灵敏度高,结构简单,成本低。但其阻抗高,频率特性差,较高和较低的音频都有发不出来,失真大,振幅小,声压低,承受功率在1/4-1/2W之间.这是一种老式扬声器,20世纪50年代农村广播网曾大量使用,现今已逐渐被电动式纸盘扬声器所取用. 二、励磁式扬声器 励磁式扬声器与永磁电动式扬声器相似,主要区别在于磁体部分。励磁式扬声器的大形线圈是 整流系统中的扼流圈,它通过高电压大电流产生磁力,并与音频信号电流互相作用,推动音圈作活塞式振动,带动纸盘发出声音. 这种扬声器主要用于老式交流电子管式收音机上。收音机不工作时,扬声器没有磁力存在;只当收音机工作,电流通过励磁线圈产生磁力时,扬声器才能正常工作。可见,这种扬声器的使用有着极大的局限性,现今逐渐被沟汰。 三、静电式扬声器 静电式中高频扬声器的工作原理极简单,它是以电容器原理制作而成,可以看做是一个能振动发声的电容器。按结构类型,静电扬声器可分单极式、推挽式和驻极式。 1、单极式 它用一块属板作固定极板,用导电材料制成轻且的动膜片作另一块电极(辐射极),两极板小,振动膜片采用金属箔或金属化涤纶薄制成。 2、推挽式 推挽式静扬声器是在单极式静电扬声器中增加地一电极而成。它用两块固定的电极板,振动电极片置于固定电极板之间. 3、驻极体式 驻极体式扬声器是将电容器的极板改用驻极体材料(如四氟乙烯、聚全氟乙烯等)制成的。其结构则与上述的静电扬声器相同。驻极体式静电扬声器最大的特点是不需要极化电压. 静电式扬声器频响特性平坦,放音清晰,层次感极好,音质优美.但由于需要极化电压,目前低电压的晶体管扩大器中要增设这一极化电压设备,可以说,得不偿失。因此,普及和发展静电式扬声器有一定难度。 四、压电陶瓷式扬声器 压电陶瓷扬声器又称晶体式扬声器。它利用某些晶体式陶瓷材料的压电效应而制成。当在陶瓷体加上音频电压时,陶瓷片即向上或向下弯曲,产生与音频信号电压相对立的振动,利用振动,便可推动扬声器的纸盒作相应的振动,从而激励空气发出声音。 陶瓷扬声器结构简单,没有线圈及磁铁,消耗功率小,灵敏度高,高频特性好,重量轻,体积小,制造容易,成本低,价格便宜.但工作不够稳定,性能脆弱易损坏,音质较差。由于振幅小频率高,声量不如电动式纸盒扬声器大,所以通常只作高音单元使用.如果与大纸盒粘合,则适用于农村有线广播网;若造得轻巧小型,则适合双声道四喇叭收录机作高频单元.在警示器中也经常用这种小高音扬声器,在家用音箱中有时也会有用到这种高音单元。 五、电动式扬声器 电动式(动圈式)扬声器广泛应用于音响系统中,是人们最熟悉的扬声器。按频率特性及其结构,可分为纸盆式、号筒式和球顶式三种.纸盆式又分为圆形、椭圆形及密封;高音号筒式有圆形、长方形等多种;球顶式分硬球顶及软球顶,其形状有凹形和凸形之分。 (一)、电动式纸盆扬声器 1、电动式纸盆低音扬声器 当音频信号电流通过扬声器音圈时,音圈在磁隙中产生交变磁场。这种交变磁场与永久磁铁的磁场的相互作用,迫使音圈振动,驱动与音圈粘贴在一起的纸盆在空气媒质中振动而发出声音,实现电

声学基础知识(整理)

噪声产生原因 空气动力噪声 由气体振动而产生。气体的压力产生突变,会产生涡流扰动,从而引起噪声。如空气压缩机、电风扇的噪声。 机械噪声 由固体振动产生。金属板、齿轮、轴承等,在设备运行时受到撞击、摩擦及各种突变机械力的作用,会产生振动,再通过空气传播,形成噪声。 液体流动噪声 液体流动过程中,由于液体内部的摩擦、液体与管壁的摩擦、或者流体的冲击,会引起流体和管壁的振动,并引起噪声。电磁噪声 各种电器设备,由于交变电磁力的作用,引起铁芯和绕组线圈的振动,引起的噪声通常叫做交流声。 燃烧噪声 燃料燃烧时,向周围的空气介质传递了热量,使它的温度和压力产生变化,形成湍流和振动,产生噪声。

声波和声速 声波 质点或物体在弹性媒质中振动,产生机械波向四周传播,就形成声波(声波是纵波)。可听声波的频率为20~20000Hz,高于20KHz 的属超声波,低于20Hz 的属次声波。 点声源附近的声波为球面波,离声源足够远处的声波视为平面波,特殊情况(线声源)可形成柱面波。 声频( f )声速( c )和波长( λ ) λ= c / f 声速与媒质材料和环境有关: 空气中,c =331.6+0.6t 或t c +=27305.20 (m /s) 在水中声速约为1500 m /s t —摄氏温度 传播方向上单位长度的波长数,等于波长的倒数,即1/λ。有时也规定2π/λ为波数,用符号K 表示。 质点速度 质点因声音通过而引起的相对于整个媒质的振动速度。声波传播不是把质点传走而是把它的振动能量传走。

声场 有声波存在的区域称为声场。声场大致可以分为自由场、扩散场(混响场)、半扩散场(半自由场)。 自由场 在均匀各向同性的媒质中,边界影响可忽略不计的声场称为自由场。在自由场中任何一点,只有直达声,没有反射声。 消声室是人为的自由场,是由吸声材料和吸声结构做成的密闭空间,静谧无风的高空或旷野可近似为自由场。 扩散场 声能量均匀分布,并在各个传播方向作无规则传播的声场,称为扩散场,或混响场。声波在扩散场内呈全反射。 人为设计的混响室是典型的扩散场。无论声源处于混响室内任何位置,室内各处声压接近相等,声能密度处处均匀。 自由场扩散场(混响场)

江西初中物理知识点总结归纳表

江西初中物理知识点总结归纳表注意:下文中仅为物理知识点的总结归纳,不包含具体的解释或例题。如需详细了解各知识点的内容,请阅读相应教材或参考其他资料。 一、运动的基本概念 1. 运动的基本要素:位移、速度、加速度 2. 相关概念:匀速运动、变速运动、匀加速直线运动等 二、力和压强 1. 力的定义和计量单位:牛顿(N) 2. 力的分类:接触力与非接触力、重力、弹力、摩擦力等 3. 压强的定义和计量单位:帕斯卡(Pa) 三、力的作用效果 1. 牛顿第一定律:惯性和平衡状态 2. 牛顿第二定律:力、质量和加速度的关系 3. 牛顿第三定律:作用力与反作用力的相互作用 四、能量的转化和守恒 1. 功的定义和计量单位:焦耳(J) 2. 功与能量的关系 3. 功率的定义和计量单位:瓦特(W)

4. 机械能与能量守恒定律 五、电学基础知识 1. 电荷的基本性质和单位:库仑(C) 2. 电流的概念和计量单位:安培(A) 3. 电阻、电压、电功率的关系:欧姆定律、功率公式 4. 并联和串联电路的特点和计算方法 六、光学基础知识 1. 光的传播方式:直线传播、反射、折射 2. 光的颜色和光谱 3. 凸透镜和凹透镜的特点和应用 4. 光的成像规律和公式 七、热学基础知识 1. 温度的计量单位:摄氏度(℃) 2. 热传导、热对流和热辐射的特点 3. 热量的传递和能量守恒原理 4. 物体的热胀冷缩和热平衡 八、声学基础知识

1. 声音的产生和传播方式 2. 声音的特点:频率、振动和音调 3. 声音的强度和音量的关系 4. 声音的反射和吸收 九、力学基本定律 1. 牛顿第一定律的应用:静止摩擦力、空气阻力 2. 牛顿第二定律的应用:斜抛运动、竖直上抛运动 3. 牛顿第三定律的应用:滑雪、刹车过程 十、电磁感应与电磁波 1. 法拉第电磁感应定律的应用 2. 感生电动势和自感的特点和计算方法 3. 电磁波的产生和传播方式 4. 电磁辐射的应用和危害 结语: 本文从运动的基本概念开始,逐步总结了力和压强、力的作用效果、能量的转化和守恒、电学基础知识、光学基础知识、热学基础知识、 声学基础知识、力学基本定律、电磁感应与电磁波等物理知识点。通

2019年天大建筑工程学院船舶与海洋工程考研复试时间复试内容复试流程复试资料及经验

2019年天大建筑工程学院船舶与海洋工程考研复试时间复试内容复 试流程复试资料及经验 随着考研大军不断壮大,每年毕业的研究生也越来越多,竞争也越来越大。对于准备复试的同学来说,其实还有很多小问题并不了解,例如复试考什么?复试怎么考?复试考察的是什么?复试什么时间?复试如何准备等等。今天启道小编给大家整理了复试相关内容,让大家了解复试,减少一点对于复试的未知感以及恐惧感。准备复试的小伙伴们一定要认真阅读,对你的复试很有帮助啊! 学院简介 天津大学建筑工程学院于1997年由原土木工程系、水资源与港湾工程系和船舶与海洋工程系合并成立,下设土木工程系、水利水电工程系、港口工程系、船舶与海洋装备设计及工程管理系、海洋工程系、岩土工程研究所6个教学单位,并设有多个科学研究机构,目前在职教职工246人,各类全日制在校生2700余名。 学院设有土木工程(含建筑工程、桥梁工程、地下工程三个专业方向)、水利水电工程、港口航道及海岸工程、船舶与海洋工程(含海洋工程、船舶工程、国际航运管理三个专业方向)4个本科专业;以及工程管理第二学位本科专业,工程造价管理(专科)高职专业。学院4个本科专业都是国家特色专业,具有悠久的办学历史和深厚的学术积淀。近年来获国家教学成果一等奖1项,2门课程被评为国家精品课程。 专业介绍 船舶与海洋工程专业是一门研究船舶轮机的工作原理的学科。主要学习船舶的构造、航行原理、安全性设计及建造法规和国内外重要船级社的规范等知识,研究船舶的设计方法及如何保证航行的快速性、良好的操纵性和抗风浪能力等问题。学习船舶试验的方法和原理,解决船舶设计、建造、使用和管理中的问题。船舶与海洋工程专业是船舶建造、使用及海运行业的重要支撑学科。 复试时间 专业课笔试时间:3月17日(周六)上午9:00-10:30,请考生于8:20前凭身份证、准考证、资格审查合格证明参加考试。考场依据报考专业及方向安排如下:

感知编码

中国传媒大学三学年第二学期 音频工程课程 题目感知编码 学生姓名姚玲玲 学号************ 班级广电工二班 学生所属学院信息工程学院 任课教师胡泽 教师所属学院音乐与录音艺术学院成绩

音频信号的感知编码技术 姚玲玲 (中国传媒大学信息工程学院北京) 摘要:感知编码是利用人耳听觉的心理声学模型特性,将凡是人耳感觉不到的成分不编码不传送的一种编码技术。本文主要介绍了音频感知编码技术的发展和一些利用感知编码的音频编码标准,主要MPEG-1、MPEG-2。此外介绍了两种常用的音频格式。 关键词:音频信号音频编码感知编码感知编解码器 引言: 自从1982年数字激光唱片(CD-DA:Compact-Digital Audio)推上市场,数字音频技术得到了惊人的发展。其应用领域包括声音的产生、节目的分配与交换、数字声音广播、数字存储(档案、演播室、消费电子产品)、会议电视、多媒体视听、HDTV系统等。其中的快速发展与音频压缩技术的提高是分不开的。下面我们就来讨论一下声音的子带编码技术。 1 音频感知编码原理 感知是指在编码过程中保留人耳可以听到的部分,而放弃人耳听不到的部分,利用人耳在时间和频率方面的分析能力和感知能力让经过很好训练或特别灵敏的听众也感觉不到无关紧要的信号去除。下面简单叙述一下感知编码的两个理论基础理论,绝对听觉门限和听觉掩蔽效应。 1.1 绝对听觉门限 音频压缩理论是建立在心理声学模型基础上,从研究人耳的听觉系统开始的。人耳实际上可以看成一个多频段的听觉分析器,在接收端的最后,它对瞬间的频谱功率进行了重新分配,这就为音频的数据压缩提供了依据。 众所周知,声源振动的能量通过声波传入人耳,使耳膜发生振动,人们就产生了声音的感觉。声音信号中的“不相关”部分是基于人耳的听觉特性,因为人耳对信号幅度、频率和时间的分辨率是有限的。压缩编码就是要将那些人耳可感知的信息传递出去,而舍去那些感知不到信息,在可接受的信号质量下降的前提下,取得较低的比特率。为了达到这样的目的,必须充分利用人耳听觉的心理声学特性。 数字音频压缩编码主要基于两种途径:一是去除声音信号中的“冗余”部分,另一种是利用人耳的听觉特性,将声音中与听觉无关的“不相关”部分去除。 声音中的“冗余包括时域信息冗余和频域信息冗余。时域信息冗余度主要表现在幅度非均匀分布,即不同幅度的样值出现的频率不同,小幅度的样值比大幅度的样值出现的概率大。频域冗余度主要体现在非均匀功率谱密度,低频成分能力较高,高频成分能量较低。 1.2听觉掩蔽效应

喇叭原理及培训资料

对于扬声器原理 第一,我们来说说怎样认识一个扬声器,跟着电子技术的发展,扬声器在不停地改良,扬声器品种众多,若按扬声器换能原理来分类,则可为电磁式扬声器、励磁式扬声器、静电式扬声器,压电陶瓷式扬声器、电动式扬声器、 挂画式平面扬声器。本书主要介绍电动式喇叭(耳机喇叭)。 第一章扬声器的种类 扬声器(喇叭)器件是一种电能与声变换器件,扬声器品种众多,若按扬声器换能原理来分类, 则可为电磁式扬声器、励磁式扬声器、静电式扬声器,压电陶瓷式扬声器、电动式扬声器、挂画式平

面扬声器。 一、电磁式扬声器 电磁式扬声器(舌簧式)主要由永远磁铁(马早蹄形)、衔铁(舌簧)、线圈、纸盘和盆架等构成。电磁式扬声器的特色:敏捷度高,构造简单,成本低。但其阻抗高,频次特征差,较高和较低的 音频都有发不出来,失真大,振幅小,声压低,蒙受功率在1/4-1/2W之间。这是一种老式扬声器,20世纪50年月乡村广播网曾大批使用,当今已渐渐被电动式纸盘扬声器所取用。 二、励磁式扬声器 励磁式扬声器与永磁电动式扬声器相像,主要差别在于磁体部分。励磁式扬声器的大形线圈是整 流系统中的扼流圈,它经过高电压大电流产生磁力,并与音频信号电流相互作用,推进音圈作活塞式 振动,带动纸盘发出声音。 这类扬声器主要用于老式沟通电子管式收音机上。收音机不工作时,扬声器没有磁力存在;只当 收音机工作,电流经过励磁线圈产生磁力时,扬声器才能正常工作。可见,这类扬声器的使用有着极 大的限制性,当今渐渐被沟汰。 三、静电式扬声器 静电式中高频扬声器的工作原理极简单,它是以电容器原理制作而成,能够看做是一个能振动 发 声的电容器。按构造种类,静电扬声器可分单极式、推挽式和驻极式。 1、单极式 它用一块属板作固定极板,用导电资料制成轻且的动膜片作另一块电极(辐射极),两极板小, 振动膜片采纳金属箔或金属化涤纶薄制成。 2、推挽式 推挽式静扬声器是在单极式静电扬声器中增添地一电极而成。它用两块固定的电极板,振动电极 片置于固定电极板之间。 3、驻极体式 驻极体式扬声器是将电容器的极板改用驻极体资料(如四氟乙烯、聚全氟乙烯等)制成的。其构 造则与上述的静电扬声器同样。驻极体式静电扬声器最大的特色是不需要极化电压。 静电式扬声器频响特征平展,放音清楚,层次感极好,音质优美。但因为需要极化电压,当前低 电压的晶体管扩大器中要增设这一极化电压设施,能够说,得失相当。所以,普及和发展静电式扬声 器有必定难度。 四、压电陶瓷式扬声器 压电陶瓷扬声器又称晶体式扬声器。它利用某些晶体式陶瓷资料的压电效应而制成。当 在陶瓷体 加上音频电压时,陶瓷片即向上或向下曲折,产生与音频信号电压相对峙的振动,利用振动,即 可推进扬声器的纸盒作相应的振动,进而激励空气发出声音。 陶瓷扬声器构造简单,没有线圈及磁铁,耗费功率小,敏捷度高,高频特征好,重量轻,体积小,制造简单,成本低,价钱廉价。但工作不够稳固,性能柔弱易破坏,音质较差。因为振幅小频次高, 声量不如电动式纸盒扬声器大,所以往常只作高音单元使用。假如与大纸盒粘合,则合用于乡村 有线广播网;若造得轻盈小型,则适合双声道四喇叭收录机作高频单元。在警告器中也常常用这类小 高音扬声器,在家用音箱中有时也会实用到这类高音单元。 五、电动式扬声器 电动式(动圈式)扬声器宽泛应用于音响系统中,是人们最熟习的扬声器。按频次特征及其构造,可分为纸盆式、号筒式和球顶式三种。纸盆式又分为圆形、椭圆形及密封;高音号筒式有圆形、长方 形等多种;球顶式分硬球顶及软球顶,其形状有凹形和凸形之分。

海军工程大学2011年硕士研究生招生简章参考资料

海军工程大学2011年硕士研究生招生简章 2010-08-02 来源:海军工程大学 我校2011年面向全国拟招收硕士研究生500名,具体招生计划以总政下达的文件为准。 一、报名、考试时间及地点:2011年硕士研究生入学考试仍采用网上报名与现场确认相结 合的方式,网上报名网址为:.cn,网报期间可修改报名信息。网上报名成功后,考生须在规定的时间内携带本人身份证(学生证)及网报系统分配的报名号到自己选定的报名点交费、照相,现场确认报名信息并签字。网报时间拟定为2010年10月8-31日09:00-22:00,现场确认时间为11月10-14日,考试时间在2011年春节前10天左右,具体时间以教育部公布为准。考试地点在考生现场照相、确认报名信息的报名点。 二、报考条件 报考条件除符合教育部规定外,还应注意以下几点: 1.身体健康状况符合《中国人民解放军军队院校招收学员体格检查标准》。其中主要的几点 如下: (1)身高:男生不低于162cm,女生不低于160cm。 (2)两眼裸视均在4.5以上,校正视力均在5.0以上,无色盲、色弱。 (3)肝功能正常(含乙型肝炎表面抗原呈阴性)。 2.非军人考生(录取报到后办理参军入伍手续,毕业时由海军统一分配)年龄不超过24周 岁(1987年9月1日以后出生);军人考生年龄不超过40周岁。

3.招收地方人员攻读硕士研究生并入伍对象,仅限普通高等学校应届本科毕业生(专升本除外)和海军院校委培应届本科毕业生(国防生不占地方入伍计划,录取后直接入校攻读硕士学位研究生),且获学士学位。招生专业仅限为工学专业,且本科所学专业与报考专业相同或相近,并严格控制女生比例。可直接接受地方高校推荐免试硕士研究生,不招收地方在职人员。 4.凡以“同等学力”资格报考者,还必须通过大学英语四级考试(或相当于达到四级水平),并至少提供一篇已发表的与大学本科毕业程度相当的学术论文或科研成果。 三、录取有关规定 从地方录取的硕士生,入学后办理参军入伍手续,在读期间享受军队干部待遇;从军队录取的硕士生按总政有关规定享受干部待遇。 四、注意事项 1.考生网上报名时,报名点一般应选择考生所在省(市)招办指定的报名点。 2.简章中学科、专业名称内有“﹡”者,该专业具有博士学位授予权。 3.我校研招办不办理参考书的邮购业务,可提供往届研究生入学考试试题(购买时间:周三、五下午)。 4.联系地址:武汉市海军工程大学研究生招生办公室;邮编:430033 联系电话:(地);联系人:亓洪标 海军工程大学2011年硕士研究生招生专业目录 2010-08-02 来源:海军工程大学

2021年山西省中考物理试题及答案解析

2021年山西省中考物理试卷 一、单选题(本大题共10小题,共30.0分) 1.3月12日植树节这一天,学校组织九年级同学参加植树造林活动。根据图片信息,对图中这棵小树的 高度估测合理的是() A. 0.5m B. 1m C. 2m D. 4m 2.“五四”青年节期间,学校举办了以“奋斗百年路,启航新征程”为主题的庆祝中国共产党成立100 周年歌咏比赛。下列说法正确的是() A. 合唱声是由空气振动产生的 B. 合唱声是通过空气传入人耳的 C. 合唱声可以在真空中传播 D. 将音箱音量调大改变了合唱声的音色 3.日晷是我国古代劳动人民用来计时的一种工具。如图所示,通过观察直杆在太阳下影子的位置就可知 道时间。下列现象与日晷工作原理相同的是() A. 池水映明月 B. 形影紧相依 C. 潭清疑水浅 D. 镜子正衣冠 4.“二十四节气”是中华民族农耕文明长期经验的积累和智慧的结晶,已被列入联合国教科文组织人类 非物质文化遗产名录。下列节气涉及的物态变化及吸、放热情况,说法正确的是() A. “白露”节气,露的形成是升华现象 B. “寒露”节气,露的形成要吸收热量

C. “霜降”节气,霜的形成是凝华现象 D. “大雪”节气,雪的形成要吸收热量 5.“安全用电,珍爱生命”是公民应有的安全意识。关于安全用电,下列做法正确的是() A. 可以在电线上晾湿衣服 B. 使用试电笔时,手要接触笔尖金属体 C. 可以用湿手触摸开关 D. 电热水壶的金属外壳要接地 6.小伟妈妈做饭时,不小心把胡椒粉洒在粗粒盐上。小伟急中生智,拿塑料小勺在毛料布上摩擦了几下, 然后把小勺靠近胡椒粉,胡椒粉立刻被吸到勺子上,成功将胡椒粉和粗粒盐分开。下列说法正确的是() A. 塑料小勺能吸引胡椒粉是因为它带了电 B. 若塑料小勺带负电是因为它失去了电子 C. 塑料小勺带电是通过摩擦的方法创造了电荷 D. 塑料小勺摩擦毛料布带了电说明小勺是导体 7.2021年4月13日,中国女足凭着“不畏强敌,顽强拼搏”的精神,成功晋级东京奥运会决赛圈。足 球运动蕴含着许多物理知识,下列分析正确的是() A. 足球鞋底有凹凸不平的花纹,是为了减小摩擦 B. 踢出去的足球继续运动,是由于受到惯性的作用 C. 踢球时脚对球有力的作用,球对脚没有力的作用 D. 用头顶足球时感到疼,说明物体间力的作用是相互的 8.如图所示的磁悬浮地球仪,在地球仪底端有一个磁铁,在底座内部有一个金属线 圈,线圈通电后,地球仪可悬浮在空中。下列说法正确的是() A. 地球仪周围存在磁场,同时也存在磁感线 B. 地球仪周围的磁场分布是均匀的

相关文档