文档库 最新最全的文档下载
当前位置:文档库 › 磁盘性能指标详解

磁盘性能指标详解

磁盘性能指标详解

磁盘性能指标详解.md2020/9/14

五个常见指标:

使用率、饱和度、IOPS、吞吐量以及响应时间。这五个指标,是衡量磁盘性能的基本指标。

使用率,是指磁盘处理 I/O 的时间百分比。过高的使用率(比如超过 80%),通常意味着磁盘 I/O 存在性能瓶颈。

饱和度,是指磁盘处理 I/O 的繁忙程度。过高的饱和度,意味着磁盘存在严重的性能瓶颈。当饱和度为100% 时,磁盘无法接受新的 I/O 请求。

IOPS(Input/Output Per Second),是指每秒的 I/O 请求数。

吞吐量,是指每秒的 I/O 请求大小。

响应时间,是指 I/O 请求从发出到收到响应的间隔时间。

这些指标,我们在看的时候, 不要孤立地去比较某一指标,而要结合读写比例、I/O 类型(随机还是连续)以及I/O 的大小,综合来分析。举个例子,在数据库、大量小文件等这类随机读写比较多的场景中,IOPS 更能反映系统的整体性能;而在多媒体等顺序读写较多的场景中,吞吐量更能反映系统的整体性能。

观测磁盘的I/O性能指标: iostat iostat 是最常用的磁盘 I/O 性能观测工具,它提供了每个磁盘的使用率、IOPS、吞吐量等各种常见的性能指标,当然,这些数据实际上来自 /proc/diskstats。

# -d -x 1 展示所有的磁盘I/O指标, 每1秒输出一组数据

[root@host1 ~]# iostat -d -x 1

磁盘性能指标

这些指标中,重点注意:

%util ,就是我们前面提到的磁盘 I/O 使用率;

r/s+ w/s ,就是 IOPS;

rkB/s+wkB/s ,就是吞吐量;

r_await+w_await ,就是响应时间。

1 / 1

硬盘性能指标参数

我比较喜欢西捷的,就是价格稍贵,看看下面的介绍自己心里就有数了。 硬盘性能技术指标 现在常从宣传广告或者杂志报刊看到硬盘单碟容量多少多少,接口是ATA100,数据缓存为4MB等等,那这些指标是否影响硬盘的性能呢?影响硬盘性能的技术指标到底有那些呢?笔者作了个统计,现将其列于下面: 1、转速 毫无疑问,转速是硬盘的所有指标中除了容量之外最为引人注目的性能参数了。任何一款硬盘的面世时,它的宣传材料中都会在第一条提到它的转速。转速对于硬盘随即传输速度和持续传输速度都有着极大的影响。它的机理我在本刊创刊号上有专题论述,这里就不再重复了。目前,IDE硬盘主要由两个系列组成:5400RPM和7200RPM。 2、单碟容量 如果说转速是硬盘性能的第一要素,那么处于第二位的无疑应该是磁碟表面的磁记录密度。因为目前桌面IDE硬盘壳子里一般来说最多只能放进4张碟片,只有IBM可以放5张。显然,靠增加碟片来扩充容量已满足不断增长的存储容量的需求是不可行的。只有提高每张碟片的容量才能从根本上解决这个问题。而桌面IDE硬盘的标准尺寸是3.5英寸(盘片直径),因此,必须提高磁记录的密度。然而随着磁碟密度的提高,磁头就必须随之越来越灵敏。传统的MR磁头所能承受的最大单碟容量是4.5G左右。目前,单碟容量超过5G的硬盘已经全部使用了GMR磁头。 除了对于容量增长的贡献之外,单碟容量的另一个重要意义在于提升硬盘的数据传输速度。单碟容量的提高得益于磁道数的增加和磁道内线性磁密度的增加。磁道数的增加对于减少磁头的寻道时间大有好处,因为磁片的半径是固定的,磁道数的增加意味着磁道间距离的缩短,而磁头从一个磁道转移到另一个磁道所需的就位时间就会缩短。这将有助于随机数据传输速度的提高。而磁道内线性磁密度的增长则和硬盘的持续数据传输速度有着直接的联系。因为现在的IDE硬盘早已不需要交错因子,磁碟每次从磁头下经过一圈,磁头所在磁道中的目标数据会被读取一次。而磁道内线性密度的增加使得每个磁道内可以存储更多的数据,从而在碟片的每个圆周运动中有更多的数据被从磁头读至硬盘的缓冲区里。而新一代GMR磁头技术则确保了这个增长不会因为磁头的灵敏度的限制而放慢速度。这也就是为什么很多时候,更高单碟容量的5400RPM硬盘有着比单碟容量较低的7200RPM硬盘更高的性能的原因。

硬盘主引导记录(MBR)及其结构详解

硬盘主引导记录(MBR)及其结构详解 硬盘的0柱面、0磁头、1扇区称为主引导扇区,FDISK程序写到该扇区的内容称为主引导记录(MBR)。该记录占用512个字节,它用语硬盘启动时将系统控制权交给用户指定的,并在分区表中登记了的某个操作系统区。 1.MBR的读取 硬盘的引导记录(MBR)是不属于任何一个操作系统,也不能用操作系统提供的磁盘操作命令来读取它。但我们可以用ROM-BIOS中提供的INT13H的2号功能来读出该扇区的内容,也可用软件工具Norton8.0中的DISKEDIT.EXE来读取。 用INT13H的读磁盘扇区功能的调用参数如下: 入口参数:AH=2 (指定功能号) AL=要读取的扇区数 DL=磁盘号(0、1-软盘;80、81-硬盘) DH=磁头号 CL高2位+CH=柱面号 CL低6位=扇区号 CS:BX=存放读取数据的内存缓冲地址 出口参数:CS:BX=读取数据存放地址 错误信息:如果出错CF=1 AH=错误代码 用DEBUG读取位于硬盘0柱面、0磁头、1扇区的操作如下: A>DEBUG -A 100 XXXX:XXXX MOV AX,0201 (用功能号2读1个扇区) XXXX:XXXX MOV BX,1000 (把读出的数据放入缓冲区的地址为CS:1000) XXXX:XXXX MOV CX,0001 (读0柱面,1扇区) XXXX:XXXX MOV DX,0080 (指定第一物理盘的0磁头) XXXX:XXXX INT 13 XXXX:XXXX INT 3 XXXX:XXXX (按回车键) -G=100 (执行以上程序段) -D 1000 11FF (显示512字节的MBR内容)

Linux 服务器的那些性能参数指标

Linux 服务器的那些性能参数指标 一个基于 Linux 操作系统的服务器运行的同时,也会表征出各种各样参数信息。通常来说运维人员、系统管理员会对这些数据会极为敏感,但是这些参数对于开发者来说也十分重要,尤其当你的程序非正常工作的时候,这些蛛丝马迹往往会帮助快速定位跟踪问题。 这里只是一些简单的工具查看系统的相关参数,当然很多工具也是通过分析加工/proc、/sys 下的数据来工作的,而那些更加细致、专业的性能监测和调优,可能还需要更加专业的工具(perf、systemtap 等)和技术才能完成哦。毕竟来说,系统性能监控本身就是个大学问。

一、CPU和内存类 1.1 top ? ~ top 第一行后面的三个值是系统在之前 1、5、15 的平均负载,也可以看出系统负载是上升、平稳、下降的趋势,当这个值超过 CPU 可执行单元的数目,则表示 CPU 的性能已经饱和成为瓶颈了。 第二行统计了系统的任务状态信息。running 很自然不必多说,包括正在 CPU 上运行的和将要被调度运行的;sleeping 通常是等待事件(比如 IO 操作)完成的任务,细分可以包括 interruptible 和 uninterruptible 的类型;stopped 是一些被暂停的任务,通常发送 SIGSTOP 或者对一个前台任务操作 Ctrl-Z 可以将其暂停;zombie 僵尸任务,虽然进程终止资源会被自动回收,但是含有退出任务的 task descriptor 需要父进程访问后才能释放,这种进程显示为 defunct 状态,无论是因为父进程提前退出还是未 wait 调用,出现这种进程都应该格外注意程序是否设计有误。 第三行 CPU 占用率根据类型有以下几种情况: ?(us) user:CPU 在低 nice 值(高优先级)用户态所占用的时间(nice<=0)。 正常情况下只要服务器不是很闲,那么大部分的 CPU 时间应该都在此执 行这类程序 ?(sy) system:CPU 处于内核态所占用的时间,操作系统通过系统调用(system call)从用户态陷入内核态,以执行特定的服务;通常情况下该 值会比较小,但是当服务器执行的 IO 比较密集的时候,该值会比较大

IO系统性能之一:衡量性能的几个指标

IO系统性能之一:衡量性能的几个指标 2011年03月24日05:00 it168网站原创作者:DBABeta 马齿苋编辑:李隽我要评论(0) 【IT168 应用】作为一个数据库管理员,关注系统的性能是日常最重要的工作之一,而在所关注的各方面的性能只能IO性能却是最令人头痛的一块,面对着各种生涩的参数和令人眼花缭乱的新奇的术语,再加上存储厂商的忽悠,总是让我们有种云里雾里的感觉。本系列文章试图从基本概念开始对磁盘存储相关的各种概念进行综合归纳,让大家能够对IO性能相关的基本概念,IO性能的监控和调整有个比较全面的了解。 在这一部分里我们先舍弃各种结构复杂的存储系统,直接研究一个单独的磁盘的性能问题,藉此了解各个衡量IO系统系能的各个指标以及之间的关系。需要注意的是,本文探讨的仅限于磁盘IO性能,网络IO性能不考虑在内。 几个基本的概念 在研究磁盘性能之前我们必须先了解磁盘的结构,以及工作原理。不过在这里就不再重复说明了,关系硬盘结构和工作原理的信息可以参考维基百科上面的相关词条——Hard disk drive(英文)和硬盘驱动器(中文)。 读写IO(Read/Write IO)操作 磁盘是用来给我们存取数据用的,因此当说到IO操作的时候,就会存在两种相对应的操作,存数据时候对应的是写IO操作,取数据的时候对应的是是读IO操作。 单个IO操作 当控制磁盘的控制器接到操作系统的读IO操作指令的时候,控制器就会给磁盘发出一个读数据的指令,并同时将要读取的数据块的地址传递给磁盘,然后磁盘会将读取到的数据传给控制器,并由控制器返回给操作系统,完成一个写IO的操作;同样的,一个写IO的操作也类似,控制器接到写的IO操作的指令和要写入的数据,并将其传递给磁盘,磁盘在数据写入完成之后将操作结果传递回控制器,再由控制器返回给操作系统,完成一个写IO的操作。单个IO操作指的就是完成一个写IO或者是读IO的操作。 随机访问(Random Access)与连续访问(Sequential Access) 随机访问指的是本次IO所给出的扇区地址和上次IO给出扇区地址相

路由器的工作原理及性能指标

路由器的工作原理及性能 路由器是一种典型的网络层设备。它是两个局域网之间接帧传输数据,在O SI/RM之中被称之为中介系统,完成网络层中继或第三层中继的任务。路由器负责在两个局域网的网络层间接帧传输数据,转发帧时需要改变帧中的地址。它在OSI/RM中的位置如图1所示。 一、原理与作用 路由器(Router)是用于连接多个逻辑上分开的网络,所谓逻辑网络是代表一个单独的网络或者一个子网。当数据从一个子网传输到另一个子网时,可通过路由器来完成。因此,路由器具有判断网络地址和选择路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,路由器只接受源站或其他路由器的信息,属网络层的一种互联设备。它不关心各子网使用的硬件设备,但要求运行与网络层协议相一致的软件。路由器分本地路由器和远程路由器,本地路由器是用来连接网络传输介质的,如光纤、同轴电缆、双绞线;远程路由器是用来连接远程传输介质,并要求相应的设备,如电话线要配调制解调器,无线要通过无线接收机、发射机。 一般说来,异种网络互联与多个子网互联都应采用路由器来完成。 路由器的主要工作就是为经过路由器的每个数据帧寻找一条最佳传输路径,并将该数据有效地传送到目的站点。由此可见,选择最佳路径的策略即路由算法是路由器的关键所在。为了完成这项工作,在路由器中保存着各种传输路径的相

关数据——路径表(Routing Table),供路由选择;时使用。路径表中保存着子网的标志信息、网上路由器的个数和下一个路由器的名字等内容。路径表可以是由系统管理员固定设置好的,也可以由系统动态修改,可以由路由器自动调整,也可以由主机控制。 1.静态路径表 由系统管理员事先设置好固定的路径表称之为静态(static)路径表,一般是在系统安装时就根据网络的配置情况预先设定的,它不会随未来网络结构的改变而改变。 2.动态路径表 动态(Dynamic)路径表是路由器根据网络系统的运行情况而自动调整的路径表。路由器根据路由选择协议(Routing Protocol)提供的功能,自动学习和记忆网络运行情况,在需要时自动计算数据传输的最佳路径。 二、路由器的优缺点 1.优点 适用于大规模的网络; 复杂的网络拓扑结构,负载共享和最优路径; 能更好地处理多媒体; 安全性高; 隔离不需要的通信量; 节省局域网的频宽; 减少主机负担。 2.缺点 它不支持非路由协议; 安装复杂; 价格高。 三、路由器的功能 (1)在网络间截获发送到远地网段的报文,起转发的作用。 (2)选择最合理的路由,引导通信。为了实现这一功能,路由器要按照某种路由通信协议,查找路由表,路由表中列出整个互联网络中包含的各个节点,以及节点间的路径情况和与它们相联系的传输费用。如果到特定的节点有一条以上路径,则基于预先确定的准则选择最优(最经济)的路径。由于各种网络段和其相互连接情况可能发生变化,因此路由情况的信息需要及时更新,这是由所使用的路由信息协议规定的定时更新或者按变化情况更新来完成。网络中的每个路由器按照这一规则动态地更新它所保持的路由表,以便保持有效的路由信息。 (3)路由器在转发报文的过程中,为了便于在网络间传送报文,按照预定的规则把大的数据包分解成适当大小的数据包,到达目的地后再把分解的数据包

深入理解硬盘分区表

深入理解硬盘分区表 相信听说过硬盘MBR、硬盘分区表、DBR的朋友一定都不少。可是,你清楚它们分别起什么作用吗?它们的具体位置又在哪里呢?硬盘上的MBR只有一份吗?什么是硬盘逻辑锁?如何制造和破解它呢??别急,让我们一步步来搞清楚吧! ==必备基础知识:== 以下先介绍一下有关扇区编号的基本知识:介绍一下有关硬盘扇区编号规则的3个易混淆的术语“物理扇区编号”、“绝对扇区编号”和“逻辑扇区编号”。 我们都知道硬盘扇区的定位有两种办法: 1、直接按柱面、磁头、扇区3者的组合来定位(按这种编号方式得到的扇区编号称为物理扇区编号); 2、按扇区编号来定位(又分“绝对扇区编号“和“逻辑扇区编号“两种)。 这两种定位办法的换算关系如下图:(设图中所示硬盘每道扇区数均为63)

如图所示,由于目前大多数硬盘采用的是一种“垂直分区结构“,故左图一磁头数为2、盘片数为1的硬盘,图中0磁头所对扇区的表示方法就有2种,即:0柱面0磁头1扇区=绝对0扇区,而1磁头所对扇区的表示方法也有2种,即:1柱面0磁头1扇区=绝对63扇区。如果是如右图所示磁头数为4、盘片数为2的硬盘,那么则顺着垂直于盘片的箭头线方向进行如图的绝对扇区的编号。 以上,我们说了物理扇区、绝对扇区的编号方式,而逻辑扇区编号由于是操作系统采用的扇区编号方式,而操作系统只能读取分区内部的数据内容,故逻辑扇区是从各分区内的第一个扇区开始编号,如我们下文对mbr的说明可以知道:mbr这个扇区所在硬盘磁道是不属于分区范围内的,紧接着它后面的才是分区的内容,因此一般来说绝对63扇区= c:分区逻辑1扇区。以下让我们总结一下3种编号方式的不同: 编号方式表示方法采用该种方式编号的对象起始编号 物理扇区编号 0柱面0磁头1扇区 BIOS内置中断服务程序 0柱面0磁头1扇区 绝对扇区编号绝对X扇区人们为方便所采用的办法绝对0扇区

硬盘的性能指标有哪些

硬盘的性能指标有哪些 (此文摘自网络日志) 硬盘接口 ATA 全称Advanced Technology Attachment,是用传统的 40-pin 并口数据线连接主板与硬盘的,外部接口速度最大为133MB/s,因为并口线的抗干扰性太差,且排线占空间,不利计算机散热,将逐渐被 SATA 所取代。 IDE IDE的英文全称为“Integrated Drive Electronics”,即“电子集成驱动器”,俗称PATA并口。 SATA 使用SATA(Serial ATA)口的硬盘又叫串口硬盘,是未来PC机硬盘的趋势。2001年,由Intel、APT、Dell、IBM、希捷、迈拓这几大厂商组成的Serial ATA委员会正式确立了Serial ATA 1.0规范,2002年,虽然串行ATA的相关设备还未正式上市,但Serial ATA委员会已抢先确立了Serial ATA 2.0规范。Serial ATA采用串行连接方式,串行ATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。 SATA2 希捷在SATA的基础上加入NCQ本地命令阵列技术,并提高了磁盘速率。 SCSI 全称为Small Computer System Interface(小型机系统接口),历经多世代的发展,从早期的 SCSI-II,到目前的 Ultra320 SCSI 以及 Fiber-Channel (光纤通道),接头类型也有多种。SCSI 硬盘广为工作站级个人计算机以及服务器所使用,因为它的转速快,可达 15000 rpm,且数据传输时占用 CPU 运算资源较低,但是单价也比同样容量的 ATA 及 SATA 硬盘昂贵。 SAS(Serial Attached SCSI)是新一代的SCSI技术,和SATA硬盘相同,都是采取序列式技术以获得更高的传输速度,可达到3Gb/s。此外也透过缩小连接线改善系统内部空间等。

路由器十项性能指标

交换机指标 交换机类型机架式交换机一种插槽式的交换机,该类交换机的扩展性较好,可 以支持不同的网络类型,但其价格较贵。 固定配置式带扩 展槽交换机 一种有固定端口数并带少量扩展槽的交换机,这种交 换机在支持固定端口类型网络的基础上,还可以支持 其它类型的网络,价格居中。 固定配置式不带 扩展槽交换机 仅支持一种类型的网络,但同时价格也是最便宜的。 端口端口数量通常分为16口、24口或更多端口数,一般来说端口 数量越多,其价格就会越高。 端口类型一般有多个RJ-45口,还会提供一个UP-Link口,用 来实现交换设备的级联,另外有的端口还支持 MDI/MDIX自动跳线功能,通过该功能可以在级联交 换设备时自动按照适当的线序连接,无须进行手工配 置。 传输速率以10/100Mbps自 适应能够通过网络自动判断、自适应运行,如果是一般公司或是家庭局域网的话,相信百兆交换机就能够满足用户的需求了。 100/1000Mbps自适应 传输模式全双工自适应模 式可以同时接收和发送数据,数据流是双向的,用来提高网络传输的效率。 半双工自适应模式半双工模式指不能同时接收和发送数据,要么只能接收数据,要发只能发送数据,数据流是单向的。 是否支持网管支持网管网络管理员通过网络管理程序对网络上的资源进行集 中化的管理,包括配管理、性能和记账管理、问题管 理、操作管理和变化管理等。一般交换机厂商会提供 管理软件或第三方管理软件来远程管理交换机,现在 常见的网管类型包括:IBM网络管理(Netview)、HP Openview、Sun Solstice Domain Manager、Rmon管理、 Snmp管理、基于WEB管理等,网络管理界面分为命 令行方式(CLI)与图形用户界面(GUI)方式,不同 的管理程序反映了该设备的可管理性及可操作性。 不支持网管 交换方式存储转发在交换机接收到全部数据包后再决定如何转发,可以 检测数据包的错误、支持不同速度的输入、输出端口 的交换,不过数据处理时延时较长。 直通转发在交换机收到整个帧之前就已经开始转发数据,这样 可以减少延时,但由于直接转发所有的完整数据包和 错误数据包,使得给交换网络带来了许多垃圾通信包。背板吞吐量背板吞吐量bps 交换机接口处理器和数据总线之间所能吞吐的最大数 据量,交换机的背板带宽越高,其所能处理数据的能 力就会越强,如两台同样是16口的10/100Mbps自适 应的交换机,在同样的端口带宽与延迟时间的情况下, 背板带宽宽的交换机传输速率就会越快。一般5口与 8口交换机的背板带宽都在1Gbps至3.2Gbps之间。 背板吞吐量越大的交换机,其价格会越高。 支持的网络类型仅支持一种类型 的网络 一般情况下固定配置式不带扩展槽交换机仅支持一种 类型的网络,是按需定制的。

硬盘分区表知识——详解硬盘MBR .

硬盘是现在计算机上最常用的存储器之一。我们都知道,计算机之所以神奇,是因为它具有高速分析处理数据的能力。而这些数据都以文件的形式存储在硬盘里。不过,计算机可不像人那么聪明。在读取相应的文件时,你必须要给出相应的规则。这就是分区概念。 分区从实质上说就是对硬盘的一种格式化。当我们创建分区时,就已经设置好了硬盘的各项物理参数,指定了硬盘主引导记录(即Master Boot Record,一般简称为MBR)和引导记录备份的存放位置。而对于文件系统以及其他操作系统管理硬盘所需要的信息则是通过以后的高级格式化,即Format命令来实现。面、磁道和扇区硬盘分区后,将会被划分为面(Side)、磁道(Track)和扇区(Sector)。需要注意的是,这些只是个虚拟的概念,并不是真正在硬盘上划轨道。 先从面说起,硬盘一般是由一片或几片圆形薄膜叠加而成。我们所说,每个圆形薄膜都有两个“面”,这两个面都是用来存储数据的。按照面的多少,依次称为0面、1面、2面……由于每个面都专有一个读写磁头,也常用0头(head)、1头……称之。按照硬盘容量和规格的不同,硬盘面数(或头数)也不一定相同,少的只有2面,多的可达数十面。各面上磁道号相同的磁道合起来,称为一个柱面(Cylinder)。 上面我们提到了磁道的概念。那么究竟何为磁道呢?由于磁盘是旋转的,则连续写入的数据是排列在一个圆周上的。我们称这样的圆周为一个磁道。如果读写磁头沿着圆形薄膜的半径方向移动一段距离,以后写入的数据又排列在另外一个磁道上。根据硬盘规格的不同,磁道数可以从几百到数千不等;一个磁道上可以容纳数KB的数据,而主机读写时往往并不需要一次读写那么多,于是,磁道又被划分成若干段,每段称为一个扇区。一个扇区一般存放512字节的数据。扇区也需要编号,同一磁道中的扇区,分别称为1扇区,2扇区…… 计算机对硬盘的读写,处于效率的考虑,是以扇区为基本单位的。即使计算机只需要硬盘上存储的某个字节,也必须一次把这个字节所在的扇区中的512字节全部读入内存,再使用所需的那个字节。不过,在上文中我们也提到,硬盘上面、磁道、扇区的划分表面上是看不到任何痕迹的,虽然磁头可以根据某个磁道的应有半径来对准这个磁道,但怎样才能在首尾相连的一圈扇区中找出所需要的某一扇区呢?原来,每个扇区并不仅仅由512个字节组成的,在这些由计算机存取的数据的前、后两端,都另有一些特定的数据,这些数据构成了扇区的界限标志,标志中含有扇区的编号和其他信息。计算机就凭借着这些标志来识别扇区。硬盘的数据结构在上文中,我们谈了数据在硬盘中的存储的一般原理。为了能更深入地了解硬盘,我们还必须对硬盘的数据结构有个简单的了解。硬盘上的数据按照其不同的特点和作用大致可分为5部分:MBR区、DBR区、FAT区、DIR区和DATA区。

硬盘分区与格式化教案(DOC)

江苏省徐州技师学院理论授课教案(首页) 授课日期2016.11.7 2016.11.8 任课老师班级16程序2,16信管2 16程序1,16媒体赵启辉 课程:计算机组装与维护 课题:硬盘分区与格式化 教学目的要求:1、使学生了解硬盘使用过程;2、使学生掌握硬盘分区的步骤;3、使学生掌握分区工具的使用方法;4、提高学生的动手能力及实际操作能力 教学重点:掌握多种硬盘配置的方法。 教学难点:掌握在不同的条件下对硬盘分区格式化的方法。 授课方法:讲授法、列举法、引入法、分析法等 教学参考及教具(含多媒体教学设备)投影、多媒体计算机 授课执行情况及分析: 板书设计或授课提纲 1、硬盘使用过程 2、硬盘分区的步骤 3、分区工具的使用方法

教学环节及时间分配教学内容教学方 法 组织教学10’ 讲授主课40’一、课前提问 1. 描述计算机主机的基本部件。 2. 组装计算机主机的步骤。 二、导入新课 在安装操作系统之前首先要对硬盘进行分区格式化。 对硬盘分区格式化会破坏硬盘中的数据。所以在此之前一 定要对硬盘中的数据进行备份。 提问学生:你们是否有过对硬盘进行分区格式化操作 的经验? 你喜欢用什么方法对硬盘进行分区格式 化? 引导学生思考、回答并相互补充。 教师总结归纳同学们的回答,进入教学课题。 三、新课教学 硬盘的分区与格式化 1 基本知识:硬盘的数据结构 1.1 硬盘的分区与格式化 提问:硬盘的格式化有低级格式化和高级格式化两 种,它们之间有什么区别? 学生思考、看书、回答; 教师总结: 现在制造的硬盘在出厂时均做过低级格式化,用户一般不必重做。除非 所用硬盘坏道较多或染上无法清除的病毒,不得不做一次低级格式化。 低级格式化的主要目的是划分磁柱面(磁道),建立扇区数和选择扇区 的间隔比,即为每个扇区标注地址和扇区头标志,并以硬盘能识别的方式进 行数据编码。 讲授 多媒 体教 学

详解网站性能测试指标

网站的性能测试指标包括了Web应用服务器、数据库服务器及系统服务器等各种性能测试。每一项测试中都需要根据项目要求完成测试,本文重点讲述了网站性能测试指标,并加以案例分析。 通用指标(指Web应用服务器、数据库服务器必需测试项) Web服务器指标 数据库服务器性能指标 系统的瓶颈定义

稳定系统的资源状态 通俗理解: ·日访问量 ·常用页面最大并发数 ·同时在线人数 ·访问相应时间 案例: 最近公司一个项目,是个门户网站,需要做性能测试,根据项目特点定出了主要测试项和测试方案: 一种是测试几个常用页面能接受的最大并发数(用户名参数化,设置集合点策略) 一种是测试服务器长时间压力下,用户能否正常操作(用户名参数化,迭代运行脚本) 一种则需要测试服务器能否接受10万用户同时在线操作,如果是用IIS做应用服务器的话,单台可承受的最大并发数不可能达到10万级,那就必须要使用集群,

通过多台机器做负载均衡来实现;如果是用websphere之类的应用服务器的话,单 台可承受的最大并发数可以达到10万级,但为性能考虑还是必须要使用集群,通 过多台机器做负载均衡来实现;通常有1个简单的计算方式,1个连接产生1个session,每个session在服务器上有个内存空间大小的设置,在NT上是3M,那么10万并发就需要300G内存,当然实际使用中考虑其他程序也占用内存,所以准备 的内存数量要求比这个还要多一些。还有10万个用户同时在线,跟10万个并发数是完全不同的2个概念。这个楼上已经说了。但如何做这个转换将10万个同时在 线用户转换成多少个并发数呢?这就必须要有大量的历史日志信息来支撑了。系统日志需要有同时在线用户数量的日志信息,还需要有用户操作次数的日志信息,这 2个数据的比例就是你同时在线用户转换到并发数的比例。另外根据经验统计,对 于1个JAVA开发的WEB系统(别的我没统计过,给不出数据),一般1台双CPU、2G内存的服务器上可支持的最大并发数不超过500个(这个状态下大部分 操作都是超时报错而且服务器很容易宕机,其实没什么实际意义),可正常使用(单步非大数据量操作等待时间不超过20秒)的最大并发数不超过300个。假设 你的10万同时在线用户转换的并发数是9000个,那么你最少需要这样的机器18台,建议不少于30台。当然,你要是买个大型服务器,里面装有200个CPU、 256G的内存,千兆光纤带宽,就算是10万个并发用户,那速度,也绝对是嗖嗖的。 另外暴寒1下,光设置全部进入运行状态就需要接近6个小时。具体的可以拿1个 系统来压一下看看,可能会出现以下情况: 1、服务器宕机; 2、客户端宕机; 3、从某个时间开始服务器拒绝请求,客户端上显示的全是错误; 4、勉强测试完成,但网络堵塞或测试结果显示时间非常长。假设客户端和服务器 之间百兆带宽,百兆/10000=10K,那每个用户只能得到10K,这个速度接近1个 64K的MODEM上网的速度;另外以上分析全都没考虑系统的后台,比如数据库、中间件等。 1、服务器方面:上面说的那样的PC SERVER需要50台; 2、网络方面:按每个用户50K,那至少5根百兆带宽独享,估计仅仅网络延迟就 大概是秒一级的; 3、如果有数据库,至少是ORACLE,最好是SYSBASE,SQL SERVER是肯定顶 不住的。数据库服务器至少需要10台4CPU、16G内存的机器; 4、如果有CORBA,那至少再准备10台4CPU、16G内存的机器;再加上负载均衡、防火墙、路由器和各种软件等,总之没个1000万的资金投入,肯定搞不定。

硬盘的主要技术指标

硬盘的主要技术指标 在我们平时选购硬盘时,经常会了解硬盘的一些参数,而且很多杂志的相关文章也对此进行了不少的解释。不过,很多情况下,这种介绍并不细致甚至会带有一些误导的成分。今天,我们就聊聊这方面的话题,希望能对硬盘选购者提供应有的帮助。 首先,我们来了解一下硬盘的内部结构,它将有助于理解本文的相关内容。 图为:硬盘的内部结构 工作时,磁盘在中轴马达的带动下,高速旋转,而磁头臂在音圈马达的控制下,在磁盘上方进行径向的移动进行寻址 硬盘常见的技术指标有以下几种: 1、每分钟转速(RPM,Revolutions Per Minute):这一指标代表了硬盘主轴马达(带动磁盘)的转速,比如5400RPM就代表该硬盘中的主轴转速为每分钟5400转。 2、平均寻道时间(Average Seek Time):如果没有特殊说明一般指读取时的寻道时间,单位为ms(毫秒)。这一指标的含义是指硬盘接到读/写指令后到磁头移到指定的磁道(应该是柱面,但对于具体磁头来说就是磁道)上方所需要的平均时间。除了平均寻道时间外,还有道间寻道时间(Track to Track或Cylinder Switch Time)与全程寻道时间(Full Track

或Full Stroke),前者是指磁头从当前磁道上方移至相邻磁道上方所需的时间,后者是指磁头从最外(或最内)圈磁道上方移至最内(或最外)圈磁道上方所需的时间,基本上比平均寻道时间多一倍。出于实际的工作情况,我们一般只关心平均寻道时间。 3、平均潜伏期(Average Latency):这一指标是指当磁头移动到指定磁道后,要等多长时间指定的读/写扇区会移动到磁头下方(盘片是旋转的),盘片转得越快,潜伏期越短。平均潜伏期是指磁盘转动半圈所用的时间。显然,同一转速的硬盘的平均潜伏期是固定的。7200RPM时约为4.167ms,5400RPM时约为5.556ms。 4、平均访问时间(Average Access Time):又称平均存取时间,一般在厂商公布的规格中不会提供,这一般是测试成绩中的一项,其含义是指从读/写指令发出到第一笔数据读/写时所用的平均时间,包括了平均寻道时间、平均潜伏期与相关的内务操作时间(如指令处理),由于内务操作时间一般很短(一般在0.2ms左右),可忽略不计,所以平均访问时间可近似等于平均寻道时间+平均潜伏期,因而又称平均寻址时间。如果一个5400RPM硬盘的平均寻道时间是9ms,那么理论上它的平均访问时间就是14.556ms。 5、数据传输率(DTR,Data Transfer Rate):单位为MB/s(兆字节每秒,又称MBPS)或Mbits/s(兆位每秒,又称Mbps)。DTR分为最大(Maximum)与持续(Sustained)两个指标,根据数据交接方的不同又分外部与内部数据传输率。内部DTR是指磁头与缓冲区之间的数据传输率,外部DTR是指缓冲区与主机(即内存)之间的数据传输率。外部DTR上限取决于硬盘的接口,目前流行的Ultra ATA-100接口即代表外部DTR最高理论值可达100MB/s,持续DTR 则要看内部持续DTR的水平。内部DTR则是硬盘的真正数据传输能力,为充分发挥内部DTR,外部DTR理论值都会比内部DTR高,但内部DTR决定了外部DTR的实际表现。由于磁盘中最外圈的磁道最长,可以让磁头在单位时间内比内圈的磁道划过更多的扇区,所以磁头在最外圈时内部DTR最大,在最内圈时内部DTR最小。 6、缓冲区容量(Buffer Size):很多人也称之为缓存(Cache)容量,单位为MB。在一些厂商资料中还被写作Cache Buffer。缓冲区的基本要作用是平衡内部与外部的DTR。为了减少主机的等待时间,硬盘会将读取的资料先存入缓冲区,等全部读完或缓冲区填满后再以接口速率快速向主机发送。随着技术的发展,厂商们后来为SCSI硬盘缓冲区增加了缓存功能(这也是为什么笔者仍然坚持说其是缓冲区的原因)。这主要体现在三个方面:预取

无线路由器性能测试

无线路由器性能测试 测试目的: 通过对产品的测试,分析产品性能测试结果报告。并和同类标杆产品对比,提高产品竞争力。 本次测试要对测试步骤进行详细的记录,以便以后测试人员的操作。 测试设备: 被测设备:7310-01 3G无线路由器 PC:DELL台机、IBM R61i 网线若干、D-link无线网卡 注意:测试中关于WLAN的性能测试都是使用IBM R61i笔记本自带的无线网卡测试。 测试名词定义 1. 吞吐量(Throughput) 设备吞吐量 指设备整机包转发能力,是设备性能的重要指标。路由器的工作在于根据IP 包头或者 MPLS标记选路,所以性能指标是转发包数量每秒。设备吞吐量通常小于路由器所有端口 吞吐量之和。 端口吞吐量 端口吞吐量是指端口包转发能力,通常使用pps:包每秒来衡量,它是路由器在某端口

上的包转发能力。通常采用两个相同速率接口测试。但是测试接口可能与接口位置及关 系相关。例如同一插卡上端口间测试的吞吐量可能与不同插卡上端口间吞吐量值不同。 2. 响应时间(Response Time) 时延 时延是指数据包第一个比特进入路由器到最后一比特从路由器输出的时间间隔。在测试 中通常使用测试仪表发出测试包到收到数据包的时间间隔。时延与数据包长相关,通常 在路由器端口吞吐量范围内测试,超过吞吐量测试该指标没有意义。 3.交易速率(Transaction Rate) 背靠背帧数 背靠背帧数是指以最小帧间隔发送最多数据包不引起丢包时的数据包数量。该指标用于 测试路由器缓存能力。有线速全双工转发能力的路由器该指标值无限大。 4.VOIP 及流媒体 针对流媒体的测试: 单路延迟(One,Way Delay) 丢包(Loss Data) 连续丢包(Consecutive Lost Datagrams) 最大连续丢包(Maximum Consecutive Lost Datagrams) 抖动 Jitter (Delay Variation)RFC1889 抖动最大值 Jitter (Delay Variation) Maximum

GPT磁盘各分区作用详解

用于引导Windows的GPT磁盘(预装Win8电脑)各分 区作用详解 随着预装Win8电脑大量涌向市场,UEFI+GPT这一标准组合受到了更大范围的关注。UEFI+GPT无疑是未来的发展趋势,所以我们有必要先来了解一下用于引导Windows的GPT分区结构的磁盘中一些特殊分区的作用。 使用Windows安装程序默认创建的分区 当我们在GPT中安装Windows8/7,并且使用Windows安装程序对硬盘进行重分区操作 时默认将创建下表所示的几个分区。

的方法可参考《Diskpart工具应用两则:MBR/GPT分区转换& 基本/动态磁盘转换》。 当Windows 8 系统无法正常启动时也会自动故障转移至WinRE。 在Windows7中WinRE和Windows安装分区在同一个分区,并没有单独拿出来。Win8 中微软默认将WinRE和Windows 安装分区分离,目的应该是最大程度保证WinRE的可靠性。在MBR硬盘上安装Windows 8时,你会发现系统保留分区的大小由Win7时的100MB 扩大到了350MB,这多出来的空间就是用于保存WinRE映像的。 第二个分区是存放系统引导文件的分区,这是实现UEFI引导所必须的分区。 第三个MSR分区,这是微软保留分区,目前尚不清楚其具体作用。已知将基本磁盘转换为动态磁盘是该分区将发挥作用。 第四个就是我们安装系统是要选择的目标分区。其实际容量=你指定的容量-前面几个分区 容量。 如果只考虑系统的正常启动,那么EFI系统分区(第二个)和Windows安装分区(第四个分区)这两个分区是必须的。 预装Windows 8的品牌机默认分区(以联想某型号为例) 在预装Win8的品牌机中同样会看到上表中所示的这些分区,不过其大小可能会有所不同,同时你可能还会看到其他的隐藏分区。下表是联想某一型号预装Win8电脑默认的分区情况。

如何对服务器性能计算的公式参考(TPMC_TPCC)..

1.一技术建议书 1.1.系统部署结构及软硬件配置 1.1.1.设备部署方案 常见的集团式部署方案有三种: ●集中式部署:目录数据与原文均集中在总部服务器中; ●分布式部署:目录数据与原文数据均分散在各个二级单位中存储,再由一套分布式全文检索系 统将全集团数据提供统一门户、统一权限的检索; ●混合式部署:目录数据集中存储在总部服务器中,电子文件存放在各个二级单位服务器中; XXXX根据本次项目需求与特点推举以纯B/S软件平台构成的集中式部署方案。 各种方案优点对比:

1.1. 2.硬件说明 1.1. 2.1. Hyper-V硬件需求 安装并使用Hyper-V角色,需要满足以下条件: ●一个基于64位的处理器。Hyper-V仅在64位Windows Server 2008中可用——具体包括64位的 Windows Server 2008标准版、Windows Server 2008企业版以及Windows Server 2008数据中心版。 Hyper-V在32位(x86)版本的或基于安腾系统版本的Windows Server 2008不可用。虽然如此,Hyper-V 管理工具仍然提供32位版本。 ●硬件辅助虚拟化。这可用于包含了虚拟化选项的处理器——具体来说,包括拥有Intel Virtualization Technology(Intel VT)或AMD Virtualization(AMD-V)技术的处理器。 ●硬件强制数据执行保护(DEP)必须可用并启动。具体来说,必须启用Intel XD bit(execute disable bit) 或AMD NX bit(no execute bit)。 ●硬件辅助虚拟化以及硬件强制DEP在BIOS中设置。虽然如此,设定的名称可能与以上有所不同。 了解特定的处理器型号是否支持Hyper-V,请与计算机制造商进行联系。如果调整了硬件辅助虚拟化和硬件强制DEP的设定,可能需要断开计算机电源,并重新开机。简单的重新启动可能无法使设置生效。 1.1. 2.1.1.内存 可以使用的最大内存数量由操作系统来决定。具体如下: 对于Windows Server 2008企业版和Windows Server 2008数据中心版来说,物理计算机可以配置最多1 TB物理内存,运行这些版本操作系统的虚拟机可以为每台虚拟机分配64 GB内存。对于Windows Server 2008标准版来说,物理计算机可以配置最多32 GB物理内存,运行这些版本做系统的虚拟机可以为每台虚拟机分配31 GB内存。

解读硬盘各项基本参数

前言:对于大多数的普通电脑用户来说,硬盘(英文名:Hard Disc Drive,简称HDD,全名:温彻斯特式硬盘)只是电脑系统中用来存储数据的一个载体,除了容量和价格上的差异以外好像并没有其它太大的区别。 硬盘 其实不然,硬盘的各项基本参数都影响着这个硬盘在各个方面的性能表现,与整个电脑系统的性能也有着密切的关系。今天,笔者就跟大家一起来了解下硬盘的各项基本参数,让大家在以后买硬盘时可以更得心应手,不再被忽悠。 -------------------------------------我是分割线 ------------------------------------ 温馨提示:如果您不了解硬盘内部结构,请阅读: 探秘硬盘内部结构: https://www.wendangku.net/doc/9814680219.html,/cpu/study_cpu/1009/2215404.html --------------------------------------------------------------------- --------------- 硬盘基本参数:容量 作为整个电脑系统的数据存储器,容量是硬盘最主要的参数。硬盘的容量以兆字节(MB)或千兆字节(GB)为单位,1GB=1024MB。不过由于硬盘厂商在标称

硬盘容量时通常取1G=1000MB,因此我们在BIOS中或在格式化硬盘时看到的容量往往会比标称值要小一些。 250G B硬盘可用容量为232.88GB 硬盘的容量参数还包括硬盘的单碟容量。所谓的单碟容量是指硬盘单片盘片的容量,单碟容量越大,单位成本越低,平均访问时间也越短。目前在垂直记录技术的帮助下,主流硬盘的单碟容量达到了250GB~750G B不等。

路由器选型重要参数

路由器选型重要参数 全双工线速转发能力 路由器最基本且最重要的功能是数据包转发。在同样端口速率下转发小包是对路由器包转发能力最大的考验。全双工线速转发能力是指以最小包长(以太网64字节、POS口40字节)和最小包间隔(20字节)在路由器端口上双向传输同时不引起丢包。该指标是路由器性能重要指标。125,000,000/(64+20)=1,488,095 设备吞吐量 指设备整机包转发能力,是设备性能的重要指标。路由器的工作在于根据IP包头或者MPLS标记选路,所以性能指标是转发包数量每秒。设备吞吐量通常小于路由器所有端口吞吐量之和。 端口吞吐量 端口吞吐量是指端口包转发能力,通常使用pps:包每秒来衡量,它是路由器在某端口上的包转发能力。通常采用两个相同速率接口测试。但是测试接口可能与接口位置及关系相关。例如同一插卡上端口间测试的吞吐量可能与不同插卡上端口间吞吐量值不同。 路由表能力 路由器通常依靠所建立及维护的路由表来决定如何转发。路由表能力是指路由表内所容纳路由表项数量的极限。由于Internet上执行BGP协议的路由器通常拥有数十万条路由表项,所以该项目也是路由器能力的重要体现。 背板能力 背板能力是路由器的内部实现。背板能力能够体现在路由器吞吐量上:背板能力通常大于依据吞吐量和测试包场所计算的值。但是背板能力只能在设计中体现,一般无法测试。QoS分类方式 指路由器可以区分QoS所依据的信息。最简单的QoS分类可以基于端口。同样路由器也可以依据链路层优先级(802.1Q中规定)、上层内容(TOS字段、源地址、目的地址、源端口、目的端口等信息)来区分包优先级。 分组语音支持方式 在企业中,路由器分组语音承载能力非常重要。在远程办公室与总部间,支持分组语音的路由器可以使电话通信和数据通信一体化,有效地节省长途话费。当前技术环境下,分组语音可以分为3种:使用IP承载分组语音、使用A TM承载语音以及使用帧中继承载语音。使用ATM承载语音时可以分AAL1和AAL2两种。AAL1即电路仿真,技术非常成熟但是相对成本较高,AAL2技术较先进,但是当前ATM接口通常不支持。帧中继承载语音也比较成熟,相对成本较低。IP承载语音当前较流行。在上述技术中成本最低,但是当前IP网络QoS保证困难,通话质量较难保证。 语音压缩能力 语音压缩是IP电话节约成本的关键之一。通常可以使用G.723和G.729。G.723在ITU -T建议G.723.1(1996),语音编码器在5.3和6.3Kbps多媒体通信传输双率语音编码器中规定。相对压缩比较高,压缩时延较大。G.729在ITU-T 建议G.729 (1996),8Kbps共扼结构代数码激励线形预测(CS-ACELP)语音编码中规定。压缩比较低,通话质量较好。 信令支持 路由器E1端口上可能支持多种信令:ISUP、TUP、中国1号信令以及DSS1。支持ISUP、TUP或者DSS1信令的路由器可以有效地减少接续时间。在电信级的IP电话网络设备中通常要求支持7号信令。但是作为中低端路由器,通常只支持DSS1和中国1号信令。

读懂服务器性能指标

读懂服务器性能指标 用户总希望有一种简单、高效的度量标准,来量化评价服务器系统,以便作为选型的依据。但实际上,服务器的系统性能很难用一两种指标来衡量。包括TPC、SPEC、SAP SD、Linpack和HPCC在内的众多服务器评测体系,从处理器性能、服务器系统性能、商业应用性能直到高性能计算机的性能,都给出了一个量化的评价指标。在如此多的标准中,用户该如何选择最适合自身应用环境的评价体系呢?这里,我们选择了应用面较广泛的TPC和SPEC,作一个深入介绍。 ■走出误区 深入TPC-C指标 TPC体系是影响最大的评测基准之一,尤其近两年,国内媒体对TPC指标的报道可谓海量。但有多少用户真正了解其中的含义呢?本文以TPC-C为例,让用户深入了解这项基准测试。 tpmC值在国内外被广泛用于衡量服务器系统的事务处理能力。但究竟什么是tpmC值呢?笔者曾向一些用户、专业媒体记者乃至某些国外大公司的技术人员问过这个问题,但回答的精确度与tpmC值的流行程度差异甚远。不少人将之误写为TPMC,甚至与TPC组织混为一谈。 TPC(Transactionprocessing Performance Council,事务处理性能委员会)是由数十家会员公司创建的非盈利组织,总部设在美国。TPC的成员主要是计算机软硬件厂家,而非计算机用户,其功能是制定商务应用基准程序的标准规范、性能和价格度量,并管理测试结果的发布。 TPC不给出基准程序的代码,而只给出基准程序的标准规范。任何厂家或其他测试者都可以根据规范,最优地构造出自己的测试系统(测试平台和测试程序)。为保证测试结果的完整性,被测试者(通常是厂家)必须提交给TPC一套完整的报告(Full Disclosure Report),包括被测系统的详细配置、分类价格和包含5年维护费用在内的总价格。该报告必须由TPC授权的审核员核实(TPC本身并不做审计)。TPC 在全球只有不到10名审核员,全部在美国。 TPC推出过11套基准程序,分别是正在使用的TPC-App、TPC-H、TPC-C、TPC-W,过时的TPC-A、TPC-B、TPC-D和TPC-R,以及因为不被业界接受而放弃的TPC-S(Server专门测试基准程序)、TPC-E(大型企业信息服务测试基准程序)和TPC-Client/Server。而目前最为“流行”的TPC-C是在线事务处理(OLTP)的基准程序,于1992年7月完成,后被业界逐渐接受。 TPC-C使用三种性能和价格度量,其中性能由tpmC(transactions per minute,tpm)衡量,C指TPC中的C基准程序。它的定义是每分钟内系统处理的新订单个数。TPC-C还经常以系统性能价格比的方式体现,单位是$/tpmC,即以系统的总价格(单位是美元)/tpmC数值得出。 解读tpmC 从TPC-C的定义不难知道,这套基准程序是用来衡量整个IT系统的性能,而不是评价服务器或某种硬件系统的标准,而且tpmC数值的高低直接受到各个环节的影响,右表大概可以说明系统设置对tpmC 测试的影响。此处的“IT系统”包括服务器、外设(如硬盘或RAID)、服务器端操作系统、数据库软件、客户端及其操作系统、数据库软件和网络连接等。因此,如何解读tpmC数值会因不同的采购需求有非常大的差异。

相关文档
相关文档 最新文档