文档库 最新最全的文档下载
当前位置:文档库 › 基因技术发展历程及前景展望

基因技术发展历程及前景展望

基因技术发展历程及前景展望
基因技术发展历程及前景展望

转基因技术发展历史

1945年首次使用分子生物学这一术语,主要指针对生物大分子的化学和物理结构的研究。

生物学经历了一个漫长的研究历程,最早人们从研究动物和植物的形态、解剖和分类开始,以后进一步研究细胞学、遗传学、微生物学、生理学、生物化学,进入细胞水平的研究。到20世纪中叶以来,生物学以生物大分子为研究目标,分子生物学开始形成了独立的学科。

分子生物学是针对所有生物学现象的分子基础进行研究。这一术语由Willian Astbury于1945年首次使用,主要指针对生物大分子的化学和物理结构的研究。

1871年,Miescher从死的白细胞核中分离出DNA。

1871年,Miescher从死的白细胞核中分离出DNA。1928年,Griffith发现肺炎链球菌的无毒菌株与其被杀死的有毒菌株混合,即变成致病菌株。1944年Avery 等发现从强致病力的S型肺炎链球菌中提取的DNA能使致病力弱的R型转化成S 型。如果加入少量DNA酶,这种转化立即消失,但加入各种蛋白水解酶则不能改变这种变化。这一著名的实验证明了引起细菌遗传改变的物质为DNA。

1949年发现了了Chargaff规律:G=C,A=T;以及DNA具有典型的螺旋结构

随着核酸化学研究的不断发展,1949年Chargaff从不同来源的DNA测定出4种核酸碱基(胸腺嘧啶T、胞嘧啶C、腺嘌呤A和鸟嘌呤G)中(A+T)/(G+C)的比值随不同来源的DNA而有所不同,但鸟嘌呤的量与胞嘧啶的量总是相等,腺嘌呤与胸腺嘧啶的量相等,即G=C,A=T,这个规律称为。与此同时,Willkins及Franklin用X射线衍射技术测定了DNA纤维的结构,表明了DNA具有典型的螺旋结构,并由两条以上的多核苷酸链组成。

1953年,Watson和Crick提出了DNA双螺旋模型

1953年,Watson和Crick提出了DNA双螺旋模型。该模型表明,DNA具有自身互补的结构,根据碱基配对原则,DNA中贮存的遗传信息可以精确地进行复制。这一理论奠定了现代分子生物学的基础。

1970年Smith从大肠杆菌中分离出第一个限制性内切酶

于1970年从大肠杆菌中分离出第一个能切割DNA的酶,它可以在DNA核苷酸序列的专一性位点上切割DNA分子,这种酶被称为限制性内切酶,以后很多种限制性酶陆续被分离出来,目前已有数百种。

限制性内切酶的分离成功使得重组DNA 成为可能。因为DNA是一个长链的生物高分子,在研究DNA重组、表达质粒的构造即它的碱基序列分析之前需要将DNA 切割成为较短的片段,限制性内切酶这把?分子剪刀?正好可以实现这一功能。1972年Berg首次成功进行了重组DNA的克隆

而在此以前,科学家已经发现了细菌中存在的DNA连接酶。1972年Berg首次将不同的DNA片段连接起来,并且将这个重组的DNA分子有效地插入到细菌细胞之中,重组的DNA进行繁殖,产生了重组DNA的克隆。Berg是重组DNA或基因工程技术的创始人,并于1980年获得了诺贝尔奖。

重组DNA技术的出现奠定了现代转基因技术的基础。转基因技术的基本原理就是在生物体中插入新的遗传物质。1973年,科学家在大肠杆菌中表达了一个来自沙门氏菌的基因,从而首次在科学界引发了关于转基因安全性的深入思考。1975年的阿西拉玛大会(Asilomar Conference)上,科学家建议政府对重组DNA相

关研究进行监管。

1978年重组DNA技术公司-Genetech利用重组DNA技术创建了一个新的大肠杆菌菌系,用于生产人胰岛素。

之后不久,Herbert Boyer创建全球第一个重组DNA技术公司-Genetech,并于1978年宣布利用重组DNA技术创建了一个新的大肠杆菌菌系,用于生产人胰岛素。

1986年,美国加利福尼亚州奥克兰市一个叫做领先遗传科学(Advanced Genetic Sciences)的小型生物技术公司准备对一种保护植物免受冻害的基因工程防霜负型细菌进行田间试验,但该试验由于反生物技术人士的阻扰而一再延期。同年,孟山都公司取消了一项表达杀虫蛋白的基因工程微生物的田间试验。

20世纪80年代后期到90年代初期,包括粮农组织(FAO)、世界卫生组织(WHO)在内的一些国际组织开始制定关于转基因植物及其产品的安全评价规范。

80年代后期,在加拿大、美国开始出现小规模的转基因植物田间试验。90年代中期,美国首次批准转基因植物大面积种植,从而揭开了转基因植物商业化应用飞速发展的序幕。

国际转基因食品发展现状

转基因食品发展领域

自世界上第一例转基因烟草1983年问世以来,转基因技术研究范围不断扩大,到2009年转基因植物研究已涉及35个科的50多个物种,共120多种植物,研究内容包括抗虫、抗病、抗除草、品质改良等大面积种植的转基因作物有棉花、大豆、水稻、玉米等。由于转基因大豆基础研究进行的较早技术成熟所以其推广面积一直领先于棉花、水稻等作物。

转基因技术应用综述

近十几年来,现代生物技术的发展在农业上显示出强大的潜力,并逐步发展成为能够产生巨大社会效益和经济利益的产业。世界很多国家纷纷将现代生物技术列为国家优先发展的重点领域,投入大量的人力、物力和财力扶持生物技术的发展。截至2009年底,全球共有25个国家种植了转基因作物。25个国家中,美洲国家最多为12个,其次是欧洲6个,亚洲和非洲各为3个,大洋洲1个。其中美国是种植大户,占全球种植面积的 72 %。从1996年转基因作物首次规模化应用以来,转基因食品已经经历了13年的发展。全年种植面积达1.25亿公顷,产值达75亿美元,13年间增长了84倍[3]。转基因食品在飞速发展的同时带来了巨大的社会和经济效益,并且得到了日益广泛的认同和接受。世界卫生组织(WHO)强调转基因作物可以通过提供更营养的食品,减少食物致敏性和提高生产率从而造福人类健康。转基因作物的持续推广显示了转基因技术在农业生产上的巨大优势,也表明全球数以百万计的农户从转基因作物的种植中获得了切实的收益。

国际转基因技术发展差异

但是,转基因食品在世界各个国家和地区之间的发展是不均衡的。美国是应用

转基因技术最多的国家,1998年它的转基因作物播种面积为2050万公顷,是1997年的2.5倍。全美玉米种植联合会估计,美国转基因玉米的种植面积将由1998年占玉米总播种面积的28%上升为1999年的33%。美国大豆联合会预计转基因大豆的种植面积可能达到1.619亿公顷,占大豆播种面积的55%。在转基因动物研究方面,美国利用转基因技术使猪的生长速度提高40%,加快了猪肉的上市速度,降低了饲养成本。另外,还发现了通过运用能控制和刺激产奶的基因而使牛奶增产10%~20%的方法。加拿大、阿根廷是继美国之后大量采用转基因技术的国家。加拿大有50%左右的大豆和玉米播种面积采用转基因处理的种子。在阿根廷,1/3以上的大豆播种面积采用了经过改变基因的豆种。世界上应用转基因技术比较多的国家还有墨西哥、西班牙和南非等。

转基因技术发展趋势

基因技术是一项投入和产出都十分巨大的高新技术,有着巨大的知识价值和经济价值。

基因技术是一项投入和产出都十分巨大的高新技术,有着巨大的知识价值和经济价值。从某种意义上讲,基因技术代表着一个国家的科技水平,世界各国都把生物技术特别是基因研究确定为 21 世纪经济科技发展的关键技术,生产符合人类需要的基因食品已经越来越明朗化和可操作化。

转基因技术在解决生存危机方面具有重要作用

全球的人口正在增长。到 2020 年世界人口将增至 75 亿,到 2050 年将达到100 亿,届时能源枯竭和环境污染将会使人类陷入生存的危机[4]。 20 世纪

60~70年代进行的粮食生产方面的“绿色革命”增加了作物的品种,配合使用农用化学品(肥料和杀虫剂)使产量大增,从而使全球的粮食产量增加达到3倍。自20世纪80年代全球粮食产量达到高峰后,由于多次种植使土地的肥力消耗和保护农作物的化学物失效等原因使粮食产量在下降。通过传统的繁育技术不太可能让现有的作物产量继续增长,因此,利用转基因技术来寻找增加粮食生产的新途径就变得极其重要,同时还可以减少农业和食品生产对环境造成的负担。毫无疑问,21世纪是生物技术蓬勃发展的时代,转基因食品的兴起是生物技术革命的必然,它将给人类带来巨大的社会财富和美好的前景。

转基因技术带给我们的不仅是餐桌上的革命,巨大的市场和高额的利润,而且将改变我们的思维和生活方式。

尽管在世界范围内对转基因食品的安全性有很多争议,但这不影响转基因食品技术的迅速发展。可以预计,转基因食品在不久的将来很快会成为人类食品的主要来源。转基因技术带给我们的不仅是餐桌上的革命,巨大的市场和高额的利润,而且将改变我们的思维和生活方式。

转基因技术也将有利于人类的身体健康

除此之外,第二代转基因食品的营养作用会使人类的身体更加健康; 抗虫和抗除草剂的转基因植物食品使人类免除了农药污染而造成的身体损害。因此,转基因食品以其高的产量和功能性、营养性必将有广阔的发展前景。

总结:转基因技术的发展趋势不可阻挡

应该看到,从世界范围看,转基因食品并不是随意推向市场的。我国对生物工程的研究和开发,是在保护人民健康和资源环境的基础上进行的。对转基因产品管理和监控是有法可依、有章可循的。1993年原国家科委发布了(基因工程安全管理办法),1996年农业部又发布了《农业生物基因工程安全管理实施办法》,农业部每年受理两批基因工程体的安全评价,目前已受理了193项,批准进入商业化生产的仅有6项。在这种管理体系下,经过安全评价和检测的转基因产品,是安全的。

由于发展较早,美国、加拿大对转基因食品采取一种较为宽容的政策,他们采取的是备案制。在经过评价后,被视为安全的工程体和产品就不再受监控了。

从长远看,利用基因工程改良农作物已势在必行。这首先是由于全球人口的压力不断增大。专家们估计,今后40年内,全球人口将比目前增加50%。为此,粮食产量必须增加75%才能解决世界人口吃饭问题。而城市化程度的提高,可耕地的萎缩,更加深了绿色革命的迫切性。另外,人口老龄化对医疗系统的压力也不断增加,开发有助于增强人体健康的食品十分必要。

转基因作物和食品的安全性,关键还看是否有一整套国际标准和相关规则。没有规矩不成方圆。只有正确地引导转基因农产品的开发和运用,规范检测手段,才能确保转基因农产品的食用安全和生态环境的安全。

据报道,联合国粮农组织、经合组织、世界卫生组织正在成立有关专家工作小组,准备对转基因食品的开发、生产及销售确定相关规则,计划于2000年7月以前拿出具体方案。

顺民心则得天下。据悉,目前一些欧美企业正在积极调整开发转基因农产品战略。他们从消费者利益出发,从盲目增加产量转向注重转基因农产品的务实性和高附加价值。如杜邦公司计划在2002年以前开发抑制骨质增生的大豆,2005年开发出亚油酸含量高的防癌大豆,并计划利用生命工程技术提高玉米等农产品的附加值,为人类造福,为企业增加效益。

转基因作为一项新兴的生物技术,无论哪个国家都不会在转基因食品领域退缩。随着国际规则的制定和完善,转基因食品定会以崭新的姿态出现在21世纪的田野上。

基因工程技术的现状和前景发展

基因工程技术的现状和前景发展 摘要 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。?在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。?随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,**提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。? 基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。?目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。 基因工程应用于环保方面

基因工程的发展历程

基因技术的发展历程 2011级初等教育理科代林宏 [摘要]基因技术作为21世纪生物科技的核心技术之一,通过操纵、改变DNA上基因的容易来改变生物属性和特点,包括胰岛素生物工程、干细胞技术、克隆技术等。基因科技术的每一次突破和发展对人类的生产生活都有着重要的影响。 [关键词] 基因技术;成就;发展历程; 基因技术是指通过操纵、改变(增加或减少)DNA上基因的容易来改变生物属性和特点,以达到有利于人类目的的生物科学技术。如把胰岛素基因置入大肠杆菌产生人类稀缺的胰岛素生物工程;干细胞技术,克隆技术等。这一系列的技术由基因到伟大的人类基因组计划以及后来的一系列生物高科技的发展有一个漫长的历程。 19世纪60-80年代间确定了细胞中的两种核算,脱氧核糖核算及核糖核酸;染色质,染色体等物质,对细胞结构有了基本的认识。 1909年,丹麦的约翰逊把遗传因子命名为“基因”。随后美国人摩尔根和他的学生发表了《遗传的物质基础》和《基因论》。证明了基因是染色体上的遗传单位。 1944年美国的艾弗里证明了遗传基因就在DNA上。剑桥大学的卡文迪许实验室里,沃森和克里克研究发现了DNA分子双螺旋结构,并在科学期刊《自然》上面发表了论文,这位之后的基因技术发展奠定了基础。 1956年,美国的肯恩伯格从大肠杆菌里分离出了一种催化核苷酸形成DNA 的酶-DNA聚合酶,作为DNA体外复制技术的起始。随后提出了中心法则、操纵子学说,并成功的破译了遗传密码,使生物学的发展进入了另一个阶段。 所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入了人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的豆和四分之一的玉米都是转基因的。 运用胚胎遗传病筛查技术可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。[1] 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,二是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新性状,如抗虫西红柿,生长迅速的鲫鱼,转基因烟草等。1997

植物转基因技术

植物转基因技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

生物工程的导论论文之植物转基因技术 生物1002班郭雅莉 201041006 摘要:目前,转基因技术已经成熟,转基因作物已进入产业化阶段,而且种植面积逐年扩大,呈直线上升趋势。世界上已通过转基因技术培育出许多产量高、品质好、抗性强的农作物新品种,生物技术产品已应用到医药,保健食品和日化产品等各个方面,生物制药产业已成为最活跃,进展最快的产业之一。为此,我将对植物转基因技术及其应用、和当代社会发展的概况进行系统阐述,同时对转基因食品的安全性问题进行系统的讨论。 关键词:国际状况转基因技术应用安全性问题 自1983年美国在世界上首次获得转基因烟草以来,植物转基因技术得到了迅速发展,在世界范围内得到了广泛的应用人们将以转基因技术为核心的生物技术上的巨大飞跃誉为第二次“绿色革命”。植物转基因技术巨大的生产潜力将为人类带来很大的经济效益和社会效益,并将辐射性地影响人类社会、经济、技术、生活、思想等方面的发展。 然而由于人们最初对转基因技术的认识不足或不理解,以至对转基因技术存在不同的态度和看法甚至偏见,使植物转基因技术面临着不少冲击。在20世纪末,转基因作物的安全性就在全球范围内引起了激烈的争论,反对者认为转基因作物具有很大的潜在危险,可能会对人类健康和生存环境造成威胁。在欧洲,转基因作物曾被一些媒体称之为“恶魔食 品”[1]。 一、国际植物转基因技术状况简介 转基因技术已在多种植物上获得成功,转基因的棉花、大豆、玉米、水稻、烟草、番茄、油菜等重要粮食作物和经济作物已作为商品投入市场。其进入田间实验的种类不断增加,除转基因粮食作物之外,转基因蔬菜、瓜果、牧草、花卉、林木及特用植物数量逐渐增加,基因种类和来源日益丰富,转基因性状日趋多样复杂。 在所涉及的转基因方法中,农杆菌介导法占50种,基因枪轰击法24种,DNA直接转移法2种,电击介导法2种,化学介导法1种[5]。已把一

1基因工程发展史

实践证明,利用重组DNA技术,可以对不同生物的基因进行新的组合,得到性状发生改变的新生物。这意味着人类可以根据自己的意愿设计新的生物,并把它构建出来。人的创造性有一次性得到生动的体现。从此,生物科学完全超越了经验科学的阶段,第一次具备了工程学科的性质,以至于我们今天把基于重组DNA技术的新的学科分支,称为目前众所周知的“基因工程”。 第一节基因工程的诞生与发展 一、基因工程的定义 基因工程(Gene engineering)原称遗传工程(Genetic engineering)。从狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状甚至创造新的物种。因此,供体、受体和载体称为基因工程的三大要素,其中相对于受体而言,来自供体的基因属于外源基因。除了少数RNA病毒外,几乎所有生物的基因都存在于DNA结构中,而用于外源基因重组拼接的载体也都是DNA分子,因此基因工程亦称为重组DNA技术(DNA recombination technique)。另外,DNA重组分子大都需在受体细胞中复制扩增,故还可将基因工程表征为分子克隆或基因的无性繁殖(Molecular cloning)。 广义的基因工程定义为DNA重组技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是外源基因重组、克隆和表达的设计与构建(即狭义的基因工程);而下游技术则涉及到含有重组外源基因的生物细胞(基因工程菌或细胞)的大规模培养以及外源基因表达产物的分离纯化过程。因此,广义的基因工程概念更倾向于工程学的范畴。 二、基因工程诞生的理论基础 (一)DNA是遗传物质 1944年,Avery进行的肺炎双球菌转化实验,证明了基因的分子载体是DNA,而不是蛋白质;1952年,Alfred Hershy和Marsha Chase通过噬菌体转染实验证明了遗传物质是DNA。 (二)DNA双螺旋结构和半保留复制

基因工程的现状及发展

基因工程的现状及发展 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因工程的现状及发展 研究背景: 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 目的意义: 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA 链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型。 内容摘要: 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA 链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 成果展示:

植物叶绿体基因工程发展探析(一)

植物叶绿体基因工程发展探析(一) 摘要从叶绿体的概念、转化优点、转化主要过程及方法等方面概述了叶绿体基因工程的发展情况,介绍了叶绿体基因工程的应用,包括提高植物光合效率、合成有机物质、生产疫苗、增强植物抗性及在系统发育学中的应用等,并提出叶绿体基因工程存在的问题,对其未来发展进行了展望。 关键词植物叶绿体;基因工程;发展;应用;存在问题;展望叶绿体作为植物中与光合作用直接相连的重要细胞器,其基因组的功能也因此扮演着十分重要的角色。1882年Straburger观察到藻类叶绿体能分裂并进入子代细胞;1909年Baur和Correns通过在3种枝条颜色不同的紫茉莉间杂交得出,质体是母本遗传的。人们便开始对叶绿体遗传方面产生了浓厚的兴趣1]。1988年Boynton等首次用野生型叶绿体DNA转化了单细胞生物衣藻突变体(atPB基因突变体),使其完全恢复光合作用能力,标志着叶绿体基因工程的诞生2]。叶绿体基因工程作为一种很具有发展前景的植物转基因技术,在植物新陈代谢、抗虫性、抗病性、抗旱性、遗传育种等方面都将有着越来越重要的意义。 1叶绿体基因工程概述 1.1叶绿体简介 叶绿体是植物进行光合作用的重要器官,是一种半自主型的细胞器,能够进行自我复制,含有双链环状DNA。叶绿体DNA分子一般长120~160kb。叶绿体DNA有IRA和IRB2个反向重复序列(分别位于A链和B链),两者基因大小完全相同,只是方向相反,它们之间有1个大的单拷贝区(大小约80kb)和1个小的单拷贝区(大小约20kb)。 1.2叶绿体基因组转化优点 叶绿体基因具有分子量小、结构简单、便于遗传的特点,故相对于传统的细胞核遗传更能高效表达目的基因,这是因为叶绿体基因本身拥有巨大的拷贝数3]。叶绿体基因可实现外源基因的定点整合,避免位置效应和基因沉默;遗传表达具有原核性;安全性好,叶绿体属于母系遗传,后代材料稳定;目的基因产物对植物的影响小。利用叶绿体基因转化的这些优点,可以加快育种速度和效率,节约育种时间。 1.3叶绿体转化的主要过程 叶绿体转化过程通常分4步:一是转化载体携带外源目的基因通过基因枪法或其他转化体系导入叶绿体;二是将外源表达框架整合到叶绿体的基因组里;三是筛选具有转化的叶绿体细胞;四是继代繁殖得到稳定的叶绿体转化植物4]。 1.4叶绿体转化的主要方法 依据叶绿体转化的主要过程,生物学家相应地研究若干种叶绿体基因转化的方法,其中常用的叶绿体转化方法:一是微弹轰击法。将钨粉包裹构建完整的质粒载体,用基因枪轰击植物的各种组织、器官,然后对重组叶绿体进行连续筛选,不断提高同质化水平,最后获得所需的转基因植株5]。二是农杆菌T-DNA介导的遗传转化法。将外源目的基因、选择标记基因等构建到农杆菌的Ti质粒上,然后通过与植物组织或器官共培养,最后把所需外源基因转化到叶绿体并获得表达。三是PEG处理法。只需将构建好的质粒(含外源基因、标记基因、同源片断、启动子、终止子等)在一定的PEG浓度下与植物原生质体共培养。 2叶绿体基因工程的应用 2.1提高植物光合效率 植物的光合效率非常有限,太阳能的很小一部分可以转化为植物所需要的能量,从而转变为人类需要的产品。植物光合效率取决于Rubisco酶的丰富度。Rubisco酶一方面可以制造可溶性蛋白,另一方面也可以限制CO2合成。人们可以通过2种直接的方法提高光合速率:一是加速酶催化的循环过程;二是提高酶的特性,减少光呼吸浪费的能量6]。很多科学家正试图通过提高Rubisco酶来提高植物的光合效率,而其中拟南芥和水稻的定点整合试验取得了重大突

简述转基因技术原理

转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段的来源可以是提取特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的DNA片段。DNA片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。 1992年荷兰培育出植入了人促红细胞生成素基因的转基因牛,人促红细胞生成素能刺激红细胞生成,是治疗贫血的良药。转基因技术标志着不同种类生物的基因都能通过基因工程技术进行重组,人类可以根据自己的意愿定向地改造生物的遗传特性,创造新的生命类型。同时转基因技术在药物生产中有着重要的利用价值。转基因技术,包括外源基因的克隆、表达载体、受体细胞,以及转基因途径等,外源基因的人工合成技术、基因调控网络的人工设计发展,导致了21世纪的转基因技术将走向转基因系统生物技术2000年国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程与转基因技术。 1.转基因的细胞学原理: (1)细胞周期及MPF:细胞周期可人工分成4个时期,分别为G1期、S期、G2期和M期。细胞在正常情况下,沿着G1-S-G2-M路线运转。S期为DNA合成期,M期为有丝分裂期,M期结束到S期开始之前为G1期,S期末到有丝分裂期(M期)为G2期。有丝分裂的启动由成熟促进因子也叫M期促进因子(maturation/mitosism/meiosis promoting factor,MPF)调控,MPF 在细胞分裂中呈周期性变化即分裂后逐渐积累,到G2晚期达到高峰,由中期向后期转换时骤然消失。因此推测MPF是真核细胞M期的一个基本调节物质,能引导细胞由间期向M期转变。MPF由蛋白激酶激活,存在于所有的真核细胞中(包括减数分裂的性细胞)。但并非所有的细胞都是周期中细胞,某些细胞在一定的条件下可以脱离细胞周期进入G0期或分化为不分裂的细胞,而且G0期细胞可通过诱导重新进入周期。 (2)通过MⅡ期的卵母细胞转基因:MⅡ期的卵母细胞的MPF含量很高,可以诱导细胞核发生一系列变化包括核膜破裂(NEBD)和早熟染色体凝集(premature chromosome condensation,PCC),处于减数分裂MⅡ期的卵母细胞无核膜的时间远远长于有丝分裂M期的细胞。所以此时期的卵母细胞可作为基因导入的受体。据此1998年Anthonv等对逆转录病毒载体感染发育早期的动物胚胎方法加以改进,用逆转录病毒载体注射MⅡ期的卵母细胞,注射完毕的卵母细胞同获能后的精子共同孵育后,体外发育至囊胚,再移植到母牛体内得到了转基因小牛。1999年Anthonv等又将精子与外源基因共孵育,然后将精子头部显微注射入MⅡ期的卵母细胞,这两种方法共同之处都是利用MⅡ期的卵母细胞无核膜,外源基因易导入的 特点。 2.转基因的胚胎学原理: (1)哺乳动物转基因的胚胎学原理:精子和卵子只有发育成熟后,精卵相遇时才能完成受精过程。精子进入卵子后头尾分离,胞核出现核仁,形成核膜,头部膨大形成雄原核;同时卵子排出第二极体形成雌原核。一般来说雄原核比雌原核大。接着雌雄原核的核膜消失,雌雄原核融合。随后细胞周期性卵裂,分裂球增加到32个时形成桑葚胚,进入子宫再发育至囊胚,此前的胚胎细胞具有很强的分化能力。从哺乳动物受精卵分裂发育的规律来看,转基因操作时较合适的部位是受精卵的雄原核,精子进入卵细胞后的1小时,雄原核和雌原核还未融合,在显微镜下容易看到雄原核。多数研究者在此时期把外源基因显微注射到雄原核,通

基因工程技术的发展给人类带来的影响

基因工程技术的发展给人类带来的影响 摘要20世纪70年代末至80年代初借助于受精卵原核显微注射和早期胚胎细胞的逆转录病毒感染等手段人们已可将单一的功能基因或基因簇引入高等动物染色体DNA上实现了种系内和种系间细胞的基因转移并由此构建成各种转基因动物。转基因技术在人体中的应用目前仍局限于体细胞的基因治疗方面具有遗传特征修饰的转基因人研究因受到伦理学和法学的束缚而未能跨出第一步但并不意味着在技术上有不可逾越的障碍。事实上多莉绵羊克隆的成功表明人们不仅可以将任何基因转入包括人体在内的任何动物细胞中进行表达而且还能使转基因动物像重组微生物那样无性繁殖。关键词基因工程技术基因治疗实际应用安全隐患人类基因组研究是一项生命科学的基础性研究。有科学家吧基因组图谱看成是指路图或化学中的元素周期表也有科学家把基因谱比作字典但不论是从哪一个角度去阐释破译人类自身基因密码以促进人类健康、预防疾病、延长寿命其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后破译人类和动植物的基因密码为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。最新基因工程技术一反义技术根据目前研究的内容反义技术antisense technology是指根据碱基互补原理用人工合成或生物体合

成的特定互补RNA或DNA片段或其化学修饰产物抑制或封闭基因表达的技术。反义技术理论的形成和发展是以原核生物中天然存在的反义RNA及其调控机理的研究为基础的。在真核生物中一直尚未找到天然存在的反义RNA调控系统但检测出了许多具有互补碱基序列的小分子RNA推测其中一部分可能参与基因表达调控起着类似于反义RNA的作用。反义技术的操作和突变不同能在不破坏目的基因的前提下调控基 因的表达因此它既是阐明基因功能的一种新手段又拓宽了 通过基因工程改良动、植物品质和治疗疾病的途径。反义技术的建立扩展了机体抵御外来微生物的经典免疫学概念 这就是用反义RNA通过核酸分子之间的相互作用可以抑制外源病毒等的侵袭。如用反义RNA已成功地抑制了流感病毒、疱疹病毒和人类免疫缺陷综合症病毒等对所培养的组织细 胞的侵袭。针对植物病毒的反义RNA可使植株产生保护和抗害作用。在癌症及遗传病治疗方面反义技术也同样展现了令人鼓舞的前景。如将携带反义RNA的骨髓白血病MYC基因及编码大肠杆菌黄嘌呤鸟嘌呤磷酸核糖转移酶基因的质粒通 过原生质体融合并引入到前骨髓白血病细胞系获得高水平 表达反义MYC RNA的细胞系其MYC蛋白质比对照组下降70。结果还表明反义RNA不仅能在转录水平而且还能在翻译水平抑制癌基因的表达。反义RNA对细胞内原癌基因的阻抑不仅使细胞增殖力下降还启动了单细胞分化进而使癌变得以缓

基因工程技术的发展历史-现状及前景

学号 1234567 基因工程课程论文 ( 2013 届本科) 题目:基因工程技术发展历史、现状及前景 学院:农业与生物技术学院 班级:生物科学 091 班 作者姓名: X X X 指导教师: XXX 职称:教授 完成日期: 2013 年 3 月 16 日 二○一三年三月

基因工程技术发展历史、现状及前景 摘要:生物学已是现代最重要学科之一,而从20世纪70年代初发展起来的基因工程技术,经过30多年来的发展与进步,已成为生物技术的核心。基因工程技术现应用范围涉及农业、工业、医药、能源、环保等诸多领域。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程技术及相关领域将成为21世纪的主导产业之一。 关键词:基因工程技术、发展历史、现状、前景 引言 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞-DNA 的技术称为“基因系治疗”,通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 一、基因工程技术的发展历史 (一)基因工程发展简述 人类与动物的许多病害都是由单细胞原核生物——细菌引起的。在一段时间,细菌成为人类的第一大杀手,成千上万的生命被其感染吞噬。虽然青霉素以及磺胺类等搞菌药物的出现拯救了无数的生命,但是,好景不长,青霉素使用不到期10年,即在世界上20世纪50年代中期,就发现了严重的细菌抗药性,并且这种抗药性还具有“传染性”,也就是说,一种细菌的抗药性可以传给另一种细菌。

关于植物转基因技术的一些读书报告

关于植物转基因技术的一些读书报告 在生物工程导论课上,我了解到了一些关于植物转基因技术的知识,对此产生了浓厚的兴趣,加上自己的专业在以后会有这方面的学习和发展,所以查阅了一些相应的资料,有了一些感想。 世界上首次使用植物转基因技术是1983年美国获得了转基因烟草,自 此以后,植物转基因技术得到了迅速发展,在世界范围内得到了广泛的应用。目前,转基因技术已经成熟,转基因作物也已进入产业化阶段,而且种植面积逐年扩大,呈直线上升趋势。植物转基因技术主要应用于农业,生物和医学等领域。进行植物品种的改良,新品种的培育以及作为生物反应器生产生物药物和疫苗等。世界上已通过转基因技术培育出许多产量高、品质好、抗性强的农作物新品种,生物技术产品已应用到医药,保健食品和日化产品等各个方面,生物制药产业已成为最活跃,进展最快的产业之一。因此,人们将以转基因技术为核心的生物技术上的巨大飞跃誉为第二次“绿色革命”。这次技术革命将使全球农业生产发生深刻的变革,使人们看到消除饥饿与贫穷的希望。植物转基因技术巨大的生产潜力将为人类带来很大的经济效益和社会效益,并将辐射性地影响人类社会、经济、技术、生活、思想等方面的发展。 但是,像其它新生事物的发展过程一样,由于人们最初对转基因技术的认识不足或不理解,以至对转基因技术存在不同的态度和看法甚至偏见,使植物转基因技术面临着不少冲击。在20世纪末,转基因作物的安全性问题 就在全球范围内引起了激烈的争论,反对者认为转基因作物具有很大的潜在危险,可能会对人类健康和生存环境造成威胁。在欧洲,转基因作物曾被一些媒体称之为“恶魔食品”。甚至当前,一些电视、广播、报纸等新闻媒体为了某些利益也对公众进行炒作和误导,夸大转基因作物的风险,使人们对转基因技术及其转基因食品由最初的争论演变为恐慌甚至存在一定的抵触 情绪。如某电视广告中所提到的:某某食用油,不含转基因成分,为健康加油;某网站新闻报道:湖北某超市惊现转基因大米等等,使人们对当前社会上对转基因技术存在的一些偏见。 在此我希望可以尽量避免偏见,对植物转基因技术的应用和当代社会发展的概况进行一些比较系统的阐述,对植物转基因技术与当代社会发展的关系进行一点探讨。 植物转基因技术的基本概念和原理 基因是生命体具有的特定遗传信息和遗传效应的核苷酸序列,存在于DNA (脱氧核糖核酸)上,是控制生物性状遗传的结构和功能单位。转基因是指利用分子生物学手段,将人工分离和修饰过的某些生物的基因转移到其它物种,以改造该物种的遗传特性。植物转基因技术又称植物基因工程,是把从动物、植物或微生物中分离到的目的基因转移到植物的基因组中,即对植物进行遗传转化,使其在性状、营养和消费品质等方面满足人类需要的技术。应用转基因技术构建的植物为转基因植物,又叫基因修饰植物,其中发展最快的是转基因植物食品。 植物转基因技术的内容包括:目的基因的分离和鉴定、植物表达载体的构建、植物细胞的遗传转化、转化细胞的筛选、转基因植物细胞的鉴定以及外

转基因技术介绍

转基因技术 编辑 转基因即转基因技术。 转基因技术(Genetically Modified,简称GM),是指运用科学手段,从某种生物体基因组中提取所需要的目的基因,或者人工合成指定序列的基因片段,将其转入另一种生物中,使与另一种生物的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有特定的遗传性状个体的技术。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。转基因技术的理论基础来源于分子生物学。人们常说的"遗传工程"、"基因工程"、"遗传转化"均为转基因的同义词(但如今人们对改变原有动植物性状的技术称为转基因技术(狭义),将对微生物的操作称为遗传工程技术(狭义)。经转基因技术修饰的生物体在媒体上常被称为"遗传修饰过的生物体"(Genetically modified organism,简称GMO)。 目录 1发展历史 2基本技术过程 3分类 人工转基因 植物转基因 动物转基因 微生物基因重组 自然转基因 4转基因技术产物 转基因生物 转基因食品 5技术特点 组合原理 植物 动物 6与杂交的区别 种基根杂交技术 植物杂交 杂交畜牧 7转基因技术现状 转基因食品 技术应用 商业化 8媒体报道 9转基因植物转化方法 农杆菌介导转化 花粉管通道法 核显微注射法 基因枪法 精子介导法 核移植转基因法 体细胞核移植法

10影响 减少温室气体排量 疑问 对环境系统 对生态物种 动物试验 11社会 学者批评 转基因标识法案 12相关事件 动物异常事件 转基因水稻争议 巴西坚果事件 普斯泰事件 转基因玉米事件 俄转基因食品事件 广西迪卡玉米事件 转基因大米试验 实验鼠致癌事件 猕猴喂养实验 律师申请公开遭拒 13批准作物一览 1发展历史 1974年,波兰遗传学家斯吉巴尔斯基(Waclaw Szybalski)称基因重组技术为合成生物学概念,1978年,诺贝尔医生奖颁给发现DNA限制酶的纳森斯(Daniel Nathans)、亚伯(Werner Arber)与史密斯(Hamilton Smith)时,斯吉巴尔斯基在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。转基因技术,包括外源基因的克隆、表达载体、受体细胞,以及转基因途径等,外源基因的人工合成技术、基因调控网络的人工设计发展,导致了21世纪的转基因技术将走向转基因系统生物技术2000年国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程与转基因技术。 2基本技术过程 (1)从生物有机体复杂的基因组中,分离出带有目的基因的DNA片段;或者人工合成目的基因。 (2)在体外, 将带有目的基因的DNA 片段连接到能够自我复制并具有选择标记的载体分子上, 形成重组DNA分子。 (3)将重组DNA分子引入到受体细胞(亦称宿主细胞或寄主细胞) 。 (4)带有重组体的细胞扩增,获得大量的细胞繁殖体。 (5) 从大量的细胞繁殖群体中,筛选出具有重组DNA分子的细胞克隆。 (6)将选出的细胞克隆的目的基因进一步研究分析,并设法使之实现功能蛋白的表达。 3分类 转基因过程按照途径可分为人工转基因和自然转基因,按照对象可分为植物转基因技术,动物转基因技术和微生物基因重组技术。 人工转基因 将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰,这一技术称之为转基因技术(Transgene technology)。人们常说的“遗传工

转基因技术的研究进展

作物转基因技术的研究进展 摘要:作为生物技术领域的前沿,转基因技术已在多种植物上取得重大进展。本文主要介绍了当前作物转基因技术的三大主流方法:农杆菌介导法、基因枪介导法和花粉管通道法,并阐述了这几种转基因技术在水稻、小麦、棉花、玉米、大豆,甘薯等几种主要农作物的应用进展状况。 关键词:转基因技术、农作物、应用 Genetically Modified---转基因,简称GM,是指运用科学手段从某种生物体中提取所需要的基因,将其转入另一种生物中,使与另一种生物的基因进行重组,再从结果中进行数代的人工选育,从而获得特定的具有变异遗传性状的物质。而其衍生出的转基因技术就是将人工分离和修饰过的基因导入到目的生物体的基因组中,从而达到改造生物的目的,即把一个生物体的基因转移到另一个生物体DNA中的生物技术。 1983年比利时科学家Montagu 等人和美国Monsanto 公司Fraley等人分别将T- DNA上的致瘤基因切除并代之以外源基因,获得了世界上第一株转基因植株———转基因烟草。自此之后,作物转基因技术得到了迅速发展.截至目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效兼抗性及多用途等诸多方面.一批抗病、抗虫、抗逆、抗除草剂等转基因作物已进入商品化生产阶段. 国际农业生物技术应用服务组织2 月13 日在京发布的1 份报告显示,全球27 个国 家超过1800 万农民,2013 年种植转基因作物,种植面积比2012 年增加了500 万公顷。此外,首个具有耐旱性状的转基因玉米杂交品种亦于2013 年在美国开始商业化。 据该报告显示,全球转基因作物的种植面积于转基因作物商业化的18 年中增加了100 倍以上,从1996 年的170 万公顷增加到2013 年的1.75 亿公顷,其中美国仍是全球转基因作物的领先生产者,种植面积达7010 万公顷,占全球种植面积的40%。国际农业生物技术应用服务组织创始人兼荣誉主席、本年度报告作者Clive James 表示,目前排名前10 位的国家种植转基因作物的面积均超过100 万公顷,这为将来转基因作物的多样化持续发展打下了广泛基础。在种植转基因作物的国家中,有19 个为发展中国家,8 个为发达国家;发展中国家的种植面积连续2 年超越发达国家。 目前,作物遗传转化的方法有农杆菌介导法、基因枪法、电激法、PEG 法、脂质体法、低能离子束法、超声波介导法、显微注射法、花粉管通道法等.但在当前作物基因工程研究中,主要采用农杆菌介导法、基因枪法、花粉管通道法,这三种转基因技术也相对较为成熟. 一、农杆菌介导法 农杆菌介导法是指农杆菌侵染植物时,受到植物受伤后释放的酚类物质的刺激,活化质粒上Vir 区基因的表达,将质粒上的另一段DNA(T-DNA)共价整合到植物基因组上,在植物体内表达而改变植物的遗传特性。农杆菌介导法的转化效率受众多因素影响,如农杆菌侵染外植体的影响因素、外植体再生能力的内在因素和环境条件(pH、温度和光照条件)等[32],此法具有流程简单、仪器设备便宜、拷贝数低[33],且基因沉默少,转移的基因片段长等优点。 农杆菌介导法是获得第一个转基因植物的方法,迄今为止,农杆菌介导法获得的转基因植物占转基因植物总数85%,已成为植物基因转化首选方法。 二、基因枪介导法 基因枪法又称微弹轰击法,是将外源基因包裹在直径1~2 nm的钨或金颗粒表面,加速轰击植物外植体靶组织,穿过植物细胞壁和细胞膜而将外源基因带入植物细胞。因此,通过该方法进行DNA的转移过程不受外植体基因型的限制,可以将外源基因转移至几乎所有的植物细胞、组织器官和原生质体中。 最早的基因枪是由美国Cornel 大学的Sanford 等在1987 年研制成功的。目前基因枪介

基因工程的现状与发展趋势

题目:基因工程的现状与发展趋势专业:13食品科学与工程 学号:132701105 姓名:盛英奇 日期:2015/7/1

【摘要】从20世纪70 年代初发展起来的基因工程技术,经过40多年来的进步与发展,已成为生物技术的核心内容。生物学成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 【关键词】基因工程技术;应用;前景;现状 一、墓因工程的原理及研究内容 基因工程是人们在揭示生命之谜的过程中建立起来的。早在300多年前,人们就发现,世界上生物尽管种类繁多,千姿百态,但都是细胞(如肉眼看不见的细菌等微生物)或者是由细胞构成的(如现存的200多万种多细胞动植物)。人们还发现,生物有遗传和变异的特征,遗传保证了生物种类的延续不断,变异则赋予生物种的进化,保证生物种类对环境的适应。而生物的所有特性及遗传变异都是由生物体细胞内的遗传物质所决定的,这种遗传物质就是被科学家称之为脱氧核糖核酸(简称DNA)的大分子物质,一般位于生物的细胞核内。DNA是由许多核昔酸连接而成的高分子化合物,如把DNA比喻成长链条,核昔酸就是组成这链条的一个个环节。生物细胞核内的DNA分子是由两条成对的多核昔酸长链互相缠人类开始学会干预生物的变异,即通过杂交、筛选等方式改变生物物种的某些特性,使之有利于人类,如水稻、小麦等作物的育种,家禽家畜优良品系的培育等,它是通过动植物父、母本交配繁殖时,生殖细胞内DNA上相应性状基因互相间可能出现的交换来实现的,这种交换的概率是人们不能控制的,所以选种的过程较为缓慢,需几年乃至几十年的时间,而且亲缘关系相差较远的生物种之间很难杂交。而本世纪}o年代初诞生的基因工程,则是按照人类的需要,从某种生物体的基因组中,分离出带有目的基因(即所需基因)的DNA片段,运用重组DNA技术,对这些DNA片段进行体外操作,把不同来源的基因按照设计的蓝图,重新构成新的基因组(即重组体),再将重组DNA分子插入到原先没有这类DNA 片段的受体细胞(亦称宿主细胞)的DNA上,并使其不仅能“安家落户”,而且能“传种接代”,即能准确地把该外源基因的遗传特性在新的细胞(宿主细胞)里增殖和表达出来。就像一台机器上的零部件拆下来安装到另一台机器上。在生物体中,这种生命零件就是基因。因为用的是工程技术的方法原理,故称基因工程,亦叫遗传工程。用这种方法所形成的杂种DNA分子与神话中的那种狮首、羊身、

中国转基因技术的应用现状及展望

中国转基因技术的应用现状及展望 摘要:针对国内外研究转基因的现状,简要综述了转基因技术的发展概况,我国在转基因技术上的发展概况以及所取得的成就,并且针对转基因技术可能存在的不利因素,叙述了我国转基因技术的安全管理情况,提出了对发展我国转基因技术的建议,阐述未来农业转基因技术的发展趋势和保障措施。 关键词:转基因技术;现状;展望 Application Status and Prospect of China Transgenic Abstract: Be directed to status of gene transfer on domestic and overseas, reviewed briefly the development of transgenic technology, In the development of transgenic technology in our country as well as the achievements, and unfavorable factors may exist for transgenic technology, describes the safety management of our transgenic technology, suggestions for the development of the transgenic technology. Further, the development trend and the safeguards of the transgenic biotechnology in Chinese agriculture were described. Keywords: transgenic; status quo; expectation 21世纪是生物技术的世纪,生物技术在农业领域中的运用将为农业生产带来新的革命。转基因技术,是指运用科学手段,将基因片段转入特定生物中,并最终获取具有特定遗传性状个体的技术[1]。转基因技术通过在细胞和分子水平上对基因进行操作,打破物种间遗传物质转移交换通常具有的天然屏障,实现农作物目标性状的定向改良,是生物技术领域发展最快的前沿技术之一[2]。自从人类耕种作物以来,我们的祖先就从未停止过作物的遗传改良。过去的几千年里农作物改良的方式主要是对自然突变产生的优良基因和重组体的选择和利用,通过随机和自然的方式来积累优良基因。因此,可以认为转基因技术是与传统技术一脉相承的,其本质都是通过获得优良基因进行遗传改良。 1转基因技术的发展概况 1974年,波兰遗传学家斯吉巴尔斯基[3]称为合成生物学概念的就是基因重组技术,1978年,诺贝尔医生奖颁给发现DNA限制酶[4]的纳森斯、亚伯与史密斯,

农业转基因技术运用及发展

农业转基因技术运用及发展/h1 -- -- 本站首页 免费课件 免费试题 整册教案 教育资讯 计划总结 英语角 幼儿教育 文书写作 海量教案 免费论文

网站地图设为首页收藏本站 语文科数学科英语科政治科物理科化学科地理科历史科生物科中考备战高考备战高考试题中考试题教学论文作文园地

教学论文 经济论文 理工论文 管理论文 法律论文 行政论文 艺术论文 医学论文 文史论文 农科论文 英语论文 课程改革 教育法规 教育管理 家长频道 您现在的位置:3edu教育网免费论文农科论文农科论文正文3edu教育网,百万资源,完全免费,无需注册,天天更新!

农业转基因技术运用及发展 我国是一个人口众多的农业大国,应用最新的科学技术迅速发展农业是一项十分紧迫的任务。生物技术是二十世纪七十年代发展起来的一门新兴学科,它包括四大技术:基因工程,细胞工程,酶工程和微生物工程。基因工程是生物工程中的后起之秀。1转基因技术在农业领域的发展概况自1953年英国科学家沃森和克里克提出了DNA的分子结构双螺旋模型以来,人们对遗传基因密码的了解有了突破性进展,现代生物技术在此基础上发展起来。此后,生物技术研究倍受青睐,得到了快速的发展。在短短的几十年时间里,应用范围已经涉及到农业,医药,环境,食品和化工等多个领域。目前世界上许多国家如美国,日本等一些发达国家早已在进行这方面的研究,并且取得了可喜的成果。美国等国家投资了上亿美元的资金对人类基因组进行研究,并于今年4月完成人类基因图谱,我们国家承担了全部工作的l%左右。我国的863计划,攀登计划等对动植物的转基因及水稻的基因组进行了研究。人类在生物基因工程研究领域已经取得了许多重大成果。19%年,中国水稻研究所以黄大年研究员为首的课题组,在世界上首次研究出了抗除草剂转基因杂交稻,为解决长期以来困扰杂交稻制种纯度问题提供了新方法。微生物农药因具有对环境和生态安全的突出优点而受到国内外高度重视。将毒蛋白抗虫基因和抗除草剂基因分别导人水稻,使得新种质不仅有显着的抗虫性,而且有较强的抗除草剂效果。控制谷蛋白产生的基因植人“越光”号水稻中,使它的谷蛋白含量减少了四分之三,大大提高了它在食用和造酒方面的质量。瑞士培育出能产生p一胡萝卜素的转基因水稻,在不久的将来,出现在餐桌上的米饭不是白色的而是金黄色的。全世界估计有24亿人口以大米为主食,还有上千万人因铁的摄人量不足而使智力和身体发育受到影响;因维生素A的摄人量不足而在少年时期就失明。并且受影响的人群无法通过食用蔬菜、水果和肉类补充主食中缺乏的铁和维生素。瑞士科学家把黄水仙等植物的基因植人水稻,从而提高大米的营养价值,

常见植物转基因技术

五种常用的植物转基因技术 植物转基因技术是通过各种物理的、化学的和生物的方法将从动物、植物及微生物中分离的目的基因整合到植物基因组中,使之正确表达和稳定遗传并且赋予受体植物预期性状的一种生物技术方法。1983年,首例抗病毒转基因烟草的成功培育标志着人类开始尝试利用转基因技术改良农作物。目前,植物转基因技术已在作物改良和育种领域发挥了重要作用。通过植物转基因技术,一些来自于动物、植物及微生物的有益基因如抗病/虫基因、抗非生物胁迫性状基因及特殊蛋白基因已被转化到农作物中以改良现有的农作物和培育新的农作物品种。以DNA重组技术为基础的植物转基因技术极大地扩展了基因信息的来源,打破了远缘物种间自身保持遗传稳定性的屏障。植物转基因技术已应用到玉米、水稻、小麦、大豆和棉花等许多农作物。同时,该技术也正在被尝试用于茄子和草莓等其它的作物中‘1’纠。目前,根据转基因植物的受体类型,植物转基因方法可以分为3大类:以外植体为受体的基因转化方法,如农杆菌介导法、基因枪法和超声波介导法;以原生质体为受体的基因转化方法,如聚乙二醇法、电击法、脂质体法及磷酸钙-DNA共沉淀法;以种质系统为受体的基因转化方法,如子房注射法和花粉管通道法。由于以原生质体为受体的基因转化方法有原生质体培养难度大,培养过程繁杂,培养工作量大且培养技术不易掌握;原生质体再生植株的遗传稳定性差、再生频率低并且再生周期长;相关的转化方法的转化率低、效果不理想等缺点,所以该类基因转化方法未被作为植物转基因的常规方法广泛使用。本文将对农杆菌介导法、基因枪法、超声波介导法、子房注射法和花粉管通道法的原理、基本步骤和优缺点作以简要介绍。 1 以外植体为受体的基因转化方法 1.1农杆菌介导法 农杆菌介导法是最早应用、最实用有效并且具有最多成功实例的一种植物转基因方法。农杆菌是一类普遍存在于土壤中的革兰氏阴性细菌。目前,用于植物转基因介导的农杆菌是根癌农杆菌和发根农杆菌。某些根癌农杆菌和发根农杆菌分别含有大小为200 -800bp的结构和功能相似的Ti质粒和Ri质粒。Ti质粒和Ri质粒含有3个功能区:参与农杆菌侵染植物过程的vir区、参与农杆菌基因整合到宿主植物基因组过程的T-DNA区、在农杆菌中启动质粒复制的ori区。在vir区上的vir操纵子群作用下,Ti质粒和Ri质粒能将自身的T-DNA转入宿主植物细胞内,而后将T-DNA整合到植物基因组中。T—DNA是质粒上一段10—30kb 的序列,它的两端各有一段高度保守的25bp的同向重叠序列。由于T-DNA转化无序列特异性,因此可用任何基因片段代替原来的T-DNA基因片段进行。 农杆菌介导法的原理是:在农杆菌基因ehvA,chvB,pscA,and att家族所编码的蛋白和植物伤口产生的酚类物质和糖类物质的共同作用下,农杆菌识别并附着在宿主细胞壁上。virD4和virB基因编码蛋白组成的type IV分泌系统将单链VirD2-T-DNA复合体运送到宿主细胞内。此外,VirE3、VirE2和VirF蛋白也通过该系统进入宿主细胞质中。在宿主细胞质中,VirE2蛋白与VirD2-T-DNA复合体结合。在V irD2核定位信号、某些农杆菌蛋白和宿主细胞蛋白的共同作用下,VirD2-T-DNA复合体进入细胞核。在VirD2、VirE2、某些宿主细胞核蛋白如AtKu80和DNA连接酶的作用下,T-DNA被整合到宿主基因组中,但具体过程不详。 农杆菌介导法的基本步骤是:(1)诱导目标植物外植体;(2)构建含有目的基因的质粒;(3)质

相关文档
相关文档 最新文档