文档库 最新最全的文档下载
当前位置:文档库 › 大学物理教材习题答案

大学物理教材习题答案

大学物理教材习题答案
大学物理教材习题答案

第一章 质点运动

习题解答

一、分析题

1.一辆车沿直线行驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最大。

答: E 。

位移-速度曲线斜率为速率,E 阶段斜率最大,速度最大。

2.有力P 与Q 同时作用于一个物体,由于摩擦力F 的存在而使物体处于平衡状态,请分析习题图1-2中哪个可以正确表示这三个力之间的关系。

答: C 。

三个力合力为零时,物体才可能处于平衡状态,只有(C )满足条件。

3.习题图1-3(a )为一个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。

答:C 。

由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移一直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。

三、综合题:

1.质量为的kg 50.0的物体在水平桌面上做直线运动,其速率随时间的变化如习题图1-4所示。问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x 方向的位移是多少?(2)在某一时刻,物体刚好运动到桌子边缘,试分析物体之后的运动情况。

解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:

220.8cm/s 0.2cm/s 4

a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的

位移与速度关系可得:

22002() t a s s v v -=- 2200

()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+

1.1c m =

(2)当物体运动到桌子边缘后,物体将以一定的初速度作平抛运动。

2.设计师正在设计一种新型的过山车,习题图1- 5为过山车的模型,车的质量为0.50kg ,它将沿着图示轨迹运动,忽略过山车与轨道之间的摩擦力。图中A 点是一个坡道的最高点,离地高度为1.9m ,该坡道的上半部分为一半径为

0.95m 的半圆。

若车从离地2.0m 的轨道最高点除出发,初始速度为m/s 510.v =,(1)试求过山车到达A 点的速度;(2)计算在A 点时,轨道对过山车的作用力;(3)如果要使车停在A 点,就必须对车施加某种摩擦力,试求摩擦力应该做多少功,才能使车静止在A 点;(4)假设要让过山车在A 点沿轨道下降之前,刚好能实现与轨道之间没有力的作用,请设想该如何对轨道的设计进行修改,并加以证明。

解:(1)在过山车运动过程中机械能守恒,过山车离地最高点的机械能与A 点机械能相等,则

22001122

A mv mgH mv mgH +=+

A v =

1.

5m /s 2.06m /s

= (2)由牛顿第二定律得:

2A v m g N m r -=

2A v N m g m r

=- 22.060.50100.50N

0.95=?-? 2.76N

= (3)若要使车停在A 点,则摩擦力作的功应正好等于车在无摩擦力条件下A 点的动能,则

212

f A W mv =

210.50 2.06J 2

=?? 1.06J = (4)若要使车在A 点时N =0,由牛顿第二定律得:

'2A A

v mg m r = (1) 由机械能守恒定律得:

2'2011222

A A mv mgH mv mgr +=+ (2) 联立①②两式可得:

20025A v gH r g

+= 21.52102m 510

+??=? 0.85m =

可见,如果把A 点轨道半径减少为0.85m ,过山车在A 点与轨道之间没有力的作用。还有一种办法是调整起始最高点与离地高度,同理,可将最高点离地高度升高为2.38m 。

3.(缺图)如习题图1- 6所示,火箭模型的质量为kg 25.0,0t =时刻,发射引擎推动力N 0.20=F ,并持续作用2s ,然后引擎停止工作,火箭继续上升,当火箭上升到一定高度后,开始竖直下落。请问:(1)在前2s 的运行过程中,火箭的平均加速度是多少?(2)火箭到达的最大高度是多少?(3)火箭到达最大高度的时间是多少?

解:(1)由动量定理得:

()F mg t mv -=

F mg v t m

-= 200.250102m/s 0.250

-?=? 140m/s =

则平均加速度为:

221400m/s 70m/s 2

v a t ?-=

==? (2)在前2s 时间内,火箭近似作匀加速直线运动,则 22202t t aH v v v =-=

22t v H a =2

140m=140m 270

=? 在2s 以后,火箭在重力作用下做匀减速直线运动,直到速度减为0,则

2202't gH v v -=-

20'2v H g =2

140m=980m 210

=? 则火箭上升的最大高度为:

max 'H H H =+

140980m=1120m =+

(3)火箭在重力作用下,速度减为0的时间为:

0t gt v v -=-

01401410

v t s s g === 则火箭到达最大高度的时间为:

14216T s s s =+=

4.(缺图) 如习题图1- 7所示,原长m 2.00=l 的弹簧,一端被固定在光滑的水平桌面上,另一端连着一个kg 0.81=m 的物体,同时该物体又通过定滑轮与kg 0.42=m 的物体相连(绳和定滑轮质量不计)。当整个系统达到平衡状态时,

弹簧的长度m 25.0=l ,物体2m 离地高度为m 70.0=h 。试求:(1)弹簧的劲度系数;(2)如果从P 点将绳子切断,物体2m 多久后落地;(3)绳子切断后,物体1m 的振动频率以及1m 达到的最大速度。

解:(1)由胡克定律得:

20()m g k l l =-

20 4.010N/m 800N/m 0.250.2

m g k l l ?===-- (2)绳子断后2m 作自由落体运动,则

212

H gt =

0.37s t ===

(3)由弹簧振子的振动频率得:

10rad/s ω=

== 10Hz 1.59Hz 22 3.14

f ωπ=

==? 由机械的守恒定律得: 221max 1122

kx m v =

max max v =

0)l l =-

(0.250.2)m/s =

- 0.5m/s =

5、(缺图)(答案有差异) 如习题图1- 8所示,两个小孩在玩雪撬,雪撬A 与人的总质量为kg 250,雪撬B 与人的总质量为kg 200,两雪撬之间的距离为m 15。最初雪撬B 静止,雪撬A 从静止开始以加速度21.5m/s 加速到5m/s 后匀速运动,试问:(1)雪撬A 撞上雪撬B 需要多少时间?(2)两雪撬碰撞后,雪

撬B 的运动速度为4.8m/s 、方向向右,雪撬A 的速度是多少?(3)两雪撬的碰撞是完全弹性碰撞吗?

解:(1)雪橇A 在速度达到5m/s 前作匀加速直线运动,则

1A v at =

15s 3.33s 1.5

A v t a =

== 雪橇A 向右运动的距离为: 22111 1.5 3.33m 8.33m 22

s at ==??= 之后,A 作匀速直线运动,碰到雪橇B 的运动时间为:

1215158.33s 1.33s 1.5

A s t v --=== 则A 撞上

B 需要的时间为:

12 3.33 1.33s 4.66s t t t =+=+=

(2)由动量守恒定理得:

'A A A A B B m v m v m v =+

'A A B B A A

m v m v v m -= 25050200 4.8m/s 250

?-?=

1.16m/s = 雪橇A 的速度向右 (3)碰撞前A 、B 的总动能为:

220112505J 3125J 22

k A A E m v ==??= 碰撞后两者的总动能为:

2211'22

k A A B B E m v m v =+ 2211250 1.16200 4.8J=2472J 22

=??+?? 可见碰撞前后系统与动能不守恒,碰撞为不完全弹性碰撞。

6、(缺题)

解:(1)由位移与速度的关系得:

d d x v t

=

00d t

x x v t =+? ()088d t

t t =-? 284t t =-

当2s t =时,28242m=0m x =?-? 由速度与加速度的关系得:d d v a t

= ()2d 888m/s d a t t

=-=- (2)由功的定义得:W Fx = 由(1)中可知,02s 之间,0x =,则0W =。

思考题

思考题1-1:在棒球运动中,球具有怎样的运动轨迹和规律?棒球手一般通过什么方式来判断和控制球的运动与落点?

参考答案:(1)球的运动轨迹一般为抛物线,运动轨迹取决于抛物线的高度和水平运动距离,在相同的初速度情况下,竖直分运动的高度越高,其水平运动的距离越短。(2)棒球手往往可以通过击球瞬间给球施加力的大小和方向,来控制球抛物线运动的轨迹,从而控制球的落点。棒球高手的优势在于能够很好地判断球的运动情况,决定击球的力度和方位。

思考题1-2:请设想一个可能产生超重的情景,并分析超重的产生原因。

参考答案:发射航天器存在这严重的超重现象,因为航天器在开始加速上升阶段的加速度可以高达8g ,远远大于重力加速度,其中的宇航员处于了超重状态。失重产生的原因是物体具有了向上运动的加速度,加速度越大,超重越厉害,物体需要承受的压力也越大。设加速度为a ,则宇航员的示重为

mg G a g m G =>+=')(

所以飞船加速时,宇航员处于超重状态。 超重对航天员都很大的生理影响,航天员“最大的压力是承受加速度,“超重耐力”训练要求航天员在承受8倍于自身体重的重力条件下,保持正常的呼吸和思维能力,而玩过山车时经历的刺激最多是2倍多一点的重力加速度。

思考题1-3:坐翻滚列车或玩激流勇进时,车身从最高点冲下去时,人瞬间

获得了加速度,打破了人的正常受力状态,因此人突然感觉异常,这种异常的感觉让有些人感到刺激,同时又让有些人感到惊恐。那么,为什么坐后面反而会让人感到更恐惧呢?提示如下:计算坐在翻滚列车前排和最后一排的人从最高点冲下去时的加速度,由此来判断胆大与胆小的人应该如何反而应该如何选择座位。

参考答案:由于我们习惯受到重力的作用,而且在竖直方向的加速度为零,但玩翻滚列车或玩激流勇,车身从最高点冲下去时,人瞬间获得了向下加速度,这就打破了人的正常受力状态,使人突然感觉异常,这种异常的感觉让有些人感到刺激,同时又让有些人感到惊恐,这就是人处于失重状态的感觉,向下的加速度越大,这种感觉越明显。

让我们比较一下坐在过山车最前排和最末排的人在冲下去的瞬间的加速度: 设翻滚列车有10节车厢,每节车厢的总质量为。当第一节列车从轨道最高处冲下去时,忽略列车与轨道之间的摩擦力,第一节车厢的受力情况如图所示。设列车此时的加速度为a ,由牛顿第二定律可得:

ma T 9='

ma T mg =-θsin

而T T =',则 θsin 101g a = 这是第一节车厢向下俯冲时的加速度。 同理,当第十节车厢位于轨道最

高处时,第九节车厢的受力情况如图

所示,有

a m T '

='

a m T mg '=-9sin 9θ

θsin 10

9g a =' 这是第十节车厢向下俯冲时的加速度。

比较最前排和最末排的人在冲下去的瞬间的加速度可知,坐在最前面的人的加速度最小,最后排的加速度最大,后排的失重感应该比前排强烈。因此,胆大的人应该选择最后一排,而胆小的人反而应该坐最前排。因此几乎所有的人都做了错误的选择。

思考题1-4:为了提高火箭发射效率,火箭设计师应该采取什么措施?为什么?

参考答案:(1) 如果火箭设计师要提高火箭发射效率,就应该提高火箭上升的加速度,使火箭在上升单位高度后获得更大的速度;同时工程师也应该考虑火箭发射的燃料耗散率,即完成一次火箭发射用尽量少的燃料,这样也可以减轻火箭的重量,有利于提高发射效率。(2)一方面,根据1-51式可知,火箭的推动力与燃料的喷射速度和火箭质量的变化率成正比,即d d e M F v t

=-,可见火箭质量的减少得越快,火箭的加速度越大,则需要单位时间内喷出的燃料越多,所以工程师应该尽量提高火箭燃料的喷射率。

另一方面,根据1-50式可知,即M

M v v v e 00ln =-,火箭燃料的喷射率提高后,M M 0

的瞬时值大,火箭的瞬时速度v 增加。此外,v 也与燃料的喷射速率成正比,所以工程师也可以通过提高燃料的喷射速率来提高发射效率。 科学问题的解析

万有引力定律及其应用

万有引力定律在天文学上的应用,有极为重要的意义,海王星就是根据万有引力定律被发现的。在18世纪,人们发现太阳系的第七个行星(天王星)的运动轨道,总是与应用万有引力定律计算出来的轨道有一定偏离,于是有人预测,在其轨道外肯定还有一颗未被发现的新星,后来亚当斯和勒维列在预言位置的附近找到了这颗新星——海王星,如图片1-14所示。

请分析:

1、如何根据开普勒定律和牛顿运动定律推导出万有引力定律的数学形式?科学家如何根据此数学形式的推知存在“万有引力定律”的?

参考答案:

(1)对任意一个确定的行星,由Kepler 第一定律,以太阳(即椭圆的一个焦点)为极点,椭圆的长轴为坐标轴建立极坐标,则行星的轨道方程为

θcos 1e p

r -= 其中a b p 2=为焦参数,22

1a

b e -=是离心率,a 和b 分别是椭圆的半长轴与半短轴。

设在时刻t 行星与太阳的距离为)(t r r =,它们的连线与坐标轴的夹角为)(t θθ=,则行星的坐标可表示为)sin ,cos (θθr r 。

记dA 是半径转过角度θd 所扫过椭圆中扇形的面积,则

θd r dA 221=

(2)由Kepler 第二定律,单位时间内行星扫过相同的面积,故 ==ω22

1r dt dA 常数 dt

d θω=为行星运动的角速度。 设行星绕太阳运行一周的时间为T ,经过时间T ,半径所扫过的面积恰为整个椭圆的面积ab π,即

T r dt dt dA ab T ωπ2021==?

则常数为 T ab

r πω22=

两边对t 求导得到

02)'(2=+=dt d r dt dr r r ωωω 这里,行星沿半径方向的速度和加速度分别为dt dr 和22dt r d ,角加速度为dt

d ω,

则行星在x 方向和y 方向上的加速度分量为

θωθcos )()cos (22222r dt

r d dt r d -= θωθsin )()sin (22222r dt r d dt r d -=

设r 方向上的单位矢量大小为0r ,于是得到加速度的大小为

0222)(r r dt r d a ω-=

(3)对椭圆方程1)cos 1(--=θe r p 两边对t 求二阶导数得

022

22=+?-ωωr p r r dt r d

所以

2232222222141)(r T a p r r r dt r d ??-=?-=-πωω

(4)由牛顿第二运动定律和kepler 第三定律,=23

T

a 常数,则有 m ma F ==022*******)(r r

m T a r r dt r d πω-=- 令23

24MT

a G π=,M 是太阳的质量,G 称为引力常数, )/(1067.62211kg m N G ??≈-。则

02r r Mm G F -=

(5)德国科学家早在16世纪就得出了行星运动三定律,但是由于当时缺乏研究变速运动的工具,直到牛顿发明了微积分,人们才成功地推导出了行星在一个恒星的椭圆轨道上运动的动力学表达式。

牛顿发现万有引力定律的思路大体如下:

① 牛顿证明了行星受到的向心力跟物体与焦点的距离的平方成反比,这一

向心力应该是太阳的引力。

②因为地球上得重力也是随着与地心距离的增大按平方反比律而减弱的,这表明,天体的运动跟地面上物体的运动,有着共同的规律,它们应该本质上应该是同一种力。

③牛顿根据他的作用和反作用定律,推论引力作用是相互的。

由此,他指出这种行星或物体受到的向心力,存在于所有具有一定质量的物体之间,于是称之为万有引力,而把该力的数学表达式称为万有引力定律。

2、天王星的运动轨道与应用万有引力定律计算出来的轨道有怎样的偏离?

参考答案:

天王星在1781年被确认为是太阳系的第7颗行星,之前天文学家曾多次在望远镜中见到过它。1820年,法国天文学家布瓦德搜集当时的全部观测资料,根据天体力学原理计算天王星的运动轨道时,出现了一个奇怪的现象:他用万有引力定律算出的轨道与1781年以后的观测极不相符,其轨道观测值比理论值小。

许多年之后,布瓦德等天文学家将1750年以后在英国格林尼治天文台对各个行星所作的全部观测记录,统一地进行了复核。他们发现,除天王星以外,对于别的行星,观测记录与计算结果都能相当准确地符合。因此,他们断定:问题不是出自观测,应该在理论计算方面找原因。

3、根据这一偏差怎样预测新星的位置。

较多的天文学家提出“未知行星”假说,认为在太阳系中还有一颗比天王星更远的行星,它的引力作用使天王星的轨道发生了偏离,这逐渐成为了一个公认的科学假说。

两位年轻的天文学家——英国的亚当斯和法国的勒威耶,根据轨道的偏离情况,假设在天王星轨道以外的地方存在这一颗行星,经过反复多次的修正和计算,基本上确定出有关未知行星的各个参数的数值,并指出了可以发现“未知行星”的天区,很快于1846年9月23日在偏离预言位置不到1度的地方这颗星被发现,它被称为海王星。

发现海王星的方法在当时是空前新颖的,后来则成为科学家们的常用方法。

第二章 刚体转动

习题解答

一、分析题

1.对于一个可绕定轴转动的刚体,若忽略摩擦力的存在,请判断下列说法是否正确。(A )刚体匀速转动的条件是合外力为零;(B )刚体加速转动的条件是合外力不为零;(C )刚体匀速转动的条件是合外力矩为零;(D )刚体加速转动的条件是合外力矩不为零。

答:(C )

根据转动定律α J M =可知:刚体匀速转动的条件是合外力矩为零。

2.跳水运动员跳水时,为何刚起跳时要立刻把身体缩成一团,而在快入水时候又把身体展开?

答:根据角动量守恒定律,起跳时缩起身体,是为了减小J ,增大ω,能够快速旋转,有利于调整节奏,保证快入水时能直线进入水中;快入水时候把身体展开,是为了增大J ,减小ω,保证入水时能直线进入水中,减小水花,获得高分。

3.有一个垂直悬挂的细棒可以绕上端点自由旋转,开始时处于垂直静止状态,现有一水平方向快速运动的子弹,与细棒的下端碰撞,如果将细棒和子弹作为一个系统,下列说法是否正确。(A )碰撞瞬间系统所受合外力为零;(B )碰撞瞬间机械能守恒;(C )碰撞瞬间系统动量守恒;(D )碰撞瞬间系统角动量守恒。 答案:(D )

因为碰撞瞬间系统所受合外力矩为零,所以系统角动量守恒。

4.关于刚体对轴的转动惯量,下列说法是否正确.(A )只与刚体质量有关,与质量的空间分布和轴的位置无关;(B )与刚体的质量和质量的空间分布有关,与轴的位置无关;(C )与刚体的质量、质量的空间分布和轴的位置都有关;(D )只与转轴的位置有关,与刚体的质量和质量的空间分布无关。 答案:(C )

根据dm r J m ?=2可知刚体对轴的转动惯量与刚体的质量、质量的空间分布

和轴的位置都有关。

三、综合题

1. 一辆行驶速度为h km 108/的汽车,车轮的外圈半径为.5m 0,汽车所有车轮的转动惯量为2m kg 20?=J 。在0=t 时刻汽车开始制动,如果总的制动摩擦力矩为m N 100?=f M ,请问:(1)汽车需要多长时间可以停下来?(2)从开始制动到停止, 汽车行驶了多长距离?

解:(1)汽车的初始行驶速度为h km 108/即s /30m ,汽车的初始角速度为

rad/s 60rad/s 5

.0300===

r v ω 开始制动后角加速度为 22

rad/s 5m kg 20m N 100--=??-==

J M αf 则制动需要的时间为 s 12rad/s

5rad/s 60020

=--=-=αωωt (2)从开始制动到停止,车轮转过的角度为

rad 360)

rad/s 5(2)rad/s 60(222

202=-?-=-=αωωθ 则走过的距离为

m 1800.5m s =?==θθr

2. 如习题图2-1所示,一绕地飞行的卫星数

据为:质量为kg 143=m ,周期为98min =T ,近

地点到地心距离为km 66701=r ,远地点到地心距

离为km 88902=r ,椭圆轨道半长轴为km 7780=b ,椭圆轨道半短轴为km 7220=a ,试

求:卫星的近地点速度和远地点速度(提示: 卫星绕椭圆轨道运动的周期为v

r ab π2=T )。 解:在地心引力作用下,卫星作椭圆轨道运动,且角动量守恒。

设卫星近地速度为1v ,方向与1r 垂直;远地速度为2v ,方向与2r 垂直,则

习题图2-1

1

2

v v 1112121d d r r t s ==为常量 于是

T r T r s 21112

121v v == 近地点速度

s /km 99.860s

98km 6670km 7220km 77803.142π22111=?????===T r ab T r s v 远地点速度

s /km 74.660s

98km 8890km 7220km 77803.142π22222=?????===T r ab T r s v 3. 如习题图2-2所示,A 和B 两飞轮的轴杆在同一中心线上, A 轮的转动惯量为2A m kg 10?=J , B 轮的转动惯量为2m kg 20?=B J 。开始时A 轮的转速为m in r 600/,B 轮静止。C 为摩擦啮合器。

求(1)两轮啮合后的转速;(2)在啮合过

程中,两轮的机械能有何变化? 解:πrad/s 2060rad/s /2π600=?=A ω

(1)以两飞轮和啮合器作为一系统来

考虑,角动量守恒。

)

(B A B B A A J J J J

++=ωωω 将各值代入得两轮啮合后角速度 rad/s 3π20m

kg 20m kg 10πrad/s 20m kg 10222=?+???=ω 即转速r/min 200=n

(2)在啮合过程中,摩擦力矩作功,所以机械能不守恒,部分机械能将转化为热量,损失的机械能为

2

22)(2

12121ωωωB A B B A A J J J J E +-+=?ωωω)(B A B B A A J J J J +=+A B A

J 1032.1)rad/s 3

π20)(m kg 20m kg 10(21πrad/s)20(m kg 1021422222?=?+?-???= 4. 飞机沿水平方向飞行,机头螺旋桨转轴与飞机的飞行方向一致,螺旋桨叶片的长度为cm 180,发动机转速为r/min 2200。试求:(1)桨尖相对于飞机的线速率是多少?(2)若飞机以h /km 216的速率飞行,计算桨尖相对于地面速度的大小是多少?并定性说明桨尖的运动轨迹。

解:(1)桨尖相对于飞机的线速率:

m/s 48.414m/s 8.160

2200π21=??==ωR v (2)因为桨尖相对于飞机的线速度与飞机前行的速度互相垂直,飞机的前行速度为h /km 216即s /60m ,所以桨尖相对于地面速度的大小:

.80m/s 418m/s 60v 2212=+=v

由于桨尖同时参与两个运动:匀速直线运动和匀速圆周运动.故桨尖轨迹应是一个圆柱螺旋线。

5. 一转动飞轮的半径为m 5.0=r ,转动惯量为2m kg 10?=J ,转速为

rad/s 52=ω,

两制动闸对轮的压力都为N 325,闸瓦与轮缘间的摩擦系数为40.=μ.试求:从开始制动到静止,一共需要用多少时间?

解:因为制动总的力矩为:

m 130N 0.5m N 3254.022?=???==Nr M f μ

则角加速度为

22rad/s 13m

kg 10m 130N ---=??==

J M αf 则制动需要的时间为 s 4rad/s 13rad/s 5202

0=--=-=

αωωt 即开始制动到静止需要4s 时间。 6.如习题图2-3所示,一人站在自由转动的圆盘中心(不计摩擦),人与转盘的转动惯量20m kg 100?=J ,人手臂伸直后的长度为m 1(人的手掌与人体中心

轴线距离),手臂完全收拢时长度为m 2.0。人的每只手各抓有一个质量kg 5=m 的哑铃。试问:(1)在人伸缩手臂的过程中,人、哑铃与转盘组成的系统的角动量是否守恒?为什么?(2)如果人伸直手臂时,系统转动角速度s /rad 31=ω,人收拢手臂时的角速度2ω是多少?(3)系统在转动的过程中,机械能是否守恒?为什么?

解: (1) 整个过程合外力矩为0,角动量守恒.

(2)2222101m kg 1101m)(kg 52m kg 1002?=??+?=+=ml J J

2222202m kg 4.1000.2m)(kg 52m kg 1002?=??+?=+=ml J J

因为 2211ωωJ J =

所以 s /rad 29.3m

kg 4.100s /rad 3m kg 110222112=???==J J ωω (3) 在此过程中机械能不守恒,因为人收臂时做功.

思考题

思考题2-1 石磨一般包含上下两个石头磨盘,上面磨盘上装有一横杆作为把手,当人用力推动把手时,上面磨盘就会转动,通过两个磨盘之间的摩擦来研磨食物。请问:人们为什么要装一个横杆而不是直接推动磨盘?人在什么位置推把手才能使磨盘转动得快?人在什么位置推把手更省力?

参考答案:直接推动磨盘,因为推动磨盘的力臂太短,会很费力;在磨盘上装一横杆增加了力臂,推动磨盘就会很省力;推把手时,手离磨盘越近,因为线速度不变,半径减小,角速度增大,磨盘转动越迅速;但这时因为力臂太短感觉

2

费力;要想省力,应在把手的末端推把手,因为作用力相同时,这时力矩最大。

100的人想用一根思考题2-2地球的质量为kg

?,假定一个质量为kg

.524

98

10

长杆借助一个支点撬起地球,支点的位置在哪儿最好?根据支点位置估算撬起地球的杆有多长?

撬动地球的受力点与支点的距离越小越好,距

离越小,人作用力的力矩越大。我们如果取支

点位置和地球的受力点的距离恰好是地球的

半径,即6370公里,则一个质量为100kg的

人要撬动地球需要的杆的长度为

km

?,此杆的长度远远大于目前人类探测的宇宙大小(这种撬动实际上38123

10

是不可能实现的,只是用来说明力矩的作用)。

工程问题解析

汽车制动器

汽车制动器是指产生阻碍车辆运动或运动趋势的力(制动力)的部件,其中也包括辅助制动系统中的控制装置。目前,汽车所用的制动器几乎都是摩擦式的,主要分为鼓式和盘式两大类(如图片2-7所示)。

鼓式制动器摩擦元件为制动鼓,其工作表面为圆柱面.制动鼓(刹车片)

位于制动轮内侧,在刹车的时候制动鼓向外张开,摩擦制动轮的内侧,达到刹车的目的.盘式制动器的摩擦元件为旋转的制动盘和固定的制动钳,制动盘固定在车轮上随车轮转动,制动钳的两个刹车片分别装在制动钳的内部两侧.在汽车刹车时,制动钳被液压装置推动后,钳住旋转中的制动盘,迫使车轮停下来。

汽车的这两种制动方式虽然不同,但在物理上都是利用摩擦力矩来制动的。

请分析:

1.如果把车轮看作绕车轴转动的刚体,汽车是怎样利用摩擦力矩的?

2. 为什么汽车制动器的刹车片要安装在制动盘或车轮的边缘?

3. 工程师可以采用哪些方法来改进汽车的制动器?

参考答案:1. 在刹车的时候,车轮边缘的制动轮产生摩擦力,进而产生摩擦力矩,使得车轮转动越来越慢。

2. 同样大小的摩擦力,在车轮边缘的摩擦力矩最大,可以尽快地使车轮减速,提高摩擦力的利用效率。

3. 鼓式刹车盘和盘式刹车盘都可以发挥摩擦力矩的作用使得车轮减速,但在减速的过程中,要产生大量的热量,一方面会使刹车片的寿命缩小,另一方面发热的刹车片影响制动效果,工程师在改进汽车制动器的时候,一方面可以寻找更耐热的材料,另一方面在不影响制动效果的前提下改进散热方面的设计。

第三章 相对论

习题解答

一、分析题

1.银河系的直径大致为10万光年,1光年是光在1年之内走过的距离。如果有人乘坐一艘以光速飞行的宇宙飞船横穿银河系,他将在飞船上度过多少时间?为什么?

答:时间为零,因为根据狭义相对论长度20)(1c

v l l -=可知,对乘坐速度为光速的宇宙飞船的人,银河系的直径等于零。

《大学物理》课后习题答案

《大学物理》课后习题 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

习题4-12图 H L H h H 4-12 一个器壁竖直的开口水槽,如图所示,水的深度为H =10m ,在水面下h =3m 处的侧壁开一个小孔。试求:(1)从小孔射出的水流在槽底的水平射程L 是多少(2)h 为何值时射程最远最远射程是多少 解:(1)设水槽表面压强为p 1,流速为v 1,高度为h 1, 小孔处压强为p 2,流速为v 2,高度为h 2,由伯努利方程得: 22 2212112 121gh v p gh v p ρρρρ++=++ 根据题中的条件可知: 211021,0,h h h v p p p -==== 由上式解得:gh v 22= 由运动学方程:221gt h H = -,解得: g h H t ) (2-= 水平射程为:)(m 17.9)310(34)(42=-??=-==h H h t v L (2)根据极值条件,令0=dh dL ,L出现最大值, 即 022 =--h hH h H ,解得:h=5m 此时L的最大值为10m 。 4-14 水在粗细不均匀的水平管中作稳定流动,已知在截面S1处的压强为110Pa ,流速为0.2m/s ,在截面S2处的压强为5Pa ,求S2处的流速(把水看作理想流体)。 解:由伯努利方程得:2 222112 121v p v p ρ+=ρ+ 2323100.12 1 52.0100.121110v ???+=???+ )(5.012-?=s m v 4-16在水管的某一端水的流速为1.0m/s ,压强为5100.3?Pa ,水管的另一端比第一端降低了20.0m ,第二端处水管的横截面积是第一端处的1/2。求第二 端处的压强。设管中的水为理想流体,且作稳定流动。 解: 由连续性方程 2 21 1v S v S = 得:)(211 2 12212 -?=?== s m v S S v 由伯努利方程22 2212112 121gh v p gh v p ρρρρ++=++ 得:)()(2 121222112h h g v v p p -+-+ =ρρ

大学物理习题集答案.doc

说明:字母为黑体者表示矢量 一、选择题 1. 关于静电场中某点电势值的正负,下列说法中正确的是: [ C ] (A) 电势值的正负取决于置于该点的试验电荷的正负 ; (B) 电势值的正负取决于电场力对试验电荷作功的正负 ; (C) 电势值的正负取决于电势零点的选取 ; (D) 电势值的正负取决于产生电场的电荷的正负。 2. 真空中一半径为 R 的球面均匀带电 Q ,在球心 O 处有一带电量为 q 的点电荷,如图所示。 设无穷远处为电势零点,则在球内离球心 O 距离为 r 的 P 点处电势为: [ B ] (A) q (B) 1 ( q Q ) Q 4 r 4 r R r P (C) q Q (D) 1 ( q Q q ) O q R 4 0 r 4 0 r R 3. 在带电量为- Q 的点电荷 A 的静电场中, 将另一带电量为 q 的点电荷 B 从 a 点移到 b 点, a 、 b 两点距离点电荷 A 的距离分别为 r 1 和 r 2,如图所示。则在电荷移动过程中电场力做的 功为 [ C ] (A) Q 1 1 (B) qQ 1 1 A r 1 a 4 ( ) ; ( ) ; 0 r 1 r 2 4 0 r 1 r 2 - Q qQ 1 1 qQ r 2 b (C) ) ; (D) 。 ( r 2 4 0 ( r 2 r 1 ) 4 0 r 1 4. 以下说法中正确的是 [ A ] (A) 沿着电力线移动负电荷 , 负电荷的电势能是增加的; (B) 场强弱的地方电位一定低 , 电位高的地方场强一定强; (C) 等势面上各点的场强大小一定相等; (D) 初速度为零的点电荷 , 仅在电场力作用下 , 总是从高电位处向低电位运动; (E) 场强处处相同的电场中 , 各点的电位也处处相同 . 二、填空题 R 1.电量分别为 q , q , q 的三个点电荷位于一圆的直径上 , 两个在 q q 2 1 q 1 2 3 O 3 圆周上 , 一个在圆心 . 如图所示 . 设无穷远处为电势零点,圆半径为 ,则 b 点处的电势 U = 1 ( q 1 q 3 ). b R 4 R 2 q 2 2.如图所示,在场强为 E 的均匀电场中, A 、B 两点间距离为 E , 连线方向与 E 的夹角为 . 从 A 点经任意路径到 B 点的 d AB A B d

大学物理练习题

一、选择题 1. 半径为R 的均匀带电球面,若其电荷面密度为σ,取无穷远处为零电势点,则在距离球面r (R r <) 处的电势为( ) A 、0 B 、R 0 εσ C 、r R 02 εσ D 、r R 024εσ 2. 下列说法正确的是:( ) A. 电场场强为零的点,电势也一定为零 B. 电场场强不为零的点,电势也一定不为零 C. 电势为零的点,电场强度也一定为零 D. 电势在某一区域内为常量,则电场强度在该区域内必定为零 3. 如图示,边长是a 的正方形平面的中垂线上,距中心O 点 处, 有一电量为q 的正点电荷,则 通过该平面的电通量是( )。 A. B. C. D. 4. 两根长度相同的细导线分别密绕在半径为R 和r 的两个直圆筒上形成两个螺线管,两个螺线管的长 度相同,R=2r ,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小为B R ,B r ,则应该满足:( ) A. B R =2B r B. B R =B r C. 2B R =B r D. B R =4B r 5. 两个同心均匀带电球面,半径分别为a R 和b R (b a R R <), 所带电荷分别为a q 和b q .设某点与球 心相距r ,当b a R r R <<时,取无限远处为零电势,该点的电势为( ) A 、 r q q b a +?π041ε B 、 r q q b a -?π041ε

C 、???? ? ?+?b b a R q r q 0 41επ D 、 ???? ??+?b b a a R q R q 0 41 επ 6. 面积为S 和S 2的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21Φ表示,线圈2的电流所产生的通过线圈1的磁通用12Φ表示,则21Φ和12Φ的大小关系为( ) 1 2 S 2 S I I A 、12212ΦΦ= B 、1221ΦΦ> C 、1221ΦΦ= D 、12212 1 ΦΦ= 7. 如图所示,两个“无限长”的、半径分别为1R 和2R 的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1λ和2λ,则在两圆柱面之间、距离轴线为r 处的P 点的电场强度大小E 为( ) A 、 r 02 12ελλπ+ B 、 2 02 10122R R ελελπ+ π C 、 r 01 2ελπ D 、0 8. 如图,长度为l 的直导线ab 在均匀磁场B ? 中以速度v ? 移动,直导线ab 中的电动势为( )

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理练习册习题答案

大学物理练习册习题答案

练习一 (第一章 质点运动学) 一、1.(0586)(D )2.(0587)(C )3.(0015)(D )4.(0519)(B ) 5.(0602)(D ) 二、1.(0002)A t= 1.19 s t= 0.67 s 2.(0008)8 m 10 m 3.(0255)() []t t A t ωβωωωβ βsin 2cos e 22 +--,()ωπ/122 1+n , (n = 0, 1, 2,…) 4.(0588) 30/3 Ct +v 4 00112 x t Ct ++ v 5.(0590) 5m/s 17m/s 三、 1.(0004)解:设质点在x 处的速度为v , 2 d d d 26 d d d x a x t x t ==?=+v v ()2 d 26d x x x =+??v v v () 2 2 1 3 x x +=v 2.(0265)解:(1) /0.5 m/s x t ??==-v (2) 2 =/96dx dt t t =- v (3) 2= 6 m/s -v |(1.5)(1)||(2)(1.5)| 2.25 m S x x x x =-+-= 3.(0266)解:(1) j t r i t r j y i x r ????? sin cos ωω+=+=

(2) d sin cos d r r t i r t j t ωωωω==-+v v v v v 22 d cos sin d a r t i r t j t ωωωω==--v v v v v (3) ()r j t r i t r a ???? sin cos 22 ωωωω-=+-= 这说明 a ?与 r ? 方向相反,即a ?指向圆心. 4. 解:根据题意t=0,v=0 --------==?+?∴=?+?=====?+?=+?+?? ??? ??由于及初始件v t t r t t r dv adt m s i m s j dt v m s ti m s tj dr v t r m i dt dr vdt m s ti m s tj dt r m m s t m s t j 0 220 220 220 2222[(6)(4)] (6)(4)0,(10)[(6)(4)][10(3)][(2)] 质点运动方程的分量式: --=+?=?x m m s t y m s t 2 2 22 10(3)(2) 消去参数t ,得到运动轨迹方程 =-y x 3220 练习二(第一章 质点运动学) 一、1.(0604)(C ) 2.(5382)(D ) 3.(5627)(B ) 4.(0001)(D ) 5.(5002)(A ) 二、1.(0009) 0 bt +v 2. (0262) -c (b -ct )2/R

大学物理之习题答案

单元一 简谐振动 一、 选择、填空题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? 【 C 】 (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π3 4 ,则t=0时,质点的位置在: 【 D 】 (A) 过A 21x = 处,向负方向运动; (B) 过A 21 x =处,向正方向运动; (C) 过A 21x -=处,向负方向运动;(D) 过A 2 1 x -=处,向正方向运动。 3. 将单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止释放任其振动,从放手开始计时,若用余弦函数表示运动方程,则该单摆的初相为: 【 B 】 (A) θ; (B) 0; (C)π/2; (D) -θ 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: 【 B 】 (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: 【 C 】 (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; ) 4(填空选择) 5(填空选择

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理习题册答案(2)

、选择题 练习十三 (简谐振动、旋转矢量、简谐振动的合成) 1. 一弹簧振子,水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 (A) 竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B) 竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C) 两种情况都作简谐振动; (D)两种情况都不作简谐振动。 d2x 解:(C)竖直弹簧振子:m—2k(x I) mg kx( kl dt 弹簧置于光滑斜面上:m吟 dt2k(x I) mg sin kx ( )d 2x mg), 勞dt2 d2x kl mg),可 dt2 2 . 两个简谐振动的振动曲线如图所示,则有(A) n n (A) A超前一;(B) A落后一;(C) A超前n; 2 2 (D) A落后It 。 2 x 3. 一个质点作简谐振动,周期为T,当质点由平衡位置向x轴正方向运动时,由 之一最大位移这段路程所需要的最短时间为 (B) /、T/、T T /、T (A) (B) ; (C) (D) 。 41268 解:(A)X A A cos t, X B Acos( t /2) 解:(B)振幅矢量转过的角度/6 ,所需时间t 平衡位置到二分 4.分振动表式分别为x13cos(50 n 0.25 n 和x2 为: (A) x 2cos(50 n t 0.25 u);(B) (C) x 5cos(50 n 1 arcta n —); 2 7 (D 解:(C)作旋转矢量图或根据下面公式计算5 . /6 T 2 /T 12 4cos(50 n 0.75 n (SI 制)则它们的合振动表达式x 5cos(50 n); A A 2AA COS(20 10) . 32 42 2 3 4cos(0.75 0.25 丄1 Asin 10 A2sin 20丄1 3sin(0.25 ) 4sin(0.75 ) tg - _ - — tg 3cos(0.25 ) cos 10 A? cos 20 4cos(0.75 ) 2 tg 两个质量相同的物体分别挂在两个不同的弹簧下端, 弹簧的伸长分别为5; l2,且h 2 l2,则 两弹簧振子的周期之比T1 :T2为(B) (A) 2 ; ( B) 2 ; ( C) 1/2 ; ( D) 1/、2。

大学物理教程 上 课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 或1= (2)将1t s =和2t s =代入,有 11r i =u r r , 241r i j =+u r r r 位移的大小 r ==r V (3) 2x dx v t dt = = 2x x dv a dt = =, 2y y dv a dt == 当2t s =时,速度和加速度分别为 22a i j =+r r r m/s 2 1-4 设质点的运动方程为 cos sin ()r R ti R t j SI ωω=+r r r ,式中的R 、ω均为常量。求(1)质点的速度;(2)速率的变化率。 解 (1)质点的速度为 (2)质点的速率为 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34,

2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作 用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的 阻力(空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 即 dv k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等 于地球半径的2倍(即2R ),试以,m R 和引力恒量G 及地球的质量M 表示出: (1) 卫星的动能; (2) 卫星在地球引力场中的引力势能. 解 (1) 人造卫星绕地球做圆周运动,地球引力作为向心力,有 卫星的动能为 212 6k GMm E mv R == (2)卫星的引力势能为 2-37 一木块质量为1M kg =,置于水平面上,一质量为2m g =的子弹以 500/m s 的速度水平击穿木块,速度减为100/m s ,木块在水平方向滑行了20cm 后 停止。求: (1) 木块与水平面之间的摩擦系数; (2) 子弹的动能减少了多少。

大学物理练习题册答案

练习一 质点运动学 1、26t dt d +== ,61+= ,t v 261 331+=-=-? , a 241 31 331=--=- 2、020 22 12110 v Kt v Ktdt v dv t Kv dt dv t v v +=?-?=??-= 所以选(C ) 3、因为位移00==v r ?,又因为,0≠?0≠a 。所以选(B ) 4、选(C ) 5、(1)由,mva Fv P ==dt dv a = ,所以:dt dv mv P =,??=v t mvdv Pdt 0 积分得:m Pt v 2= (2)因为m Pt dt dx v 2==,即:dt m Pt dx t x ??=0 02,有:2 3 98t m P x = 练习二 质点运动学 (二) 1、 平抛的运动方程为 202 1gt y t v x ==,两边求导数有: gt v v v y x ==0,那么 2 22 0t g v v +=, 2 22 022t g v t g dt dv a t +==, = -=22 t n a g a 2 220 0t g v gv +。 2、 2241442s /m .a ;s /m .a n n == 3、 (B ) 4、 (A ) 练习三 质点运动学

1、023 2332223x kt x ;t k )t (a ;)k s (t +=== 2、0321`=++ 3、(B ) 4、(C ) 练习四 质点动力学(一) 1、m x ;912== 2、(A ) 3、(C ) 4、(A ) 练习五 质点动力学(二) 1、m 'm mu v )m 'm (v V +-+-=00 2、(A ) 3、(B ) 4、(C ) 5、(1)Ns v v m I v s m v t t v 16)(,3,/19,38304042=-===+-= (2)J mv mv A 1762 1212 024=-= 练习六、质点动力学(三) 1、J 900 2、)R R R R ( m Gm A E 2 12 1-= 3、(B ) 4、(D ) 5、)(2 1 222B A m -ω 练习七 质点动力学(四) 1、) m m (l Gm v 212 2 12+= 2、动量、动能、功 3、(B )

大学物理例题

例1 路灯离地面高度为H,一个身高为h 的人,在灯下水平路面上以匀速度步行。如图3-4所示。求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小。 解:建立如右下图所示的坐标,时刻头顶影子的坐标为 ,设头顶影子的坐标为,则 由图中看出有 则有 所以有 ; 例2如右图所示,跨过滑轮C的绳子,一端挂有重物B,另一端A 被人拉着沿水平方向匀速运动,其速率。A离地高度保 持为h,h =1.5m。运动开始时,重物放在地面B0处,此时绳C在铅 直位置绷紧,滑轮离地高度H = 10m,滑轮半径忽略不计,求: (1) 重物B上升的运动方程;

(2) 重物B在时刻的速率和加速度; (3) 重物B到达C处所需的时间。 解:(1)物体在B0处时,滑轮左边绳长为l0 = H-h,当重物的位移为y时,右边绳长为 因绳长为 由上式可得重物的运动方程为 (SI) (2)重物B的速度和加速度为 (3)由知 当时,。

此题解题思路是先求运动方程,即位移与时间的函数关系,再通过微分求质点运动的速度和加速度。 例3一质点在xy平面上运动,运动函数为x = 2t, y = 4t2-8(SI)。 (1) 求质点运动的轨道方程并画出轨道曲线; (2) 求t1=1s和t2=2s时,质点的位置、速度和加速度。 解:(1) 在运动方程中消去t,可得轨道方程为 , 轨道曲线为一抛物线如右图所示。 (2) 由 可得: 在t1=1s 时, 在t2=2s 时, 例4质点由静止开始作直线运动,初始加速度为a0,以后加速度均匀增加,每经过τ秒增加a0,求经过t秒后质点的速度和位移。 解:本题可以通过积分法由质点运动加速度和初始条件,求解质点的速度和位移。

《大学物理习题集》上)习题解答

) 2(选择题(5) 选择题单 元一 质点运动学(一) 一、选择题 1. 下列两句话是否正确: (1) 质点作直线运动,位置矢量的方向一定不变; 【 ? 】 (2) 质点作园周运动位置矢量大小一定不变。 【 ? 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。 3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】 (A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向; (C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度: 【 D 】 (A) 等于零 (B) 等于-2m/s (C) 等于2m/s (D) 不能确定。 5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】 (A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。 6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,

大学物理习题册答案 (2)

x O 1A 2 2 练习 十三 (简谐振动、旋转矢量、简谐振动的合成) 一、选择题 1. 一弹簧振子,水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 (C ) (A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。 解:(C) 竖直弹簧振子:kx mg l x k dt x d m )(22(mg kl ),0222 x dt x d 弹簧置于光滑斜面上:kx mg l x k dt x d m sin )(22 (mg kl ),0222 x dt x d 2. 两个简谐振动的振动曲线如图所示,则有 (A ) (A )A 超前 2π; (B )A 落后2π;(C )A 超前π; (D )A 落后π。 解:(A)t A x A cos ,)2/cos( t A x B 3. 一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: (B ) (A )4T ; (B )12T ; (C )6T ; (D )8 T 。 解:(B)振幅矢量转过的角度6/ ,所需时间12 /26/T T t , 4. 分振动表式分别为)π25.0π50cos(31 t x 和)π75.0π50cos(42 t x (SI 制)则它们的合振动表达式为: (C ) (A ))π25.0π50cos(2 t x ; (B ))π50cos(5t x ; (C )π1 5cos(50πarctan )27 x t ; (D )7 x 。 解:(C)作旋转矢量图或根据下面公式计算 )cos(210202122 2 1 A A A A A 5)25.075.0cos(432432 2 ; 7 1 2)75.0cos(4)25.0cos(3)75.0sin(4)25.0sin(3cos cos sin sin 112021012021011 0 tg tg A A A A tg 5. 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l 和2l ,且212l l ,则两弹簧振子的周期之比21:T T 为 (B ) (A )2; (B )2; (C )2/1; (D )2/1。 解:(B) 弹簧振子的周期k m T 2 ,11l mg k , 22l mg k ,22 121 l l T T 6. 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为 x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是: (B ) (A) 2 max 2max /x m k v ; (B) x mg k / ; (C) 2 2/4T m k ; (D) x ma k / 。 解:B 7. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动表式为x 1 = A cos(t + ).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质 点的振动表式为 (B ) (A) )π21 cos( 2 t A x ; (B) )π2 1cos(2 t A x ; x t o A B 1 A 4 / 4 /3 2 A A x O )0(A )(t A 3/ 6/

大学物理例题

1。质点的运动方程为 求: (1)质点的轨迹方程; (2)质点在第1s和第2秒的运动速度; (3)质点在第1s和第2秒的加速度。 2.在离水面高为h 的岸边,有人用绳子拉小船靠岸,人以不变的速率u收绳。求:当船在离岸距离为x时的速度和加速度。 例3:一质点作直线运动,已知其加速度a= 2- 2t (SI),初始条件为x0=0,v0=0,求 (1)质点在第1s末的速度; (2)质点的运动方程; (3)质点在前3s内经历的路程。

4。 5。

6。已知l 长的绳端拴一质量m 的小球(另 一端固定在o 点),自水平位置由静止释 放。求球摆至任一位置时,球的速度及绳 中的张力。 7. 一个滑轮系统,如图,A 滑轮的加速度为a ,两边分别悬挂质量为m 1和m 2的两个物体, 求两个物体的加速度。 7。一个以加速度大小a=1/3g 上升的升降机里,有一装置如图所示,物体A 、B 的质量相同,均为m ,A 与桌面之间的摩擦忽略不计,滑轮的重量忽略不计。从地面看,B 做自由落体运动。试求,若从升降机上看,B 的加速度大小是多少?

8. 9.重量为P 的摆锤系于绳的下端,绳长为l ,上端固定,如图所示,一水平变力大小为F 从零逐渐增大,缓慢地作用在摆锤上,使摆锤虽然移动,但在所有时间内均无限接近力平衡,一直到绳子与竖直线成 Θ0 角的位置,试计算此变力所做的功. P F

10.一束子弹射入木块,并在木块中走了S ',然后停止;而子弹和木块整个系统水平向右走了S ,求子弹和木块所受的一对摩擦力f s 和f s '所做的净功。 11. 如图所示,倔强系数为k 的弹簧悬挂着质量为m 1,m 2两个物体,开始时处于静止,突然把两物体间的连线剪断,求m 1的最大速度为多少? 12. 墙壁上固定一水平放置的轻弹簧,弹簧的另一端连一质量为m 的物体,弹簧的弹性系数为k ,物体m 与水平面间的摩擦系数为μ,开始时,弹簧没有伸长,现以恒力F 将物体自平衡位置开始向右拉动,试求此系统所具有的最大势能。 k 1m 2 m

大学物理课后习题答案

大学物理课后习题答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第十一章 磁场与介质的相互作用 1、试用相对磁导率r 表征三种磁介质各自的特性。 解:顺磁质r >1,抗磁质r <1,铁磁质r >>1 2、用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为r 的均匀磁介质。若线圈中载有稳恒电流I ,求管中任意一点的磁场强度大小。 解:磁场强度大小为H = NI / l . 3、置于磁场中的磁介质,介质表面形成面磁化电流,试问该面磁化电流能否产生楞次─焦耳热为什么 答:不能.因为它并不是真正在磁介质表面流动的传导电流,而是由分子电流叠加而成,只是在产生磁场这一点上与传导电流相似。 4、螺绕环上均匀密绕线圈,线圈中通有电流,管内充满相对磁导率为r =4200的磁介质.设线圈中的电流在磁介质中产生的磁感强度的大小为B 0,磁化电流 在磁介质中产生的磁感强度的大小为B',求B 0与B' 之比. 解:对于螺绕环有:nI B r μμ0=,nI B 00μ= 5、把长为1m 的细铁棒弯成一个有间隙的圆环,空气间隙宽为mm 5.0,在环上绕有800匝线圈,线圈中的电流为1A ,铁棒处于初始磁化曲线上的某个状态,并测得间隙的磁感应强度为T 5.0。忽略在空气隙中的磁通量的分散,求铁环内的磁场强度及铁环的相对磁导率。 解:⑴沿圆环取安培环路,根据∑?=?i L I l d H ,得 NI d B HL =+00 μ (此处d L >>,忽略空气隙中的B φ分散)

于是 m A L d B NI H /60100 ≈-=μ ⑵ H B r μμ0= ,而0B B ≈,37.6620== ∴H B r μμ 6、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为 A 时,测得铁环内的磁感应强度的大小B 为 T ,求铁环的相对磁导率r (真空磁导率0 =4×10-7 T ·m ·A -1)。 解:因为:I l N nI B r μμμ0== 所以: 7、一根很长的同轴电缆,由一导体圆柱 (半径为a )和同轴的导体圆管(内、外半 径分别为b 、c )构成。使用时,电流I 从一导体流出,从另一导体流回,设电流都是均匀地分布在导体的横截面上,求导体圆柱内(a r <)和两导体之间 (b r a <<)的磁场强度H 的大小。 解:由于电流分布具有对称性,因而由此产生的磁场分布也必然具有相应的轴对称性,所以在垂直于电缆轴的平面内,以轴为中心作一圆环为安培环路。应用磁介质中的安培环路,计算安培环路的磁场强度矢量的线积分。 据 ∑?=?i L I l d H ,当a r <时,22a Ir H π= 当b r a <<时,r I H π2= 8、在无限长载流空心螺线管内同轴地插入一块圆柱形顺磁介质,若1、2点为圆柱介质中分面上靠近柱面而分居柱面两边的两个点。在1、2点处的磁感应强度分别为1B 、2B ,磁场强度分别为21H 、H ,则它们之间的关系是怎样的

大学物理第一学期练习册答案概要

练习一 质点运动学 一、选择题 1.【 A 】 2. 【 D 】 3. 【 D 】 4.【 C 】 二、填空题 1. (1) 物体的速度与时间的函数关系为cos dy v A t dt ωω= =; (2) 物体的速度与坐标的函数关系为2 2 2 ()v y A ω +=. 2. 走过的路程是 m 3 4π ; 这段时间平均速度大小为:s /m 40033π;方向是与X 正方向夹角3 π α= 3.在第3秒至第6秒间速度与加速度同方向。 4.则其速度与时间的关系v=3 2 03 1Ct dt Ct v v t = =-? , 运动方程为x=4 0012 1Ct t v x x +=-. 三、计算题 1. 已知一质点的运动方程为t ,r ,j )t 2(i t 2r 2 ? ?? ? -+=分别以m 和s 为单位,求: (1) 质点的轨迹方程,并作图; (2) t=0s 和t=2s 时刻的位置矢量; (3) t=0s 到t=2s 质点的位移?v ,?r ==? ?? (1)轨迹方程:08y 4x 2 =-+; (2) j 2r 0?? =,j 2i 4r 2???-= (3) j 4i 4r r r 02??? ??-=-=?,j 2i 2t r v ????-==?? 2. 湖中一小船,岸边有人用绳子跨过高出水面h 的滑轮拉船,如图5所示。如用速度V 0收绳,计算船行至离岸边x 处时的速度和加速度。 选取如图5所示的坐标,任一时刻小船满足: 222h x l +=,两边对时间微分 dt dx x dt dl l =,dt dl V 0-=,dt dx V = 02 2V x h x V +-= 方向沿着X 轴的负方向。 5 图

大学物理教程课后习题答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 21)y = 或 1= (2)将1t s =和2t s =代入,有 11r i =, 241r i j =+ 213r r r i j =-=- 位移的大小 231r =+= (3) 2x dx v t dt = = 2(1)y dy v t dt ==- 22(1)v ti t j =+- 2x x dv a dt ==, 2y y dv a dt == 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω= =-+ (2)质点的速率为 v R ω== 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t dt θ ω= = 质点在t 时刻的法向加速度n a 的大小为 2216n a R Rt ω== 角加速度β的大小为 24/d rad s dt ω β== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s ==+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 dv k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

大学物理 习题册答案

1.轻型飞机连同驾驶员总质量为31.010kg ?。飞机以1 55.0m s -?速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数2 1 5.010N S -?=??求:⑴ 10秒后飞机的速率;⑵ 飞机着陆后10秒内滑行的距离。 解:(1)在水平面上飞机仅受阻力作用,以飞机滑行方向为正方向, 由牛顿第二定律得: t dt dv m ma F -?===∴ dt m t dv t v v ???-=00 可得:2 02t m v v ?-= ∴ 当s t 10=时,1 0.30-?=s m v (2)又∵ dt dr v =∴ ?????? ?? ?-==t t r dt t m v vdt dr 020002 ∴m t m t v r r s 4676300=?-=-= 2.用铁锤把钉子敲入墙面木板,设木板对钉子的阻力与钉子进入木板的深度成正比。若第一次敲击,能把钉子钉入木板2 1.0010m -?。第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?试问木板对钉子的阻力是保守力? 解:由动能定理,有:122 01011022 s m kx x ks -=-=-?d v 设铁锤第二次敲打时能敲入的深度为Δ S ,则有 11 2220111110()222s s s m kx x k s s ks +??? -=-=-+?-???? ?d v 得:2211()2s s s +?= 化简后为:11s s +?= 第二次能敲入的深度为:111)10.41cm s s ?=-=?=cm 易知:木板对钉子的阻力是保守力 3.某弹簧不遵守胡克定律,力F 与伸长x 的关系为F =52.8x +38.4x 2(SI ),求: ⑴ 将弹簧从伸长x 1=0.50 m 拉伸到伸长x 2=1.00 m 时,外力所需做的功。⑵ 将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到一定伸长x 2=1.00 m ,再将物体由静止释放,求当弹簧回到x 1=0.50 m 时,物体的速率。⑶此弹簧的弹力是保守力吗? 解:(1)()2 2 1 1 2 52.838.431x x x x W Fdx x x dx J = =+=? ? (2)由动能定理可知2220111222W mv mv mv = -=,即 5.35/v m s == (3)很显然,力F 做功与路径无关,此弹簧的弹力是保守力。

相关文档